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Abstract
The objective of this paper is to study some qualitative dynamic properties of a
nonautonomous predator-prey model with stochastic perturbation and
Crowley-Martin functional response. The existence of a global positive solution and
stochastically ultimate boundedness are obtained. Sufficient conditions for extinction,
persistence in the mean, and stochastic permanence of the system are established.
We also derive conditions to guarantee the global attractiveness and stochastic
persistence in probability of the model. Our theoretical results are confirmed by
numerical simulations.
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1 Introduction
Predator-prey systems play an important role in studying the dynamics of interacting
species. During the last decades, lots of predator-prey models have been proposed and an-
alyzed from various prospectives. When investigating biological phenomena, functional
response is one of the most important factors that affect dynamical properties of biological
and mathematical models [–]. Many researchers have paid their attention to predator-
prey systems with prey-dependent functional response. However, the predator functional
response occurs quite frequently in nature and laboratory, such as searching for food and
sharing, or competing for, food [, ]. Therefore, we must not ignore the predator func-
tional response to prey because of the effect of such a response on dynamical system prop-
erties, and many types of predator-dependent functions have been proposed and analyzed.
The deterministic predator-prey model with Crowley-Martin functional response can be
expressed as follows:

ẋ = x
(

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
,

ẏ = y
(

–g(t) – h(t)y +
f (t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)
,

()

where x(t) and y(t) represent the population densities of the prey and predator at time t,
respectively. r(t) and g(t) are the growth rate of the prey and predator, respectively, k(t) and
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h(t) stand for the density-dependent coefficients of species x and y, ω(t) is the capturing
rate of predator, and f (t) denotes the rate of conversion of nutrients into the production
of predator at time t. The ratio ω(t)x(t)y(t)

+a(t)x(t)+b(t)y(t)+a(t)b(t)x(t)y(t) is the functional response, where
a(t) and b(t) describe the effects of handling time and the magnitude of interference among
predators.

Meanwhile, population models in the real world are always affected by a lot of un-
predictably environmental noises. To predict richer and more complex dynamics of the
model, stochastic perturbations are introduced into the population models (see, e.g., [–
]). In common, there are four approaches including stochastic effects in the model [],
that is, through time Markov chain model [], parameter perturbation [], being propor-
tional to the variables [], and robusting the positive equilibria of deterministic models.
Stochastic perturbation will bring effect on almost all parameters of the model in vari-
ous different ways, and it is valuable to consider more than one approach to describe the
random effects on the system. In this paper, we adopt a combination of the second and
third approaches to include stochastic perturbations, that is, we assume that the stochas-
tic perturbations are of white noise type and proportional to x(t), y(t), influenced respec-
tively on ẋ(t) and ẏ(t) in system (); Moreover, the capturing and conversion rate coef-
ficients ω(t) and f (t) are changed as ω(t) + σ(t)Ḃ(t), and f (t) + δ(t)Ḃ(t), respectively.
Then, in accordance with system (), we propose the following stochastic predator-prey
model:

dx = x
(

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
dt

+ x
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t),

dy = y
(

–g(t) – h(t)y +
f (t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)
dt

+ y
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t),

()

where all the coefficients are positive, continuous, and differentiable bounded functions
on R+ = [, +∞), σ 

i (t) and δ
i (t) (i = , ) denote the intensities of the white noises, B(t),

B(t) are independent Brownian motions defined on a complete probability space (�,F ,P)
with a filtration {Ft}t∈R+ satisfying the usual conditions (i.e., it is right continuous and in-
creasing with F containing all P-null sets) []. We denote R


+ = {X = (x, y)|x > , y > }

and |X(t)| = (x(t) + y(t)) 
 .

To proceed, we present some useful definitions and notations:
f u = supt≥ f (t), f l = inft≥ f (t), 〈f (t)〉 = 

t
∫ t

 f (s) ds, f ∗ = lim supt→+∞ f (t),
f∗ = lim inft→+∞ f (t).
Extinction: limt→+∞ x(t) =  a.s.
Non-persistence in the mean: 〈x〉∗ = .
Weak persistence in the mean: 〈x〉∗ > .
Strong persistence in the mean: 〈x〉∗ > .
Stochastic permanence: there are constants δ > , χ >  such that P∗{|x(t)| ≥ δ} ≥  – ε

and P∗{|x(t)| ≤ χ} ≥  – ε.
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This paper is arranged as follows. In Section , we show that there exists a unique pos-
itive solution of system () and prove its boundedness. In Section , we obtain sufficient
conditions for extinction, persistence in the mean, and stochastic permanence. The global
attractiveness and stochastic persistence in probability of system () are analyzed in Sec-
tion . Finally, some numerical simulations to support our analytical findings are given in
Section .

2 Existence, uniqueness, and stochastically ultimate boundedness
Theorem  For any given value (x(), y()) = X ∈ R

+
 , there is a unique solution (x(t), y(t))

on t ≥ , and the solution remains in R+ with probability one.

The proof of Theorem  is standard, and we present it in the Appendix.

Theorem  The solutions of model () are stochastically ultimately bounded for any initial
value X = (x, y) ∈R

+
 .

Proof We need to show that for any ε ∈ (, ), there exists a positive constant δ = δ(ε) such
that for any given initial value X ∈R

+
 , the solution X(t) to () has the property

lim sup
t→∞

P
{∣∣X(t)

∣∣ > δ
}

< ε.

Let V(x) = xp and V(y) = yp for (x, y) ∈R
+
 and p > . Then, we obtain

d
(
xp) =

(
pxp– dx + .p(p – )xp–(dx))

= pxp
(

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
dt

+ .p(p – )xp
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

dt

+ pxp
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

= LV(x, y) dt + pxp
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

and

d
(
yp) = pyp

(
–g(t) – h(t)y +

f (t)x
 + a(t)x + b(t)y + a(t)b(t)xy

)
dt

+ .p(p – )yp
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)

dt

+ pyp
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

= LV(x, y) + pyp
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t).
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Here, LV(x, y) ≤ pxp(ru – klx + .(p – )(σ u
 + σu


bl )), and LV(x, y) ≤ pyp( f u

al + .p(δu
 +

δu


al ) – hly). Thus,

dE[xp(t)]
dt

≤ p
{[

ru + .(p – )
(

σ u
 +

σ u


bl

)]
E
[
xp(t)

]
– klE

[
xp+(t)

]}

≤ p
{[

ru + .(p – )
(

σ u
 +

σ u


bl

)]
E
[
xp(t)

]
– kl[E

(
xp(t)

)]+ 
p

}

≤ pE
[
xp(t)

]{[
ru + .p

(
σ u

 +
σ u


bl

)]
– kl[E

(
xp(t)

)] 
p

}
()

and

dE[yp(t)]
dt

≤ pE
[
yp(t)

]{[
f u

al + .p
(

δu
 +

δu


bl

)]
– hl[E

(
yp(t)

)] 
p

}
.

For (), we consider the equation

dz(t)
dt

= pz(t)
{[

ru + .p
(

σ u
 +

σ u


bl

)]
– klz(t)


p

}

with initial value z() = z. Obviously, we can obtain that

z(t) =
( z/p

 (ru + .p(σ u
 + σu


bl ))

(ru + .p(σ u
 + σu


bl ))e–(ru+.p(σu

 +
σu


bl ))t + klz/p

 ( – e–(ru+.p(σu
 +

σu


bl ))t)

)p

.

Letting t → ∞, we have

lim
t→∞ z(t) =

( ru + .p(σ u
 + σu


bl )

kl

)p

.

Thus, by the comparison theorem we get

lim sup
t→∞

Exp ≤
( ru + .p(σ u

 + σu


bl )

kl

)p

� G < +∞.

Similarly, we obtain

lim sup
t→∞

Eyp ≤
( f u

al + .p(δu
 + δu


bl )

hl

)p

� G < +∞.

Thus, for a given constant ε > , there exists T >  such that

E
[
xp(t)

] ≤ G + ε and E
[
yp(t)

] ≤ G + ε

for all t > T . In accordance with the continuity of E[xp(t)] and E[yp(t)], there are M(p),
M(p) >  satisfying E[xp(t)] ≤ M(p) and E[yp(t)] ≤ M(p) for t ≤ T . Denote

M(p) = max
{

M(p), G + ε
}

, M(p) = max
{

M(p), G + ε
}

.
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Then, for all t ∈ R+, we have

E
[
xp(t)

] ≤ M(p), E
[
yp(t)

] ≤ M(p).

Consequently,

E
∣∣X(t)

∣∣p ≤ Mp < +∞,

where Mp = 
p
 (M(p) + M(p)). By virtue of the Chebyshev inequality, the proof is com-

pleted. �

3 Persistence and extinction
In this part, we show the long-time dynamical properties of system (), including extinc-
tion, persistence in the mean, and stochastic permanence in Theorems -. Before giving
the theorems, we introduce some assumptions and lemmas.

In [], the author considered the stochastic differential equation

dx(t) = diag
(
x(t), . . . , xn(t)

)([
b(t) + A(t)x(t)

])
dt + σ (t) dw(t), ()

where x = (x, . . . , xn)T , b = (b, . . . , bn)T , A = (aij)n×n, w(t) = (w(t), . . . , wn(t))T , σ (t) =
(σij(t))n×n and obtained the following theorem (Theorem . in []):

Suppose that all the parameters bi(t), aij(t), and σij(t) ( ≤ i, j ≤ n) are bounded on t ∈R+

and there exist positive numbers c, . . . , cn satisfying

–λ := sup
t≥

λ+
max

(
CA + AT C

)
< , ()

where C = diag(c, . . . , cn) and λ+
max(A) = supx∈Rn

+,|x|= xT Ax. Then, for any initial value
x() ∈R

n
+, the solution x(t) of the SDE () has the property

lim sup
t→∞

ln(|x(t)|)
ln t

≤  a.s.

Introducing an auxiliary matrix A = (āij)n×n, where āij = supt≥ āij(t),  ≤ i, j ≤ n, the
author also achieved a more useful conclusion to verify condition ():

If –A is a nonsingular M-matrix, then condition () holds.
Thus, we obtain the following lemma.

Assumption (H) klhl > f uωu.

Lemma  If Assumption (H) holds, then the solution X(t) = (x(t), y(t)) of system () with
initial value (x, y) ∈R

+
 has the following properties:

lim sup
t→∞

ln x(t)
ln t

≤ , lim sup
t→∞

ln y(t)
ln t

≤  a.s., ()

and there is a positive constant K such that

lim sup
t→∞

E
(
x(t)

) ≤ K , lim sup
t→∞

E
(
y(t)

) ≤ K . ()
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Proof By virtue of the useful conclusion obtained by Cheng [], we achieve that under
Assumption (H), the conditions of Theorem . in [] are satisfied. Then inequality ()
is proved.

Next, we turn to (). Denote V (x, y) = et(x + y). Then by Itô’s formula we have

dV (x, y) = et
{

x + y + x
(

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

+ y
(

–g(t) – h(t)y +
f (t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)}
dt

+ et
(

σ(t)x +
σ(t)xy

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

+ et
(

δ(t)y +
δ(t)xy

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

= LV (x, y) dt + et
(

σ(t)x +
σ(t)xy

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

+ et
(

δ(t)y +
δ(t)xy

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t).

Here,

LV (x, y) ≤ et
(

x + y + rux – klx – gly – hly +
f u

albl

)
≤ C,

where C >  is a constant. Therefore, lim supt→∞ E(V (x(t), y(t))) ≤ C, and () is proved.
�

Consider the ordinary differential equations

dx̄ = x̄
(
r(t) – k(t)x̄

)
dt + x̄

(
σ(t) +

σ(t)ȳ
 + a(t)x̄ + b(t)ȳ + a(t)b(t)x̄y

)
dB(t),

dȳ = ȳ
(

–h(t)ȳ +
f (t)
a(t)

)
dt + ȳ

(
δ(t) +

δ(t)x̄
 + a(t)x̄ + b(t)ȳ + a(t)b(t)x̄y

)
dB(t).

()

Then we have the following results on the persistence and extinction of the populations.

Theorem  In system (), for the prey population x, if Assumption (H) holds, then the
following conclusions hold:

() If 〈r〉∗ < , then the prey species x ends in extinction with probability , where
r(t) = r(t) – .σ 

 (t).
() If 〈r〉∗ = , then the prey species x is nonpersistent in the mean with probability .
() If 〈r – .(σ + σ

b )〉∗ > , then the prey species x is weakly persistent in the mean
with probability .

() If 〈r – .(σ + σ
b )〉∗ – 〈ω

b 〉∗ > , then the species population x is strongly persistent in
the mean with probability .

() If 〈r〉∗ > , then 〈x(t)〉∗ ≤ ru

kl � Mx.

The proof of Theorem  is presented in the Appendix.

Theorem  In system (), for the predator population y, if Assumption (H) holds, then
the following conclusions hold:
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() If k∗〈–g – .δ
 〉∗ + f ∗〈r〉∗ < , then the predator species y is extinct with

probability .
() If k∗〈–g – .δ

 〉∗ + f ∗〈r〉∗ = , then the predator species y is nonpersistent in the
mean with probability .

() If 〈–g – .(δ + δ
a )〉∗ + 〈 f x̄

+ax̄+bȳ+abx̄ȳ 〉∗ – f u bl〈σσ〉∗+〈σ
 〉∗

(bl)kl > , then the predator
species y is weakly persistent in the mean with probability , where (x̄(t), ȳ(t)) is the
solution of () with initial value (x, y) ∈R


+.

() If f l〈r – .(σ + σ
b )〉∗ + ku〈–g – .(δ + δ

a )〉∗ > , then the species population y is
strongly persistent in the mean with probability .

() If 〈–g – .δ
 〉∗ + 〈 f

a 〉∗ > , then 〈y(t)〉∗ ≤ 〈–g–.δ
 〉∗+〈 f

a 〉∗
hl � My.

The proof of Theorem  is given in the Appendix.

Remark  From the proof of Theorem  we can observe that if 〈r〉∗ >  and k∗〈–g –
.δ

 〉∗ + f ∗〈r〉∗ < , then although the prey population survives, the predators die out
because of the too large diffusion coefficient δ

 .

Remark  From Theorems  and  we derive that if 〈r〉∗ < , then both the prey and
predator populations eventually end in extinction. Meanwhile, in this case, the functional
rate has no influence on the extinction of the system.

Theorem  Suppose that (max{σ u
 , σu


bl , δu

 , δu


al }) < min{rl – ωu

bl , f l

au – gu}, then system () is
stochastically permanent.

Proof The proof is motivated by Li and Mao [] and Liu and Wang []. The whole proof
is divided into two parts. First, we prove that for arbitrary ε > , there exists a constant
δ >  such that P∗{|x(t)| ≥ δ} ≥  – ε.

Above all, we claim that for any initial value X() = (x(), y()) ∈R
+
 , the solution X(t) =

(x(t), y(t)) satisfies

lim sup
t→∞

E
(


|X(t)|θ

)
≤ M.

Here, θ is an arbitrary positive constant satisfying

(θ + )
(

max

{
σ u

 ,
σ u


bl , δu

 ,
δu


al

})

< min

{
rl –

ωu

bl ,
f l

au – gu
}

. ()

By () there exists a constant p >  satisfying

min

{
rl –

ωu

bl ,
f l

au – gu – (θ + )
(

max

{
σ u

 ,
σ u


bl , δu

 ,
δu


al

})

– p
}

> . ()

Define V (x, y) = x + y. Then

dV (x, y) =
{

x
(

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

+ y
f (t)x

 + a(t)x + b(t)y + a(t)b(t)xy

}
dt
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+ y
(
–g(t) – h(t)y

)
dt +

(
σ(t)x +

σ(t)xy
 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

+
(

δ(t)y +
δ(t)xy

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t).

Letting U(x, y) = 
V (x,y) , by Itô’s formula we obtain

dU(X) =
{

–U(X)
(

x
(

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

+ y
f (t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)}
dt – U(X)y

(
–g(t) – h(t)y

)
dt

+ U(X)x
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

dt

+ U(X)y
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)

dt

– U(X)
((

σ(t)x +
σ(t)xy

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

+
(

δ(t)y +
δ(t)xy

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

)

= LU(X) dt – U(X)
(

σ(t)x +
σ(t)xy

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

– U(X)
(

δ(t)y +
δ(t)xy

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t).

Choose a positive constant θ such that it obeys (). Then

L
(
 + U(X)

)θ = θ
(
 + U(X)

)θ–LU(X) +


θ (θ – )

(
 + U(X)

)θ–U(X)

×
(

x
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

+ y
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

))
.

Thus, we can choose p >  sufficiently small such that it satisfies (). Denote W (X) =
ept( + U(X))θ ,

LW (X) = pept( + U(X)
)θ + eptL

(
 + U(X)

)θ

= ept( + U(X)
)θ–

(
P
(
 + U(X)

)

– θU(X)x
(

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

– θU(X)y
(

–g(t) – h(t)y +
f (t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)

– θU(X)y
(
–g(t) – h(t)y

)

– θU(X)
(

x
(

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
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+
f (t)xy

 + a(t)x + b(t)y + a(t)b(t)xy

)

+ θU(X)
(

x
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

+ y
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

))

+
θ (θ + )


U(X)

(
x

(
σ(t) +

σ(t)y
 + a(t)x + b(t)y + a(t)b(t)xy

)

+ y
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)))
.

Obviously,

θU(X)
(

x
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

+ y
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

))

≤ θU(X)
(

 max

{
σ u

 ,
σ u


bl , δu

 ,
δu


al

})

;

θ (θ + )


U(X)
(

x
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

+ y
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

))

≤ θ (θ + )


U(X)
(

 max

{
σ u

 ,
σ u


bl , δu

 ,
δu


al

})

.

Hence,

LW (X) ≤ ept( + U(X)
)θ–

{(
p + θ max

{
ku, hu}) +

(
p – θ min

{
rl –

ωu

bl ,
f l

au – gu
}

+ θ max
{

ku, hu} + θ

(
max

{
σ u

 ,
σ u


bl , δu

 ,
δu


al

}))
U(X)

+
(

p – θ min

{
rl –

ωu

bl ,
f l

au – gu
}

+
θ (θ + )



(
 max

{
σ u

 ,
σ u


bl , δu

 ,
δu


al

}))
U(X)

}
.

By () there exists a positive constant S such that LW (X) ≤ Sept . Thus,

E
[
ept( + U(X)

)θ ] ≤ (
 + U()

)θ +
S(ept – )

p
.

Then,

lim sup
t→∞

E
[
Uθ

(
X(t)

)] ≤ lim sup
t→∞

E
[(

 + U
(
X(t)

))θ ] ≤ S
p

.
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In other words,

lim sup
t→∞

E
[


|X(t)|θ

]
≤ θ lim sup

t→∞
EUθ (X) ≤ θ S

p
:= M.

Thus, for any ε > , letting δ = ( ε
M )


θ , by the Chebyshev inequality we obtain

P
{∣∣X(t)

∣∣ < δ
}

= P
{∣∣X(t)

∣∣–θ > δ–θ
} ≤ E

[∣∣X(t)
∣∣–θ ]/δ–θ = δθ E

[∣∣X(t)
∣∣–θ ].

Therefore,

P∗
{∣∣X(t)

∣∣ ≥ δ
} ≥  – ε.

In the following, we prove that for any ε > , there exists a constant χ >  such that
P∗{|X(t)| ≤ χ} ≥  – ε. Define V(X) = xq + yq, where,  < q <  and X = (x, y) ∈R

+
 . By Itô’s

formula we have

dV
(
X(t)

)
= qxq

(
r(t) – k(t)x –

ω(t)y
 + a(t)x + b(t)y + a(t)b(t)xy

+
q – 



(
σ(t) +

σ(t)y
 + a(t)x + b(t)y + a(t)b(t)xy

))
dt

+ qyq
(

–g(t) – h(t)y +
f (t)x

 + a(t)x + b(t)y + a(t)b(t)xy

+
q – 



(
δ(t) +

δ(t)x
 + a(t)x + b(t)y + a(t)b(t)xy

))
dt

+ qxq
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

+ qyq
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t).

Let k be so large that X lies within the interval [ 
k

, k]. For each integer k ≥ k, we de-
fine the stopping time τk = inf{t ≥  : X(t) /∈ (/k, k)}. Obviously, τk increases as k → ∞.
Therefore,

E
[
exp{t ∧ τk}Xq(t ∧ τk)

]
– Xq()

≤ qE
∫ t∧τk


exp{s}xq(s)

(
 + q

(
r(s) – k(s)x(s) –

 – q


σ 
 (s)

))
ds

+ qE
∫ t∧τk


exp{s}yq(s)

(
 + q

(
–g(s) – h(s)y(s) +

f (s)
a(s)

–
 – q


δ

 (s)
))

ds

≤ E
∫ t∧τk


(K + K) exp{s}ds

≤ (K + K)
(
exp{t} – 

)
,

where K, K are positive constants. Letting k → +∞, we have

exp{t}E[
Xq(t)

] ≤ Xq() + (K + K)
(
exp{t} – 

)
.



Zhang et al. Advances in Difference Equations  (2016) 2016:264 Page 11 of 28

In other words, we have shown that lim supt→+∞ E[Xq(t)] ≤ K + K. Thus, for any given
ε > , choosing χ = (K+K)/q

ε/q , by the Chebyshev inequality we get

P
{∣∣X(t)

∣∣ > χ
}

= P
{∣∣X(t)

∣∣q > χq} ≤ E
[∣∣X(t)

∣∣q]/χq,

that is,

P∗
{∣∣X(t)

∣∣ > χ
} ≤ E

[∣∣X(t)
∣∣q]/χq ≤ ε.

Consequently, P∗{|X(t)| ≤ χ} ≥  – ε.
Theorem  is proved. �

4 Global attractiveness of the system and stochastically persistent in
probability

Definition  System () is globally attractive if

lim
t→+∞

∣∣x(t) – x(t)
∣∣ = , lim

t→+∞
∣∣y(t) – y(t)

∣∣ = 

for any two positive solutions (x(t), y(t)), (x(t), y(t)) of system ().

Theorem  Suppose that (x(t), y(t)) is a solution of system () on t ≥  with initial value
(x, y) ∈ R


+. Then almost every sample path of (x(t), y(t)) is uniformly continuous.

Proof From system () we have

x(t) = x +
∫ t


x(s)

(
r(s) – k(s)x(s) –

ω(s)y(s)
 + a(s)x(s) + b(s)y(s) + a(s)b(s)x(s)y(s)

)
ds

+
∫ t


x(s)

(
σ(s) +

σ(s)y(s)
 + a(s)x(s) + b(s)y(s) + a(s)b(s)x(s)y(s)

)
dB(s).

Set

f(s) = x(s)
(

r(s) – k(s)x(s) –
ω(s)y(s)

 + a(s)x(s) + b(s)y(s) + a(s)b(s)x(s)y(s)

)
,

f(s) = x(s)
(

σ(s) +
σ(s)y(s)

 + a(s)x(s) + b(s)y(s) + a(s)b(s)x(s)y(s)

)
,

we obtain

E
∣∣f(t)

∣∣p = E
∣∣∣∣x

(
r(t) – k(t)x –

ω(t)y
 + a(t)x + b(t)y + a(t)b(t)xy

)∣∣∣∣
p

= E
[
|x|p

∣∣∣∣r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

∣∣∣∣
p]

≤ 


E|x|p +



E
∣∣ru + kux + ωuy

∣∣p

≤ 


E|x|p +



p–[(ru)p +
(
ku)pE|x|p +

(
ωu)pE|y|p]
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≤ 


M(p) +
p–


[(

ru)p +
(
ku)pM(p) +

(
ωu)pM(p)

]

� F(p)

and

E
∣∣f(t)

∣∣p = E
∣∣∣∣x

(
σ(t) +

σ(t)y
 + a(t)x + b(t)y + a(t)b(t)xy

)∣∣∣∣
p

≤
(

σ u
 +

σ u


bl

)P

E|x|p ≤
(

σ u
 +

σ u


bl

)P

M(p)

� F(p).

In addition, in view of the moment inequality for stochastic integrals, we show that, for
 ≤ t ≤ t and p > ,

E
∣∣∣∣
∫ t

t

f(s) dB(s)
∣∣∣∣
p

≤
(

p(p – )


) p


(t – t)
p–



∫ t

t

E
∣∣f(s)

∣∣p ds

≤
(

p(p – )


) p


(t – t)
p
 F(p).

Thus, for  < t < t < ∞, t – t ≤ , and 
p + 

q = , we get

E
∣∣x(t) – x(t)

∣∣p = E
∣∣∣∣
∫ t

t

f(s) ds +
∫ t

t

f(s) dB(s)
∣∣∣∣
p

≤ p–E
∣∣∣∣
∫ t

t

f(s) ds
∣∣∣∣
p

+ p–E
∣∣∣∣
∫ t

t

f(s) dB(s)
∣∣∣∣
p

≤ p–(t – t)
p
q E

[∫ t

t

∣∣f(s)
∣∣p ds

]
+ p–

(
p(p – )



) p


(t – t)
p
 F(p)

≤ p–(t – t)
p
q F(p)(t – t) + p–

(
p(p – )



) p


(t – t)
p
 F(p)

= p–(t – t)pF(p) + p–
(

p(p – )


) p


(t – t)
p
 F(p)

= p–(t – t)
p


{
(t – t)

p
 F(p) +

(
p(p – )



) p


F(p)
}

≤ p–(t – t)
p


{
 +

(
p(p – )



) p

}

F(p).

Here, F(p) = max{F(p), F(p)}. By Lemma  in [, ] we have that almost every sample
path of x(t) is locally but uniformly Hölder-continuous with exponent υ for every υ ∈
(, p–

p ), and therefore, almost every sample path of x(t) is uniformly continuous on t ∈R+.
Similarly, we can prove that almost every sample path of y(t) is also uniformly continuous
on t ∈R+.

Theorem  is proved. �
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Lemma  ([, ]) Let f be a nonnegative function defined on R+ such that f is integrable
and uniformly continuous. Then limt→+∞ f (t) = .

Theorem  Suppose that σ = , δ = , and there exist constants μi >  (i = , ) such that
lim inft→∞ Ai(t) > , where

A(t) = μ

[
k(t) – 

ω(t)a(t)
b(t)

]
– μf (t),

A(t) = μ

[
h(t) – 

f (t)b(t)
a(t)

]
– μω(t).

()

Then

lim
t→∞ E

∣∣x(t) – x(t)
∣∣ = , lim

t→∞ E
∣∣y(t) – y(t)

∣∣ = , ()

where (x(t), y(t)), (x(t), y(t)) are any two solutions of model () with initial values X =
(x(), y()) ∈ R

+ and X = (x(), y()) ∈ R
+. Moreover, model () is globally attractive.

Proof We construct a Lyapunov function as follows:

V (t) = μ
∣∣ln x(t) – ln x(t)

∣∣ + μ
∣∣ln y(t) – ln y(t)

∣∣.
Then, we achieve

D+(
V (t)

)
= μ sgn(x – x)

×
((

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy
– .σ 

 (t)
)

dt

–
(

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy
– .σ 

 (t)
)

dt
)

+ μ sgn(y – y)

×
((

–g(t) – h(t)y +
f (t)x

 + a(t)x + b(t)y + a(t)b(t)xy
– .δ

 (t)
)

dt

–
(

–g(t) – h(t)y +
f (t)x

 + a(t)x + b(t)y + a(t)b(t)xy
– .δ

 (t)
)

dt
)

≤ μ sgn(x – x)
(

–k(t)(x – x) + ω(t)
(

y

 + a(t)x + b(t)y + a(t)b(t)xy

–
y

 + a(t)x + b(t)y + a(t)b(t)xy

))
dt

+ μ sgn(y – y)
(

–h(t)(y – y) + f (t)
(

x

 + a(t)x + b(t)y + a(t)b(t)xy

–
x

 + a(t)x + b(t)y + a(t)b(t)xy

))
dt

≤ –
(

μ

(
k(t) – 

ω(t)a(t)
b(t)

)
– μf (t)

)
|x – x|

–
(

μ

(
h(t) – 

f (t)b(t)
a(t)

)
– μω(t)

)
|y – y|.
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Since lim inft→∞ Ai(t) >  (i = , ), there exist constants α >  and T >  such that
Ai(t) ≥ α (i = , ) for all t ≥ T. Thus,

D+(
V (t)

) ≤ –α
(|x – x| + |y – y|

)
()

for all t ≥ T. Integrating () from T to t, we get

V (t) – V (T) ≤ –α

∫ t

T

(∣∣x(s) – x(s)
∣∣ +

∣∣y(s) – y(s)
∣∣)ds,

that is,

V (t) + α

∫ t

T

(∣∣x(s) – x(s)
∣∣ +

∣∣y(s) – y(s)
∣∣)ds ≤ V (T) < +∞. ()

Then, by V (t) ≥  and () we have

∣∣x(t) – x(t)
∣∣ ∈ L[, +∞),

∣∣y(t) – y(t)
∣∣ ∈ L[, +∞). ()

According to Theorem  and Lemma , the model is globally attractive.
On the other hand, by system () and inequality () we have

dE(x(t))
dt

≤ ruE
(
x(t)

)
– klE

(
x(s)

) – ωuE
(
x(t)y(t)

)

≤ ruE
(
x(t)

) ≤ ruK .

Therefore, E(x(t)) is a uniformly continuous function. Similarly, we can obtain that E(y(t))
is uniformly continuous. According to () and Barbalat’s conclusion [], assertion ()
is achieved. �

In the following, we discuss the stochastic persistence in probability of our model, which
was proposed and discussed by Schreiber et al. [] and Liu et al. [] for

dXi(t) = Xi(t)Fi
(
X(t)

)
dt +

m∑
j=


j
i
(
X(t)

)
dBj(t), i = , , . . . , n, ()

where X(t) = (X(t), . . . , Xn(t)). If there exists a unique invariant probability measure V
satisfying V (�) =  and the distribution of X(t) converges to V as t → +∞ whenever
X() ∈R

n
+, where � = {a ∈R

n
+|ai =  for some i,  ≤ i ≤ n}, then () is stochastically per-

sistent in probability.

Theorem  Suppose that σ =  and δ =  and let the conditions of Theorem  hold. If
〈r – .(σ + σ

b )〉∗ > min{〈ω
b 〉∗, – ku

f l 〈–g – .(δ + δ
a )〉∗}, then system () is stochastically

persistent in probability.

Proof The proof is motivated by []. First, we prove that system () is asymptotically
stable in distribution, that is, there exists a unique probability measure μ such that for
every X() ∈ R


+, the transition probability p(t, X(), ·) of X(t) converges weakly to μ as

t → +∞.
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Let X(t; X) be a solution of () with initial value X() = X ∈ R

+, p(t, X, dy) be

the transition probability of X(t; X), and P(t, X, B) denote the probability of event
X(t; X) ∈ B. Applying inequality () and the Chebyshev inequality, {p(t, X, dy) : t ≥ } is
tight.

Denote all the probability measures on R

+ by P(R

+). Then, for any P, P ∈ P , we can
define the metric

dL(P, P) = sup
f ∈L

∣∣∣∣
∫
R


+

f (x)P(dx) –
∫
R


+

f (x)P(dx)
∣∣∣∣,

where L = {f : R
+ →R||f (x) – f (y)| ≤ ‖x – y‖, |f (·)| ≤ }. For f ∈ L and t, s > , we have

∣∣Ef
(
x(t + s; X)

)
– Ef

(
x(t; X)

)∣∣
=

∣∣E[
E
(
f
(
x(t + s; X)

))|Fs
]

– Ef
(
x(t; X)

)∣∣
=

∣∣∣∣
∫
R


+

Ef
(
x(t; X)

)
p(s, X, dX) – Ef

(
x(t; X)

)∣∣∣∣
≤

∫
R


+

∣∣Ef
(
x(t; X)

)
– Ef

(
x(t; X)

)∣∣p(s, X, dX).

By () there exists a constant time T >  such that, for all t ≥ T ,

sup
f ∈L

∣∣Ef
(
x(t; X)

)
– Ef

(
x(t; X)

)∣∣ ≤ ε.

Hence,

∣∣Ef
(
x(t + s; X)

)
– Ef

(
x(t; X)

)∣∣ ≤ ε.

Since f is arbitrary, we have

dL
(
p(t + s, X, ·), p(t, X, ·)) ≤ ε

for all t ≥ T , s > . Thus, {p(t, X, ·) : t ≥ } is Cauchy in the space P(R
+). Then there

exists a unique μ ∈P(R
+) satisfying

lim
t→+∞ dL

(
p(t,�, ·),μ)

= ,

where � = (., .)T . In addition, by () we obtain

lim
t→+∞ dL

(
p(t, X, ·), p(t,�, ·)) = .

Therefore,

lim
t→+∞ dL

(
p(t, X, ·),μ) ≤ lim

t→+∞ dL
(
p(t, X, ·), p(t,�, ·))

+ lim
t→+∞ dL

(
p(t,�, ·), p(t,�,μ)

)
= .

Then system () is asymptotically stable in distribution.
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On the other hand, by Theorems  and  we get that

lim
t→+∞


t

∫ t


x(s) ds > , lim

t→+∞

t

∫ t


y(s) ds >  a.s.

Therefore, model () is stochastically persistent in probability. �

5 Numerical simulation
This section presents a numerical simulation to verify our theoretical analysis of system
(). By means of the Milstein method mentioned in Higham [], we consider the following
discretized equations:

xi+ = xi + xi

(
r(i�t) – k(i�t)xi –

ω(i�t)yi

 + a(i�t)xi + b(i�t)yi + a(i�t)b(i�t)xiyi

)
�t

+ xi

((
σ(i�t) +

σ(i�t)y(i)
 + a(i�t)xi + b(i�t)yi + a(i�t)b(i�t)xiyi

)√
�tξi

+
σ 

 (i�t)


xi
(
ξ 

i – 
)
�t

+
σ 

 (i�t)


(
yi

 + a(i�t)xi + b(i�t)yi + a(i�t)b(i�t)xiyi

)

xi
(
ξ 

i – 
)
�t

)
,

yi+ = yi + yi

(
–g(i�t) – h(i�t)yi +

f (i�t)xi

 + a(i�t)xi + b(i�t)yi + a(i�t)b(i�t)xiyi

)
�t

+ yi

((
δ(i�t) +

δ(i�t)x(i)
 + a(i�t)xi + b(i�t)yi + a(i�t)b(i�t)xiyi

)√
�tηi

+
δ

 (i�t)


yi
(
η

i – 
)
�t

+
δ

(i�t)


(
xi

 + a(i�t)xi + b(i�t)yi + a(i�t)b(i�t)xiyi

)

yi
(
η

i – 
)
�t

)
.

()

In Figure , we let r(t) = . + . sin t, k(t) = . + . sin t, ω(t) = . + . sin t, f (t) =
. + . sin t, g(t) = . + . sin t, h(t) = . + . sin t, σ

 (t)
 = . + . sin t, σ

 (t)
 =

. + . sin t, δ
 (t)
 = . + . sin t, δ

 (t)
 = . + . sin t, and different values of a(t)

and b(t) are chosen for Figures (a)-(d). Then, we have 〈r(t)〉∗ = –. < . According to
Theorems  and , both of the prey and predator populations (x and y, respectively) end
in extinction.

In Figure , we choose σ
 (t)
 = . + . sin t, σ

 (t)
 = . + . sin t, δ

 (t)
 = . + . sin t,

δ
 (t)
 = . + . sin t, r(t) = . + . sin t, b(t) = . + . sin t, and the other param-

eters are the same as those in Figure . Then, 〈r(t) – .(σ(t) + σ(t)
b )〉∗ ≥ . >  and

(k(t))∗〈–g(t) – .δ
 (t)〉∗ + (f (t))∗〈r(t)〉∗ = –. < . By virtue of Theorems  and  we

get that the prey population x is weakly persistent in the mean, whereas the predator
population y is extinct, which is confirmed by Figure . Next, set σ

 (t)
 = . + . sin t,

σ
 (t)
 = . + . sin t, δ

 (t)
 = . + . sin t, δ

 (t)
 = . + . sin t, b(t) = . + . sin t,

and f (t) = . + . sin t. The other parameters are the same as those in Figure . Then,
〈r(t)–.(σ(t)+ σ(t)

b )〉∗ ≥ , and from Figure  we observe that both of prey and predator
populations are weakly persistent in the mean.
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Figure 1 The figure depicts the extinction of the prey and predator species. (a) a(t) = 0.1 + 0.04 sin t,
b(t) = 0.5 + 0.05 sin t. (b) a(t) = b(t) = 0. (c) a(t) = 0, b(t) = 0.5 + 0.05 sin t. (d) a(t) = 0.1 + 0.04 sin t, b(t) = 0. Both
of the prey and predator populations go to extinction.

Figure 2 The prey population is weakly
persistent in the mean, whereas the predator
species y is extinct.

In Figure , we let σ(t) = . + . sin t, σ(t) = . + . sin t, δ(t) = . + . sin t,
δ(t) = . + . sin t, r(t) = . + . sin t, a(t) = . + . sin t, f (t) = . + . sin t,
and (x(), y()) = (., .). Thus, the conditions of Theorem  hold, and model () is
stochastically permanent.

Moreover, we choose σ
 (t)
 = . + . sin t, δ

 (t)
 = . + . sin t, r(t) = . + . sin t,

h(t) = . + . sin t, and f (t) = . + . sin t. The initial conditions are x() = ,
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Figure 3 The populations are weakly persistent
in the mean for system (2) with
σ2

1 (t)
2 =

σ2
2 (t)
2 = 0.1 + 0.05 sin t,

δ2
1 (t)
2 = 0.09 + 0.02 sin t, and

δ2
2 (t)
2 = 0.08 + 0.02 sin t.

Figure 4 The system is stochastically permanent.

y() = ., and x() = ., y() = . The only difference among Figures (a)-(d) is
the values of σ 

 and δ
 , which are chosen as σ 

 = δ
 =  in Figures (a), (b), whereas

σ
 (t)
 = . + . sin t, δ

 (t)
 = . + . sin t in Figures (c), (d). From the figures we

can observe that system () is globally attractive.
In the following example, we investigate the effects of functional response on the species.

First, by comparing Figures (a)-(d) we observe that the effects of handling time a(t) and
the magnitude of interference among predators b(t) do not influence the extinction of the
system. Second, we fix f (t) = . + . sin t, and the other parameters are the same as
in Figure . Then we obtain that (k(t))∗〈–g(t) – .δ

 (t)〉∗ + (f (t))∗〈r(t)〉∗ < . On the basis
of Theorem , the predator species goes to extinction, and it is confirmed by Figure (a).
We increase the intensity of conversion rate and choose f (t) = . + . sin t and f (t) =
. + . sin t, respectively, for Figures (b) and (c). From Figures (a)-(c), we observe
that the predator changes from extinction to persistence, which shows that increasing the
amplitude of periodical conversion rate is benefit for the coexistence of ecosystems.

Appendix
Proof of Theorem  Let k >  be so large that X lies within the interval [/k, k]. For each
integer k > k, define the stopping times τk = inf{t ∈ [, τe] : x(t) /∈ (/k, k) or y(t) /∈ (/k, k)}.
Then, τk is increasing as k → ∞. Denote τ∞ = limk→+∞τk ; thus, τ∞ ≤ τe. Next, we show
that τ∞ = ∞. Otherwise, there are constants T >  and ε ∈ (, ) satisfying P{τ∞ < ∞} > ε.
Then, there exists an integer k ≥ k such that

P{τk ≤ T} ≥ ε
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Figure 5 The figure shows the attractiveness of system (2). The only difference between these graphs is

the values of σ 2
2 and δ22 . (a), (b): σ 2

2 = δ22 = 0. (c), (d):
σ2
2 (t)
2 = 0.06 + 0.01 sin t,

δ22 (t)
2 = 0.03 + 0.02 sin t.

for all k > k. Define the C-function V : R
+ →R+ by V (x, y) = (x –  – ln x) + (y –  – ln y),

which is nonnegative. If (x(t), y(t)) ∈ R
+
 , then by Itô’s formula we have

dV (x, y) = Vx dx + .Vxx(dx) + Vy dy + .Vyy(dy)

=
(

( – /x)x
(

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

+ ( – /y)y
(

–g(t) – h(t)y +
f (t)x

 + a(t)x + b(t)y + a(t)b(t)xy

))
dt

+ .
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)

dt

+ .
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)

dt

+ ( – /x)x
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

+ ( – /y)y
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)



Zhang et al. Advances in Difference Equations  (2016) 2016:264 Page 20 of 28

Figure 6 The figure depicts the effects of functional response on the dynamical properties of the
model. The difference between the graphs is the values of f (t): (a) f (t) = 0.05 + 0.02 sin t,
(b) f (t) = 0.6 + 0.02 sin t, and (c) f (t) = 2.2 + 0.02 sin t.

= LV (x, y) dt + (x – )
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t)

+ (y – )
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t). (A.)

Here

LV (x, y) ≤ (
ru + ku)x – klx – rl +

ωu

bl + gu + .
(

σ u
 +

σ u


bl

)

+
(

hu +
f u

al – gl
)

y – hly + .
(

δu
 +

δu


al

)

≤ G,

where G is a positive number. Integrating both sides of inequality (A.) from  to τk ∧ T
(τk ∧ T = min{τk , T}) and taking the expectations, we obtain that

EV
(
x(τk ∧ T), y(τk ∧ T)

) ≤ V
(
x(), y()

)
+ GE(τk ∧ T) ≤ V

(
x(), y()

)
+ GT .



Zhang et al. Advances in Difference Equations  (2016) 2016:264 Page 21 of 28

Let �k = {τk ≤ T}. Then we have P(�k) ≥ ε. For each ω ∈ �k , x(τk ,ω) or y(τk ,ω) equals
either k or /k, and

V
(
x(τk ,ω), y(τk ,ω)

) ≥ min{k –  – ln k, /k –  + ln k}.

Therefore,

V
(
x(), y()

)
+ GT ≥ E

[
�k (ω)V

(
x(ω), y(ω)

)]
≥ ε min{k –  – ln k, /k –  + ln k},

where �k is the indicator function of �k . Letting k → ∞, we obtain the contradiction.
The proof is completed. �

Proof of Theorem  () From system () we have that

d ln x =
(

r(t) – k(t)x –
ω(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

– .
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

))
dt

+
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t),

d ln y =
(

–g(t) – h(t)y +
f (t)x

 + a(t)x + b(t)y + a(t)b(t)xy

– .
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

))
dt

+
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t).

(A.)

Integrating the first equation of (A.), we have

ln x(t) – ln x

t
≤ 〈

r(t)
〉
+

∫ t
 (σ(s) + σ(s)y

+a(s)x+b(s)y+a(s)b(s)xy ) dB(s)
t

. (A.)

Let

M(t) =
∫ t



(
σ(s) +

σ(s)y
 + a(s)x + b(s)y + a(s)b(s)xy

)
dB(s)

and

M(t) =
∫ t



(
δ(s) +

δ(s)x
 + a(s)x + b(s)y + a(s)b(s)xy

)
dB(s).

Then, Mi(t) (i = , ) is a local martingale, and the quadratic variation satisfies

〈M, M〉t =
∫ t



(
σ(s) +

σ(s)y
 + a(s)x + b(s)y + a(s)b(s)xy

)

ds ≤
((

σ +
σ

b

)u)

t
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and

〈M, M〉t =
∫ t



(
δ(s) +

δ(s)x
 + a(s)x + b(s)y + a(s)b(s)xy

)

ds ≤
((

δ +
δ

a

)u)

t.

According to the strong law of large numbers for martingales, we get

lim sup
t→∞

Mi(t)
t

=  a.s. (A.)

Thus,

(
ln x(t) – ln x

t

)∗
≤ 〈

r(t)
〉∗ < .

Then, limt→∞ x(t) = .
() By virtue of the superior limit and (A.) we can show that, for an arbitrary ε > ,

there exists T >  such that 〈r(t)〉 ≤ 〈r(t)〉∗ + ε
 and M(t)

t ≤ ε
 for all t > T . From (A.) we

get

ln x(t) – ln x

t
≤ 〈r〉∗ – kl〈x〉 + ε ≤ ε – kl〈x〉.

By Lemma  in [] we have 〈x(t)〉∗ ≤ ε

kl . By the arbitrariness of ε the desired conclusion is
obtained.

() According to (A.) and Lemma , we have

ku〈x〉∗ + ωu〈y〉∗ ≥
(

ln x(t) – ln x

t

)∗
+

〈
k(t)x

〉∗ +
〈

ω(t)y
 + a(t)x + b(t)y + a(t)b(t)xy

〉∗

≥
〈
r – .

(
σ +

σ

b

)〉∗
> . (A.)

Then, 〈x〉∗ >  a.s. If not, for arbitrary υ ∈ {〈x(t,υ)〉∗ = }, by (A.) we have 〈y(t,υ)〉∗ > .
Meanwhile, from equation (A.) we get

(
ln y(t,υ) – ln y

t

)∗
≤ 〈

–g – .δ

〉∗ + f u〈x(t,υ)

〉∗ + hl〈–y(t,υ)
〉∗ < .

Therefore, limt→∞ y(t,υ) = , which contradicts with 〈y(t,υ)〉∗ > . The proof is com-
pleted.

() By the condition 〈r – .(σ + σ
b )〉∗ – 〈ω

b 〉∗ >  there exists a sufficiently small ε > 
such that 〈r – .(σ + σ

b )〉∗ – 〈ω
b 〉∗ – ε > . In addition, by (A.) for this ε > , there exists

T >  such that

〈
r–.

(
σ +

σ

b

)〉
>

〈
r–.

(
σ +

σ

b

)〉
∗

–
ε


,

〈
ω

b

〉
<

〈
ω

b

〉∗
+

ε


,

M(t)
t

> –
ε



for all t > T . Then, we get

ln x(t) – ln x

t
≥

〈
r – .

(
σ +

σ

b

)〉
∗

–
〈
ω

b

〉∗
– ε – ku〈x〉.
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According to Lemma  in [] and the arbitrariness of ε, we obtain

〈
x(t)

〉
∗ ≥ 〈r – .(σ + σ

b )〉∗ – 〈ω
b 〉∗

ku � mx > .

The proof is completed.
() From the first equation of (A.) we have that

d ln x ≤ ((
r(t) – .σ 

 (t)
)

– k(t)x
)

dt +
(

σ(t) +
σ(t)y

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t).

Thus,

ln x(t) – ln x

t
≤ 〈

r – .σ 

〉∗ – kl〈x(t)

〉
+

M(t)
t

.

In addition, from the property of the superior limit and (A.), for the given positive num-
ber ε, there is T >  satisfying

〈
r – .σ 


〉

<
〈
r – .σ 


〉∗ +

ε


,

M(t)
t

<
ε



for all t > T. According to Lemma  in [] and the arbitrariness of ε, we get that

〈
x(t)

〉∗ ≤ 〈r – .σ 
 〉∗

kl � Mx. �

Proof of Theorem  () Case I. If 〈r〉∗ ≤ , then by Theorem  we have 〈x(t)〉∗ = . Thus, for
arbitrary sufficiently small ε > , there exists T >  such that 〈–g –.δ

 〉 < 〈–g –.δ
 〉∗ + ε


and M(t) < εt

 for all t > T . Therefore,

(
ln y(t) – ln y

t

)∗
≤ 〈

–g – .δ

〉∗ + f u〈x(t)

〉∗ + ε =
〈
–g – .δ


〉∗ + ε < ,

and then limt→∞ y(t) = .
Case II. If 〈r〉∗ > , then by (A.), for sufficiently small ε > , there exists T >  such that

ln x(t) – ln x

t
≤ 〈r〉∗ – k∗

〈
x(t)

〉
+ ε

for all t > T . By virtue of Lemma  in [] and the arbitrariness of ε, we get

〈
x(t)

〉∗ ≤ 〈r〉∗
k∗

. (A.)

Thus, we get

(
ln y(t) – ln y

t

)∗
≤ 〈

–g – .δ

〉∗ + f ∗〈x(t)

〉∗

≤ k∗〈–g – .δ
 〉∗ + f ∗〈r〉∗

k∗
< . (A.)

Then, limt→∞ y(t) = .
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() In (), we have already shown that if 〈r〉∗ ≤ , then limt→∞ y(t) = , and, as a result,
〈y(t)〉∗ = . Now, we show that if 〈r〉∗ > , then 〈y(t)〉∗ =  is still valid. Otherwise, 〈y(t)〉∗ >
, and by Lemma  we show that [ ln y(t)

t ]∗ = . According to (A.), we get

 =
[

ln y(t) – ln y

t

]∗
≤ 〈

–g – .δ

〉∗ + f ∗〈x(t)

〉∗.

Meanwhile, for an arbitrary constant ε > , there exists T >  such that

〈
–g – .δ


〉 ≤ 〈

–g – .δ

〉∗ +

ε


,

〈
f (t)x(t)

〉 ≤ f ∗〈x(t)
〉∗ +

ε


, and M(t) ≤ ε


t

for all t > T . Thus, we have

ln y(t) – ln y

t
≤ 〈

–g – .δ

〉
+

〈
f (t)x(t)

〉
–

〈
h(t)y(t)

〉
+

M(t)
t

≤ 〈
–g – .δ


〉∗ + f ∗〈x(t)

〉∗ + ε – h∗
〈
y(t)

〉
.

Using Lemma  in [], we obtain

〈
y(t)

〉∗ ≤ 〈–g – .δ
 〉∗ + f ∗〈x(t)〉∗ + ε

h∗
,

which indicates that 〈y(t)〉∗ ≤ 〈–g–.δ
 〉∗+f ∗〈x(t)〉∗

h∗ . Applying (A.), we have

〈
y(t)

〉∗ ≤ k∗〈–g – .δ
 〉∗ + f ∗〈r〉∗

h∗k∗
= .

This is a contradiction. Therefore, 〈y(t)〉∗ =  a.s.
() In this part, we need to prove that 〈y(t)〉∗ >  a.s. If not, for arbitrary ε > , there

exist a solution (x̌(t), y̌(t)) with initial value (x, y) ∈ R

+ such that P{〈y̌(t)〉∗ < ε} > . Let

ε be sufficiently small such that

〈
–g – .

(
δ +

δ

a

)〉∗
+

〈
f x̄

 + ax̄ + bȳ + abx̄ȳ

〉∗
– f u bl〈σσ〉∗ + 〈σ 

 〉∗
(bl)kl

> 
(

f uωu

kl + hu + 
)

ε.

Then, we obtain

ln y̌(t) – ln y

t
≥

〈
–g(t) – .

(
δ(t) +

δ(t)x̌
 + a(t)x̌ + b(t)y̌ + a(t)b(t)x̌y̌

)〉
–

〈
h(t)y̌(t)

〉

+

∫ t
 (δ(s) + δ(s)x̌

+a(s)x̌+b(s)y̌+a(s)b(s)x̌y̌ ) dB(s)
t

+
〈

f (t)x̌
 + a(t)x̌ + b(t)y̌ + a(t)b(t)x̌y̌

–
f (t)x̄

 + a(t)x̄ + b(t)ȳ + a(t)b(t)x̄ȳ

〉

+
〈

f (t)x̄
 + a(t)x̄ + b(t)ȳ + a(t)b(t)x̄ȳ

〉
.
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Here, x̌(t) ≤ x̄(t) and y̌(t) ≤ ȳ(t) a.s. for t ∈ [, +∞). Notice that

f (t)x̌
 + a(t)x̌ + b(t)y̌ + a(t)b(t)x̌y̌

–
f (t)x̄

 + a(t)x̄ + b(t)ȳ + a(t)b(t)x̄ȳ

= f (t)
–(x̄ – x̌) + a(t)b(t)x̄x̌(ȳ – y̌) + b(t)x̌(ȳ – y̌) – b(t)y̌(x̄ – x̌)

( + a(t)x̌ + b(t)y̌ + a(t)b(t)x̌y̌)( + a(t)x̄ + b(t)ȳ + a(t)b(t)x̄ȳ)

≥ –f (t)(x̄ – x̌),

and thus,

ln y̌(t) – ln y

t
≥

〈
–g(t) – .

(
δ(t) +

δ(t)
a(t)

)〉
–

〈
h(t)y̌(t)

〉

+

∫ t
 (δ(s) + δ(s)x̌

+a(s)x̌+b(s)y̌+a(s)b(s)x̌y̌ ) dB(s)
t

+
〈

f (t)x̄
 + a(t)x̄ + b(t)ȳ + a(t)b(t)x̄ȳ

〉
– 

〈
f (t)(x̄ – x̌)

〉
. (A.)

Define the Lyapunov function V(t) = | ln x̄(t) – ln x̌(t)|, which is a positive function on R+.
Then

D+V(t) ≤ sgn(x̄ – x̌)
{[

–k(x̄ – x̌) +
ω(t)y̌

 + a(t)x̌ + b(t)y̌ + a(t)b(t)x̌y̌

– .
(

σ(t) +
σ(t)ȳ

 + a(t)x̄ + b(t)ȳ + a(t)b(t)x̄ȳ

)

+ .
(

σ(t) +
σ(t)y̌

 + a(t)x̌ + b(t)y̌ + a(t)b(t)x̌y̌

)]
dt

+
(

σ(t)ȳ
 + a(t)x̄ + b(t)ȳ + a(t)b(t)x̄ȳ

–
σ(t)y̌

 + a(t)x̌ + b(t)y̌ + a(t)b(t)x̌y̌

)
dB(t)

}
.

Setting M(t) =
∫ t

 ( σ(s)ȳ
+a(s)x̄+b(s)ȳ+a(s)b(s)x̄ȳ – σ(s)y̌

+a(s)x̌+b(s)y̌+a(s)b(s)x̌y̌ ) dB(s), by the strong law of large
numbers for martingales we get

lim sup
t→∞

M(t)
t

=  a.s.

Thus, for the given constant ε > , there exists T >  such that M(t) < εt for all t ≥ T .
Therefore, we get that

V(t) – V()
t

≤ ωu〈y̌(t)
〉
– kl〈x̄ – x̌〉 +

bl〈σσ〉∗ + 〈σ 
 〉∗

(bl) +
M(t)

t
.

Then, we obtain

〈x̄ – x̌〉 ≤ ωu

kl

〈
y̌(t)

〉
+

bl〈σσ〉∗ + 〈σ 
 〉∗

kl(bl) .
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Substituting this inequality into (A.) and taking the superior limit of the inequality, we
get

(
ln y̌(t) – ln y

t

)∗
≥

〈
–g(t) – .

(
δ(t) +

δ(t)
a(t)

)〉∗
– hu〈y̌(t)

〉
∗

+

∫ t
 (δ(s) + δ(s)x̌

+a(t)x̌+b(t)y̌+a(t)b(t)x̌y̌ ) dB(s)
t

+
〈

f (t)x̄
 + a(t)x̄ + b(t)ȳ + a(t)b(t)x̄ȳ

〉∗

– f u ωu

kl

〈
y̌(t)

〉∗ – f u bl〈σσ〉∗ + 〈σ 
 〉∗

kl(bl)

≥
〈
–g(t) – .

(
δ(t) +

δ(t)
a(t)

)〉∗
+

〈
f (t)x̄

 + a(t)x̄ + b(t)ȳ + a(t)b(t)x̄ȳ

〉∗

– f u bl〈σσ〉∗ + 〈σ 
 〉∗

kl(bl) – 
(

f uωu

kl + hu + 
)

ε > ,

which contradicts with Lemma , and thus 〈y(t)〉∗ >  a.s.
() The proof is motivated by Liu and Bai []. We have

f l

ku ln
x(t)
x()

+ ln
y(t)
y()

≥ f l

ku

〈
r(t) – .

(
σ(t) +

σ(t)
b(t)

)〉
∗
t

+
〈
–g(t) – .

(
δ(t) +

δ(t)
a(t)

)〉∗
t –

(
f lwu

ku + hu
)∫ t


y(s) ds

+
f l

ku

∫ t



(
σ(s) +

σ(s)y
 + a(s)x + b(s)y + a(s)b(s)xy

)
dB(s)

+
∫ t



(
δ(s) +

δ(s)y
 + a(s)x + b(s)y + a(s)b(s)xy

)
dB(s). (A.)

By (), for arbitrary  < ε < f l

ku 〈r(t) – .(σ(t) + σ(t)
b(t) )〉∗ + 〈–g(t) – .(δ(t) + δ(t)

b(t) )〉∗, there
exists a random time T = T(ω) satisfying


t

f l

ku ln
x(t)
x()

–

t

ln y() < ε a.s.

for all t ≥ T . Substituting this inequality into (A.), we obtain that

ln y(t) ≥ f l

ku

〈
r(t) – .

(
σ(t) +

σ(t)
b(t)

)〉
∗
t

+
〈
–g(t) – .

(
δ(t) +

δ(t)
a(t)

)〉∗
t – εt –

(
f lwu

ku + hu
)∫ t


y(s) ds

+
f l

ku

∫ t



(
σ(s) +

σ(s)y
 + a(s)x + b(s)y + a(s)b(s)xy

)
dB(s)

+
∫ t



(
δ(s) +

δ(s)y
 + a(s)x + b(s)y + a(s)b(s)xy

)
dB(s).
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According to Lemma  in [], we get that

lim inf
t→∞ y(t) ≥ f l〈r(t) – .(σ(t) + σ(t)

b(t) )〉∗ + ku〈–g(t) – .(δ(t) + δ(t)
a(t) )〉∗ – kuε

f lwu + kuhu > .

The proof is completed.
() From the second equation of (A.) we have

d ln y ≤
((

–g(t) – .δ
 (t)

)
+

f (t)
a(t)

– h(t)y
)

dt

+
(

δ(t) +
δ(t)x

 + a(t)x + b(t)y + a(t)b(t)xy

)
dB(t).

Thus,

ln y(t) – ln y

t
≤ 〈

–g – .δ

〉∗ +

〈
f
a

〉∗
– hl〈y(t)

〉
+

M(t)
t

.

In addition, from the property of the superior limit and (A.) we have that, for the given
positive number ε, there exists T >  such that

〈
–g – .δ


〉

<
〈
–g – .δ


〉∗ +

ε


,

〈
f
a

〉
<

〈
f
a

〉∗
+

ε


, and

M(t)
t

<
ε



for all t > T. According to Lemma  in [], we have

〈
y(t)

〉∗ ≤ 〈–g – .δ
 〉∗ + 〈 f

a 〉∗
hl � My. �
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