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Abstract
By using the Krasnoselskii fixed point theorem in a cone, we investigate the existence
of two positive periodic solutions of the generalized delay differential neoclassical
growth model with periodic coefficients and delays. Moreover, we give an example to
demonstrate the theoretical result.
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1 Introduction
In , Matsumoto and Szidarovszky [] first introduced the following delay differential
neoclassical growth model:

x′(t) = –αx(t) + sF
(
x(t – τ )

)
(.)

to show the emergence of erratic fluctuations in the capital accumulation process, where
x is the capital per labor, s ∈ (, ) is the average propensity to save, α = n + sμ with μ being
the depreciation ratio of capital and n the growth rate of the labor, the production function
F(x) = Cxa( – x)b is unimodal (a, b, and C are positive parameters) and τ is the delay in
the production process. Two years later, in [] they modified (.) as follows:

x′(t) = –αx(t) + βxγ (t – τ )e–δx(t–τ ). (.)

Here α,γ , δ, and β are positive parameters, δ reflects the strength of a ‘negative effect’
caused by increasing concentration of capital, γ is a proxy for measuring returns to scale
of the production function and β = sc, where c is a positive constant. As regards the sem-
inal and early work of neoclassical growth model, we refer to Day [–], Solow [], Swan
[], Puu [] and Bischi et al. []. Recently, Matsumoto and Szidarovszky [] have stud-
ied the local stability of (.) by considering the corresponding characteristic equation in
three different cases: γ < , γ = , and γ > . Clearly, equation (.) with γ =  is the famous
Nicholson blowflies model [], which has been researched by a lot of academics [–].
When γ <  and γ > , Chen and Wang [] and Wang [] have investigated the exponen-
tial stability of the unique positive equilibrium and two positive equilibriums, respectively.
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Furthermore, Wang [] have put forward an open problem: Obtain the existence of two
positive periodic solutions of (.) with variable coefficients and delays.

Moreover, since periodicity phenomenon is very common in economic, engineering and
biological fields, one of the most interesting themes in the qualitative theory of functional
differential equations is the existence of periodic solutions for its significance in real world.
Up to now, there have been a number of important and remarkable results (see [–]
and the references therein) concerning the existence of periodic solutions. Although much
has been done, results on the existence of multi-periodic solutions of the delay differential
neoclassical growth model are scarce. Hence, the main aim of this paper is to deal with the
existence of two positive periodic solutions for the following generalized delay differential
neoclassical growth model:

x′(t) = –α(t)x(t) + β(t)xγ
(
t – τ (t)

)
e–δ(t)x(t–τ (t)), (.)

where β , δ ∈ C(R, (, +∞)), τ ∈ C(R, [, +∞)), and α ∈ C(R, R) are all ω-periodic functions,
∫ ω

 α(t) dt > , γ and ω are positive constants.
For convenience and simplicity, we introduce a few notations and assumptions. Let

G(t, s) =
e
∫ s

t α(r) dr

e
∫ ω

 α(r) dr – 
,

 < A = min{G(t, s) :  ≤ t, s ≤ ω} < max{G(t, s) :  ≤ t, s ≤ ω} = B, and σ = A
B ∈ (, ). For an

ω-periodic function f ∈ C(R, R), we define

fm = min
t∈[,ω]

{
f (t)

}
, fM = max

t∈[,ω]

{
f (t)

}
.

Let g(x) = xγ e–δMx. Then it is obvious that g(x) increases strictly on [, γ

δM
] and decreases

strictly on [ γ

δM
, +∞]. Thus, there exists unique r ∈ ( γ

δM
, +∞) such that g(r) = g(σ γ

δM
).

We also make the following assumption:
(S) Aωβmg(r) > r.

The proof of the main result is based on the Krasnoselskii fixed point theorem in a
cone []. First of all, we introduce the definition of a cone in the Banach space.

Definition . Let X be a Banach space. K is called a cone if it is a closed and nonempty
subset of X such that

(i) ax + by ∈ K for all x, y ∈ K and a, b > ;
(ii) x, –x ∈ K implies x = .
The Krasnoselskii fixed point theorem in a cone (see []) is as follows.

Lemma . Let X be a Banach space and K ⊂ X be a cone in X. Suppose 	 and 	 are
open subsets of X with  ∈ 	,	 ⊂ 	, and let


 : K ∩ (	 \ 	) → K

be a completely continuous operator such that one of the following conditions holds:
(i) ‖
x‖ ≥ ‖x‖,∀x ∈ K ∩ ∂	 and ‖
x‖ ≤ ‖x‖,∀x ∈ K ∩ ∂	;

(ii) ‖
x‖ ≥ ‖x‖,∀x ∈ K ∩ ∂	 and ‖
x‖ ≤ ‖x‖,∀x ∈ K ∩ ∂	.
Then 
 has a fixed point in K ∩ (	 \ 	).



Ning and Wang Advances in Difference Equations  (2016) 2016:266 Page 3 of 6

2 Existence of two positive periodic solutions
In this section, we establish some sufficient conditions on the existence of two positive
periodic solutions of model (.).

Let X = {x(t) ∈ C(R, R), x(t) = x(t + ω),∀t ∈ R} and define ‖x‖ = supt∈[,ω] |x(t)|. Then X is
a Banach space with the norm ‖ · ‖. Let

K =
{

x(t) ∈ X|x(t) ≥ , x(t) ≥ σ‖x‖ for t ∈ R
}

.

It is easy to confirm that K is a cone in X.
Define an operator on X as follows:

(
x)(t) =
∫ t+ω

t
G(t, s)β(s)xγ

(
s – τ (s)

)
e–δ(s)x(s–τ (s)) ds (.)

for x ∈ X. Obviously, 
 is a completely continuous operator on X and the existence of an
ω-periodic solution of (.) is equivalent to find the fixed point of operator 
 on X.

Lemma . 
(K) ⊂ K .

Proof For any x ∈ K , we have

‖
x‖ ≤ B
∫ ω


β(s)xγ

(
s – τ (s)

)
e–δ(s)x(s–τ (s)) ds

and

(
x)(t) ≥ A
∫ ω


β(s)xγ

(
s – τ (s)

)
e–δ(s)x(s–τ (s)) ds,

from which we deduce that

(
x)(t) ≥ A
B

‖
x‖ = σ‖
x‖.

This implies that 
x ∈ K for any x ∈ K , i.e., 
(K) ⊂ K . �

Theorem . Suppose that (S) holds. Then (.) has at least two ω-positive periodic solu-
tions.

Proof Since limx→ β(t)xγ e–δ(t)x = limx→+∞ β(t)xγ e–δ(t)x = , ∀t ∈ [,ω], for any sufficiently
small constant ε >  such that Bωε < , there are two constants r, r(r < γ

δM
< r < r) such

that

β(t)xγ e–δ(t)x ≤ εr, (t, x) ∈ [,ω] × [, r] (.)

and

β(t)xγ e–δ(t)x ≤ εx, (t, x) ∈ [,ω] × [r,∞]. (.)
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Define

	 =
{

x|x ∈ X,‖x‖ < r
}

, 	 =
{

x|x ∈ X,‖x‖ <
γ

δM

}
,

	 =
{

x|x ∈ X,‖x‖ < r
}

, 	 =
{

x|x ∈ X,‖x‖ < r
}

,

where r = max{r + γ

δM
, BM̃ω

–Bωε
} and M̃ = maxt∈[,ω],x∈[,r]{β(t)xγ e–δ(t)x}.

If x ∈ K ∩ ∂	, then ‖x‖ = r and x(t) ≥ σ r. From (.) and (.), we have

(
x)(t) ≤ B
∫ t+ω

t
β(s)xγ

(
s – τ (s)

)
e–δ(s)x(s–τ (s)) ds ≤ Bωεr < r,

which implies that ‖
x‖ < ‖x‖ for x ∈ K ∩ ∂	.
If x ∈ K ∩ ∂	, then ‖x‖ = γ

δM
and x(t) ≥ σ

γ

δM
. In view of (S), (.), and the fact that

minx∈[σ γ
δM

, γ
δM

] g(x) = g(σ γ

δM
) = g(r), we obtain

(
x)(t) ≥ A
∫ t+ω

t
β(s)xγ

(
s – τ (s)

)
e–δ(s)x(s–τ (s)) ds

≥ A
∫ t+ω

t
βmg(x

(
s – τ (s)

)
ds

≥ A
∫ t+ω

t
βmg

(
σ

γ

δM

)
ds

= Aωβmg(r)

> r >
γ

δM
.

This implies that ‖
x‖ > ‖x‖ for x ∈ K ∩ ∂	.
If x ∈ K ∩ ∂	, then ‖x‖ = r and x(t) ≥ σ r > σ

γ

δM
. Due to (.), (.), and the fact that

minx∈[σ r,r] g(x) = g(r), we get

(
x)(t) ≥ A
∫ t+ω

t
β(s)xγ

(
s – τ (s)

)
e–δ(s)x(s–τ (s)) ds

≥ A
∫ t+ω

t
βmg(x

(
s – τ (s)

)
ds

≥ A
∫ t+ω

t
βmg(r) ds

= Aωβmg(r)

> r,

which implies that ‖
x‖ > ‖x‖ for x ∈ K ∩ ∂	.
If x ∈ K ∩ ∂	, then ‖x‖ = r and x(t) ≥ σ r. From (.) and (.), we have

(
x)(t) ≤ B
∫ t+ω

t
β(s)xγ

(
s – τ (s)

)
e–δ(s)x(s–τ (s)) ds

≤ B
∫

E

β(s)xγ
(
s – τ (s)

)
e–δ(s)x(s–τ (s)) ds
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+ B
∫

E

β(s)xγ
(
s – τ (s)

)
e–δ(s)x(s–τ (s)) ds

≤ BM̃ω + Bωεr < r,

which implies that ‖
x‖ < ‖x‖ for x ∈ K ∩∂	, where E = {s|s ∈ [t, t +ω],  ≤ x(s –τ (s)) ≤
r} and E = {s|s ∈ [t, t + ω], r < x(s – τ (s)) ≤ r}.

Clearly, 	 ⊂ 	, 	 ⊂ 	, and 	 ⊂ 	. Since 
(K) ⊂ K and 
 is a completely contin-
uous operator on X, it follows from Lemma . that 
 has one fixed point x ∈ K ∩(	 \	)
and another fixed point x ∈ K ∩ (	 \ 	), which are obviously different. Moreover,
x(t) ≥ σ r >  and x(t) ≥ σ r > . Therefore, x and x are two positive periodic solu-
tions of (.). The proof of Theorem . is completed. �

Remark . It is worth mentioning that although the authors of [] considered the ex-
istence of two positive periodic solutions for equation (.) with γ = , it is neglected that
the two positive periodic solutions might merge into one when they are on the boundary
of 	. Here, we have proved that there exist two distinct positive periodic solutions for
equation (.), which generalizes and improves the result of [].

3 An example
In this section, we give an example to support the results obtained in the previous section.

Example . Consider the following delay differential neoclassical growth model:

x′(t) = –(. + sin t)x(t) + ( + sin t)x(t – | cos t|)e–(+cos t)x(t–| cos t|). (.)

Obviously, α(t) = . + sin t, β(t) =  + sin t, δ(t) =  + cos t, and τ (t) = | cos t| are all
π-periodic functions,

∫ ω

 α(t) dt = .π > , g(x) = xe–x, and γ = ,ω = π .
Note that A = e–.π

e.π – , B = e.π

e.π – , σ = A/B = e–.π , γ

δM
= , βm = , r ≈ .. Then we

verify conditions (S) as follows:

Aωβmg(r) ≈ . > r.

Therefore, it follows from Theorem . that (.) has at least two π-positive periodic
solutions.

Remark . To the best of our knowledge, few authors have considered the existence of
two positive periodic solutions for the generalized delay differential neoclassical growth
model (.). It is clear that all the results in [, , , , ] and the references therein
cannot be applicable to prove that there exist two π-positive periodic solutions for model
(.). So the results of this paper are essentially new and complement some existing ones
in [, , , , ].

4 Conclusions
In this paper, we study the generalized delay differential neoclassical growth model with
periodic coefficients and delays. By using the Krasnoselskii fixed point theorem, we have
derived conditions on the existence of two positive periodic solutions, which gives a sat-
isfying answer to the open problem mentioned in the Introduction. In the future, we will
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consider the stability of the two positive periodic solutions for model (.), which is an
interesting and challenging work.
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