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Abstract
In this paper, we first propose a stochastic smoking model driven by Brownian motion
based on a deterministic smoking model. We show that when the coefficients of the
noise are small, the smoking model is ergodic. We then estimate the drift coefficients
of stochastic smoking model by a least squares estimation and the ergodic theory on
the stationary distribution. Finally, we develop a new approach to estimating the
diffusion coefficients. Computer simulations will be used to illustrate our theory.
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1 Introduction
As we all know, smoking is not only harmful to human health, but it also does harm to a
smoker’s whole family. In the long run, smoking does harm to the whole society. According
to the World Health Organization website [], statistics investigation shows the following
key facts:

• Tobacco kills up to half of its users.
• Tobacco kills around  million people each year. More than  million of those deaths

are the result of direct tobacco use while more than , are the result of
non-smokers being exposed to second-hand smoke.

• Nearly % of the world’s  billion smokers live in low- and middle-income countries.
In recent years, several researchers have proposed some mathematical models to charac-

terize smoking behavior. First, Castillo-Garsow et al. [] presented a deterministic smok-
ing model, then Sharomi and Gumel [] further developed the deterministic model. For
fixed time t ≥ , they separated the total population N(t) into fours classes: potential
smokers P(t), current smokers S(t), smokers who temporarily quit smoking Qt(t), smok-
ers not smoking at some stage, and smokers who have quit smoking permanently Qp(t).
Besides, their smoking model is based on the following assumptions (A):

(A) The average number of contacts per unit time is c.
(A) The birth rate of the total population is μ.
(A) The death rate of the total population is μ.
(A) The current smokers try to quit smoking at the rate γ .
(A) The smokers temporarily quit smoking become current smokers again at the

rate α.
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(A) The smokers temporarily quit smoking become smokers who have quit smoking
permanently at the rate σ .

(A) The total population N(t) ≡ N∗ is a constant and N∗ is independent of time t.
According to assumption (A), cP(t) is the average number of visits to social gatherings of

the susceptible per unit of time. Out of those gatherings may come influence on potential
smokers, which is the presence of smokers given by the proportionality S(t)

N(t) . Besides, they
assume that q is the probability of becoming a smoker for a member of potential smokers
after contact with a smoker. Therefore, the total average change rate of smokers is cP(t)S(t)

N(t) .
For notational simplicity, let

β :=
cq

N(t)
=

cq
N∗ ; � := μN(t) = μN∗.

Consequently, the smoking model can be written as

dP(t) =
[
� – μP(t) – βP(t)S(t)

]
dt,

dS(t) =
[
–(μ + γ )S(t) + βP(t)S(t) + αQt(t)

]
dt,

dQt(t) =
[
–(μ + α)Qt(t) + γ ( – σ )S(t)

]
dt,

dQp(t) =
[
–μQp(t) + γ σS(t)

]
dt,

where P() > , S() > , Qt() > , Qp() > ,  < σ ,μ,β ,γ ,α < , and � > .
They proved local stability and global stability of this model according to a basic gen-

erator number. They have studied that the associated smoking-free equilibrium is glob-
ally asymptotically stable whenever a certain threshold, known as the smokers-generation
number, is less than unity, and unstable if this threshold is greater than unity.

It is reasonable to assume that the death of potential smokers P(t), current smokers S(t),
smokers who temporarily quit smoking Qt(t), and smokers who have quit smoking per-
manently Qp(t) is μ, μ, μ, μ, respectively. Therefore, we will get the following model:

dP(t) =
[
� – μP(t) – βP(t)S(t)

]
dt,

dS(t) =
[
–(μ + γ )S(t) + βP(t)S(t) + αQt(t)

]
dt,

dQt(t) =
[
–(μ + α)Qt(t) + γ ( – σ )S(t)

]
dt,

dQp(t) =
[
–μQp(t) + γ σS(t)

]
dt.

()

Although deterministic smoking model can characterize the dynamical behavior of the
smoking population in some way, it assumes that parameters are deterministic irrespective
of environmental fluctuations, which imposes some limitations in mathematical modeling
of ecological systems. In the real world, many random factors (earthquakes, typhoons,
car accidents, and other unforeseen factors) can make the parameters μi, i = , , ,  into
random variables, that is,

–μi → –μi + errori, i = , , , ,

where errori is a random term.
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According to the central limit theorem, the errori dt term can be approximated by a
normal distribution with mean  and variance σi dt. Consequently,

–μi dt → –μi dt + σi dBi(t), i = , , , , ()

where σi >  and Bi(t), i = , . . . , , are for standard Brownian motion. To better handle the
problem in mathematics, we assume that Bi(t), i = , , , , are independent of each other.

Substituting () into equation (), we get the following stochastic differential equation:

dP(t) =
[
� – μP(t) – βP(t)S(t)

]
dt + σP(t) dB(t),

dS(t) =
[
–(μ + γ )S(t) + βP(t)S(t) + αQt(t)

]
dt + σS(t) dB(t),

dQt(t) =
[
–(μ + α)Qt(t) + γ ( – σ )S(t)

]
dt + σQt(t) dB(t),

dQp(t) =
[
–μQp(t) + γ σS(t)

]
dt + σQP(t) dB(t).

()

Recently, Lahrouz et al. [] studied that a stochastic mathematical model of smoking has
stability under certain conditions. And many scholars have studied the effects of stochas-
tic noises on the biological model: Gard [] pointed out that permanence in the corre-
sponding deterministic model is preserved in the stochastic model if the intensities of the
random fluctuations are not too large; Gray et al. [] discussed the impacts of stochastic
noises on one-dimensional stochastic SIS model; Zhang and Chen [] presented new suf-
ficient conditions for the existence and uniqueness of a stationary distribution of general
diffusion processes, which is efficient for the stochastic smoking model ().

Moreover, parameter estimation for stochastic differential equations (for short SDEs)
has been a topic of interest in recent years. Many scholars have studied the parameter
estimation for SDEs, for example, Bishwal [], Timmer [] and Kristensen et al. []. Very
recently, Young et al. [] reviewed parameter estimation methods for SDEs; Gray et al.
[] estimated the parameters in the stochastic SIS epidemic model based on a pseudo-
maximum likelihood estimation and least squares estimation (for short LSE) by discrete
observations and so on.

In the paper, for convenience, we let

x(t) = P(t), x(t) = S(t), x(t) = Qt(t), x(t) = Qp(t).

Thus, () becomes the following stochastic differential equation (for short SDE):

⎛

⎜⎜
⎜
⎝

dx(t)
dx(t)
dx(t)
dx(t)

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

� – μx(t) – βx(t)x(t)
–(μ + γ )x(t) + βx(t)x(t) + αx(t)

–(μ + α)x(t) + γ ( – σ )x(t)
–μx(t) + γ σx(t)

⎞

⎟⎟
⎟
⎠

dt

+

⎛

⎜⎜
⎜
⎝

σx(t)   
 σx(t)  
  σx(t) 
   σx(t)

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

dB(t)
dB(t)
dB(t)
dB(t)

⎞

⎟⎟
⎟
⎠

. ()
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Although the SDE () looks like the epidemic models, which have been extensively dis-
cussed in the present literature, the SDE () has essential differences. The first main dif-
ference from the susceptible-infectious-recovered (for short SIR) idea is that the SDE ()
adds a term αQt(t), which makes the SDE () more difficult than SIR. The reader can see
that the emergence of the coefficient σ makes the stochastic smoking model more diffi-
cult to deal with. Since one has the nonlinearity of the coefficients, one cannot obtain the
explicit expressions for the drift coefficients of the SDE () by LSE directly.

The second main difference that the equation of SIR is three-dimensional, while the SDE
() is four-dimensional. Consequently, the SDE () is worth considering. To the best of
our knowledge, this paper is the first to consider the stationary distribution and parameter
estimation of the SDE (). When σ = , the model will degenerate into the epidemic model,
the existence of a stationary distribution is an open question. Besides, this paper uses the
quadratic variation to estimate the diffusion coefficients of the SDE () being a new and
more simple approach than the classical regression analysis.

It is natural to ask the following questions:
(Q) Does the SDE () have a unique global positive solution?
(Q) Under which conditions does the SDE () have a unique stationary distribution?
(Q) Can we estimate the parameters of the SDE () by LSE directly?
Compared to the present literature, our paper has made the following contributions:
• We find a useful and efficient function to prove the existence of a stationary

distribution for the SDE () based on a result from Khasminskii [].
• Two new methods for parameter estimation are proposed. One method estimates the

drift coefficients of the SDE () by using the ergodic theory on the stationary
distribution and LSE; the other new method estimates diffusion coefficients of the
SDE () by quadratic variation of the logarithm of sample paths.

In this paper, we will answer the above three questions one by one. The organization
of this paper is as follows: In Section , by Lyapunov method, we show that the SDE ()
has an existence and uniqueness positive solution. In Section , we show that when the
coefficients of the noise are small, the smoking model has a unique stationary distribution.
In Section , we estimate the parameters in the SDE () by LSE, the ergodic theory on the
stationary distribution, and quadratic variation.

2 Global positive solution
Throughout this paper, unless otherwise specified, we let (�,F , {Ft}t≥, P) be a complete
probability space with a filtration {Ft}t≥ satisfying the usual conditions (i.e. it is increasing
and right continuous while F contains all P-null sets). Let Bi(t), i = , , , , be standard
Brownian motion defined on the probability space. Denote R+ = (,∞) and R


+ = {x ∈R

 :
xi > , i = , , , }.

If A is a vector or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is
denoted by |A| =

√
trace(AT A) while its operator norm is denoted by ‖A‖ = sup{|Ax| : |x| =

}. If A is a symmetric matrix, its smallest and largest eigenvalue are denoted by λmin(A)
and λmax(A), respectively.

Theorem . For any initial value x() = (x(), x(), x(), x())T ∈R

+, the SDE () has

a unique global positive solution x(t) = (x(t), x(t), x(t), x(t))T ∈ R

+ for all t ≥  with

probability one, namely P{x(t) ∈ R

+ for all t ≥ } = .
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Proof Since the coefficients of the SDE () are locally Lipschitz continuous, it is well
known that, for any initial value x() ∈R


+, there is a unique local solution x(t) on t ∈ [, τe)

where τe is the explosion time (see, e.g., pp. -, Mao []).
To show this solution is global, we need to prove that τe = ∞ a.s. Let m >  be suffi-

ciently large for 
m

< x() < m. For each integer m ≥ m, define the stopping time

τm = inf

{
t ∈ [, τe)|xi(t) /∈

(

m

, m
)

for some i, i = , , , 
}

,

where inf∅ = ∞ (∅ denotes the empty set). We have τm ≤ τe. Incidently, if τm = ∞ a.s.,
then τe = ∞ a.s. and x(t) ∈ R


+ a.s. for all t ≥ .

Define V : R
+ →R+:

V (x) = (x + x + x + x) +

x

+

x

+


x
.

Let T >  be an arbitrary positive real number. By Itô’s formula, we get, for any  ≤ t ≤
τm ∧ T and m ≥ m,

dV
(
x(t)

)
= LV

(
x(t)

)
dt + 

(
x(t) + x(t) + x(t) + x(t)

)
σx(t) dB(t)

+
(


(
x(t) + x(t) + x(t) + x(t)

)
σx(t) –

σ

x(t)

)
dB(t)

+
(


(
x(t) + x(t) + x(t) + x(t)

)
σx(t) –

σ

x(t)

)
dB(t)

+
(


(
x(t) + x(t) + x(t) + x(t)

)
σx(t) –

σ

x(t)

)
dB(t), ()

where LV : R
+ →R is

LV (x) = (x + x + x + x)(� – μx – μx – μx – μx)

+ σ 
 x

 + σ 
 x

 + σ 
 x

 + σ 
 x

 – β
x

x
+

μ + γ + σ 


x
– α

x

x


+
μ + α + σ 


x

– γ ( – σ )
x

x
+

μ + σ 


x
– σγ

x

x
.

By

a + b ≥ ab a, b ∈R,

it follows that

LV (x) ≤ �(x + x + x + x) + σ 
 x

 + σ 
 x

 + σ 
 x

 + σ 
 x



+
μ + γ + σ 


x

+
μ + α + σ 


x

+
μ + σ 


x

≤ � + (x + x + x + x) + σ 
 x

 + σ 
 x

 + σ 
 x

 + σ 
 x



+
μ + γ + σ 


x

+
μ + α + σ 


x

+
μ + σ 


x
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≤ � + C(x + x + x + x)

+
μ + γ + σ 


x

+
μ + α + σ 


x

+
μ + σ 


x

≤ � + CV (x)

≤ C
(
 + V (x)

)
,

where C = max{σ 
 +,σ 

 +,σ 
 +,σ 

 +}, C = max{C,μ +γ +σ 
 ,μ +α +σ 

 ,μ +σ 
 },

and C = max{C,�}.
Now, for any t ∈ [, T], we can integrate both sides of () from  to (τm ∧ t) and then

take the expectations to get

EV
(
x(t ∧ τm)

)
= V

(
x()

)
+ E

∫ t∧τm


LV

(
x(s)

)
ds

≤ V
(
x()

)
+ E

∫ τm∧t


C

(
 + V

(
x(s)

))
ds

≤ V
(
x()

)
+ CT + E

∫ τm∧t


CV

(
x(s)

)
ds

≤ V
(
x()

)
+ CT + C

∫ t


EV

(
x(τm ∧ s)

)
ds.

By the Gronwall inequality, we have

EV
(
x(T ∧ τm)

) ≤ (
V

(
x()

)
+ CT

)
eCT . ()

Note that, for every ω ∈ {τm ≤ T}, x(τm) equals either m or 
m , and hence

V
(
x(τm)

) ≥
(

m +

m

)
∧

(


m + m
)

.

It then follows from () that

(
V

(
x()

)
+ CT

)
eCT ≥ E

[
I{τm≤T}(ω)V

(
x(τm)

)]

≥
((

m +

m

)
∧

(


m + m
))

P(τm ≤ T). ()

Letting m → +∞ on both sides of inequality (), we obtain

P(τ∞ ≤ T) = .

Since T is arbitrary, we have P(τ∞ = ∞) = . The proof is complete. �

3 Stationary distribution
In this section, we will give some sufficient conditions which guarantee that the SDE ()
has a unique stationary distribution.

To show the existence and uniqueness of stationary distribution of the SDE (), we follow
the main ideas of Mao [] and Tong et al. []. Let us first cite a well-known result from
Khasminskii [] as a lemma.
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Lemma . (see Khasminskii [] p. -) The SDE () has a unique stationary distri-
bution if there is a bounded open subset G of R

+ with a regular (i.e. smooth) boundary such
that its closure Ḡ ⊂R


+, and

(i) infx∈G λmin(diag(x, x, x, x)σσ T diag(x, x, x, x)) > , where σ = (σ,σ,σ,σ)T ;
(ii) supx()∈K–G E(τG) < ∞ for every compact subset K of R

+ such that G ⊂ K , where
τG = inf{t ≥  : x(t) ∈ G} and throughout this paper we set inf∅ = ∞.

Theorem . If μ > σ 
 , μ > σ 

 , μ > σ 
 , and μ > σ 

 hold, then the SDE () is
ergodic.

Proof Let M be a sufficiently large number. Set

G =
{

x ∈R

+ :


M

< xi < M for all i = , , , 
}

⊂ Ḡ ⊂ R

+

and Ḡ is the closure of G.
First, we verify condition (i) in Lemma .. Ax is defined by

Ax = σ T diag(x, x, x, x) for x ∈ Ḡ.

Clearly, λmin(AT
x Ax) ≥ . If λmin(AT

x Ax) = , then there is a vector ξ = (ξ, ξ, ξ, ξ)T ∈ R


such that |ξ | =  and Axξ = .
This implies that ξT AT

x Axξ = . By σi > , i = , , , , and the uniformly positive defi-
niteness for the matrix AT

x Ax with respect to x ∈ Ḡ, we obtain ξ = , but this contradicts
the fact that |ξ | = . Therefore, we must have λmin(AT

x Ax) > . Noting that λmin(AT
x Ax) is a

continuous function of x ∈ Ḡ, we have

inf
x∈G

λmin
(
AT

x Ax
) ≥ min

x∈Ḡ
λmin

(
AT

x Ax
)

> .

Therefore, we have verified condition (i) in Lemma .. Next, we will verify condition
(ii) in Lemma ..

Consider a function V : R
+ →R+

V(x) = (x + x + x + x) – log(x + x + x + x). ()

Applying Itô’s formula to () we can see that

dV
(
x(t)

)

= LV
(
x(t)

)
dt

+
(


(
x(t) + x(t) + x(t) + x(t)

)
–


x(t) + x(t) + x(t) + x(t)

)
σx(t) dB(t)

+
(


(
x(t) + x(t) + x(t) + x(t)

)
–


x(t) + x(t) + x(t) + x(t)

)
σx(t) dB(t)

+
(


(
x(t) + x(t) + x(t) + x(t)

)
–


x(t) + x(t) + x(t) + x(t)

)
σx(t) dB(t)
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+
(


(
x(t) + x(t) + x(t) + x(t)

)
–


x(t) + x(t) + x(t) + x(t)

)
σx(t) dB(t),

()

where LV : R
+ →R+ is defined by

LV(x) = –
(
μ – σ 


)
x

 + �x –
(
μ – σ 


)
x

 + �x

–
(
μ – σ 


)
x

 + �x –
(
μ – σ 


)
x

 + �x

–
�

x + x + x + x
+

μx + μx + μx + μx

x + x + x + x

+


(x + x + x + x)

(
σ 

 x
 + σ 

 x
 + σ 

 x
 + σ 

 x

)
. ()

By (), we get

LV(x) ≤ –
(
μ – σ 


)
x

 + �x –
(
μ – σ 


)
x

 + �x –
(
μ – σ 


)
x

 + �x

–
(
μ – σ 


)
x

 + �x –
�

x + x + x + x
+ μ̂ + σ̂

= –
(
μ – σ 


)
(

x –
�

μ – σ 


)

–
(
μ – σ 


)
(

x –
�

μ – σ 


)

–
(
μ – σ 


)
(

x –
�

μ – σ 


)

–
(
μ – σ 


)
(

x –
�

μ – σ 


)

+ �
(


μ – σ 


+


μ – σ 


+


μ – σ 


+


μ – σ 



)

–
�

x + x + x + x
+ μ̂ + σ̂ ,

where μ̂ = max{μ,μ,μ,μ} and σ̂ = max{σ 
 ,σ 

 ,σ 
 ,σ 

 }.
Under the conditions of μ > σ 

 , μ > σ 
 , μ > σ 

 , and μ > σ 
 , it is not difficult to

see that, for a sufficiently large number M,

LV(x) ≤ –, x ∈
(

,


M

]
×

(
,


M

]
×

(
,


M

]
×

(
,


M

]

and

LV(x) ≤ –, x ∈ [M,∞) × [M,∞) × [M,∞) × [M,∞).

Therefore,

LV(x) ≤ – for all x ∈R

+ – G. ()

Let the initial value x() ∈R

+ – G be arbitrary and let τG be the stopping time as defined

in Lemma ..
By () and (), it follows that

 ≤ V
(
x()

)
– E(t ∧ τG), ∀t ≥ .
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Letting t → ∞ we obtain

E(τG) ≤ V
(
x()

)
, ∀x() ∈ R


+ – G.

This immediately implies condition (ii) in Lemma .. The assertion hence follows from
Lemma .. The proof is complete. �

Next, we give an example to illustrate Theorem ..

Example . We choose � = , μ = ., μ = ., μ = ., μ = ., β = ., α =
., γ = ., σ = ., σ = ., σ = ., σ = ., σ = ., x() = , x() = , x() =
, and x() =  for the SDE ().

We compute μ – σ 
 = ., μ – σ 

 = ., μ – σ 
 = ., and μ – σ 

 = ..
It then follows from Theorem . that the SDE () has a unique stationary distribution.
We can apply the Euler-Maruyama (for short EM) method (see Mao []) to produce the
approximate distribution for the stationary distribution. In comparison, we will perform
a computer simulation of ,, iterations of the single path of (x(t), x(t), x(t), x(t))
with initial value x() = , x() = , x() = , and x() =  for the SDE () and
its corresponding deterministic model (), using the EM method with step size � = .,
which is shown in Figure .

Moreover, sorting the ,, iterations of x(t) into sorted data from the smallest
to the largest one, the ,th and ,th value in the sorted data are . and

Figure 1 Computer simulation of the path (x1(t), x2(t), x3(t), x4(t)) with initial value x1(0) = 250,
x2(0) = 700, x3(0) = 450, x4(0) = 400 for the SDE (4) and its corresponding deterministic model (1),
using the EM method with step size � = 0.001.
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Figure 2 The histograms of the paths of xi(t), i = 1, . . . , 4, with initial value x1(0) = 250, x2(0) = 700,
x3(0) = 450, x4(0) = 400.

. respectively. Approximately, these give the % confidence interval (.,
.) for x(t) asymptotically, that is

P
(
. < x(t) < .

) ≈ %,

for all sufficiently large numbers t.
Similarly, one can obtain

P
(
. < x(t) < .

) ≈ %,

P
(
. < x(t) < .

) ≈ %,

P
(
. < x(t) < .

) ≈ %,

for all sufficiently large numbers t.
The histograms of the paths of xi(t), i = , . . . , , are shown in Figure .

4 Parameter estimation
In this section, we estimate the parameters in the SDE (). We find the normal equation
is a nonlinear equation when we estimate the drift coefficients of the SDE () by using
LSE directly. One cannot get the explicit expressions for LSE for the drift coefficients.
Therefore, we will develop a useful method to estimate the drift coefficients of the SDE ().
Moreover, we will use a quadratic variation of the logarithm of sample paths to estimate
the diffusion coefficients of the SDE ().
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Let ν(·) be the stationary distribution of the SDE () and its solution x(t) with initial
value x() ∈ R


+. Before we state our main results, we first cite the ergodic theory on the

stationary distribution from Khasminskii [] as a lemma.

Lemma . (see Khasminskii [] p. ) If f : R
+ → R is integrable with respect to the

measure ν(·), then

lim
t→∞


t

∫ t


f
(
x(s)

)
ds =

∫

R

+

f (y)ν(dy) a.s.

for every initial value x() ∈ R

+.

Besides, we also recall the definition and properties of a quadratic covariation.

Definition . (see Klebaner [] p. ) If X(t) and Y (t) are semimartingales on the com-
mon space, then the quadratic covariation process, also known as the square bracket pro-
cess and denoted [X, Y ](t), is defined, as usual, by

[X, Y ](t) = lim
m∑

κ=

(
X

(
tm
κ

)
– X

(
tm
κ–

))(
Y

(
tm
κ

)
– Y

(
tm
κ–

))
,

where the limit is taken over shrinking partitions {tm
κ–}m

κ= of the interval [, t] with �t =
maxκ (tm

κ – tm
κ–) →  as m → ∞ and is in probability.

Lemma . (see Klebaner [] p. ) If X and Y are semimartingales, H and H are
predictable processes, then the quadratic covariation of stochastic integrals

∫ t
 H(s) dX(s)

and
∫ t

 H(s) dY (s) has the following property:

[∫ ·


H(s) dX(s),

∫ ·


H(s) dY (s)

]
(t) =

∫ t


H(s)H(s) d[X, Y ](s).

Now, let us first give a theorem.

Theorem . If μ > σ 
 , μ > σ 

 , μ > σ 
 , and μ > σ 

 hold, then there is a positive
constant C̄, which is independent of t, such that the solution x(t) of the SDE () has the
property that

lim sup
t→∞

E
∣∣x(t)

∣∣ ≤ C̄.

Proof By Theorem ., the unique solution x(t) of the SDE () will remain in R

+. Let

η =



min
{

μ – σ 
 , μ – σ 

 , μ – σ 
 , μ – σ 


}

.

Let V : R
+ →R+:

V(x) = eηt(x + x + x + x). ()
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Applying Itô’s formula to () we can find that

dV
(
x(t)

)
= LV

(
x(t)

)
dt + eηt(x(t) + x(t) + x(t) + x(t)

)
σx(t) dB(t)

+ eηt(x(t) + x(t) + x(t) + x(t)
)
σx(t) dB(t)

+ eηt(x(t) + x(t) + x(t) + x(t)
)
σx(t) dB(t)

+ eηt(x(t) + x(t) + x(t) + x(t)
)
σx(t) dB(t), ()

where LV : R
+ →R+ is defined by

LV(x) = ηeηt(x + x + x + x) – eηt(μ – σ 

)
x

 + eηt�x

– eηt(μ – σ 

)
x

 + eηt�x – eηt(μ – σ 

)
x

 + eηt�x

– eηt(μ – σ 

)
x

 + eηt�x.

Using the inequality

(a + b + c + d) ≤ 
(
a + b + c + d), a, b, c, d ∈R,

we obtain

LV(x) ≤ ηeηt(x
 + x

 + x
 + x


)

– eηt(μ – σ 

)
x

 + eηt�x

– eηt(μ – σ 

)
x

 + eηt�x – eηt(μ – σ 

)
x

 + eηt�x

– eηt(μ – σ 

)
x

 + eηt�x

≤ eηtU(x),

where

U(x) =
{

–


(
μ – σ 


)(

x –
�

μ – σ 


)

–


(
μ – σ 


)(

x –
�

μ – σ 


)

–


(
μ – σ 


)(

x –
�

μ – σ 


)

–


(
μ – σ 


)(

x –
�

μ – σ 


)

+ �
(


μ – σ 


+


μ – σ 


+


μ – σ 


+


μ – σ 



)}
.

Note that the function U(x) is uniformly bounded, namely,

C̃ := sup
x∈R

+

U(x) < ∞.

We therefore have

LV(x) ≤ eηtC̃.

Integrating on both sides of (), we derive that

eηtE
(
x(t) + x(t) + x(t) + x(t)

) ≤ (
x() + x() + x() + x()

) +
C̃
η

(
eηt – 

)
.
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This implies immediately that

lim sup
t→∞

E
(
x(t) + x(t) + x(t) + x(t)

) ≤ C̄ :=
C̃
η

.

By

a + b + c + d ≤ (a + b + c + d), a, b, c, d > ,

we obtain

lim sup
t→∞

E
∣∣x(t)

∣∣ ≤ C̄.

The proof is complete. �

Theorem . If μ > σ 
 , μ > σ 

 , μ > σ 
 , and μ > σ 

 hold, then

� – μν̄ + αν̄ = (μ + γ )ν̄,

γ ( – σ )ν̄ – (μ + α)ν̄ = ,

σγ ν̄ = μν̄,

()

where

(ν̄, ν̄, ν̄, ν̄)T = lim
t→∞


t

∫ t


x(s) ds =

∫

R

+

yν(dy) a.s.

Proof For any initial value x() ∈R

+, it follows directly from the SDE () that

x(t) = x() +
∫ t



(
� – μx(s) – βx(s)x(s)

)
ds + Y(t),

x(t) = x() +
∫ t



(
βx(s)x(s) – (μ + γ )x(s) + αx(s)

)
ds + Y(t),

x(t) = x() +
∫ t



(
–(μ + α)x(s) + γ ( – σ )x(s)

)
ds + Y(t),

x(t) = x() +
∫ t



(
–μx(s) + σγ x(s)

)
ds + Y(t),

()

for t > , where Yi(t) = σi
∫ t

 xi(s) dBi(s), i = , . . . , .
The quadratic variation of Yi(t), i = , . . . , , are given by

[Yi, Yi](t) = σ 
i

∫ t


x

i (s) ds, i = , . . . , .

According to Theorem ., Lemma ., and Theorem ., it is easy to see that
∫

R

+

|y|ν(dy) < ∞,
∫

R

+

|y|ν(dy) < ∞,

lim
t→∞


t

∫ t


xi(s)xj(s) ds =

∫

R

+

yiyjν(dy) a.s.,
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for every x() ∈R

+, and i, j = , , , .

It then follows that, for i = , . . . , ,

lim sup
t→∞

[Yi, Yi](t)
t

< ∞ a.s.

Therefore, by the strong law of large numbers of martingales, for all i = , , , ,

lim
t→∞

Yi(t)
t

= , a.s.

Now we can divide the two sides of () by t and then letting t → ∞ gives

lim
t→∞

x(t)
t

= � – μν̄ – βm,

lim
t→∞

x(t)
t

= βm – (μ + γ )ν̄ + αν̄,

lim
t→∞

x(t)
t

= –(μ + α)ν̄ + γ ( – σ )ν̄,

lim
t→∞

x(t)
t

= –μν̄ + γ σ ν̄,

where

m = lim
t→∞


t

∫ t


x(s)x(s) ds.

We will show that

lim
t→∞

xi(t)
t

= , i = , . . . , , a.s.

Otherwise, it is positive. When it is positive, xi(t), i = , . . . ,  tend to infinity which contra-
dicts Theorem ., which implies the required assertion (). The proof is complete. �

Next, we will obtain the estimators �̂, μ̂, μ̂, μ̂, β̂ , and α̂ by applying the technique
used in []. Let (x,, x,, x,, x,)T , (x,, x,, x,, x,)T , . . . , (x,n, x,n, x,n, x,n)T be obser-
vations from the SDE (). Given a step size �t and setting xi, = xi(), i = , , , , the EM
scheme produces the following discretization over small intervals [κ�t, (κ + )�t]:

x,κ – x,κ– = (� – μx,κ– – βx,κ–x,κ–)�t + σx,κ–ε,κ–
√

�t,

x,κ – x,κ– =
(
βx,κ–x,κ– – (μ + γ )x,κ– + αx,κ–

)
�t + σx,κ–ε,κ–

√
�t,

x,κ – x,κ– =
(
–(μ + α)x,κ– + γ ( – σ )x,κ–

)
�t + σx,κ–ε,κ–

√
�t,

x,κ – x,κ– = (–μx,κ– + γ σx,κ–)�t + σx,κ–ε,κ–
√

�t,

()

where εi,κ (i = , , , ) is an i.i.d. N(, ) sequence and εκ := (ε,κ , ε,κ , ε,κ , ε,κ )T is inde-
pendent of {(x,p, x,p, x,p, x,p)T , p < κ} for each κ . Besides, when i = j, εi,κ is independent
of εj,κ for i, j = , , , .
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In order to apply the least square estimation, () is rewritten as the following form:

x,κ – x,κ–

x,κ–
√

�t
=

�

x,κ–

√
�t – μ

√
�t – βx,κ–

√
�t + σε,κ–,

x,κ – x,κ–

x,κ–
√

�t
= βx,κ–

√
�t – (μ + γ )

√
�t + α

x,κ–

x,κ–

√
�t + σε,κ–,

x,κ – x,κ–

x,κ–
√

�t
= –(μ + α)

√
�t + γ ( – σ )

x,κ–

x,κ–

√
�t + σε,κ–,

x,κ – x,κ–

x,κ–
√

�t
= –μ

√
�t + γ σ

x,κ–

x,κ–

√
�t + σε,κ–.

()

We get from Theorem .

μ + γ =
�

v̄
– μ

v̄

v̄
+ α

ν̄

ν̄
, γ ( – σ ) =

ν̄

ν̄
(μ + α), σγ =

ν̄

ν̄
μ. ()

We will consider a time interval of total length T divided into n subintervals each of
length �t so n�t = T. Hence as n → ∞ and �t →  with n�t = T, one has


n�t

n∑

κ=

xi,κ�t → 
T

∫ T


xi(t) dt, i = , , , .

Hence

ν̄i ≈ 
n

n∑

κ=

xi,κ , i = , , , . ()

Therefore, the objective function is given by

F(�,μ,μ,μ,β ,α)

=
n∑

κ=

[(
x,κ – x,κ–

x,κ–
√

�t
–

�

x,κ–

√
�t + μ

√
�t + βx,κ–

√
�t

)

+
(

x,κ – x,κ–

x,κ–
√

�t
+

�

v̄

√
�t – μ

v̄

v̄

√
�t – βx,κ–

√
�t + α

(
ν̄

ν̄
–

x,κ–

x,κ–

)√
�t

)

+
(

x,κ – x,κ–

x,κ–
√

�t
+ (μ + α)

√
�t

(
 –

ν̄

ν̄

x,κ–

x,κ–

))

+
(

x,κ – x,κ–

x,κ–
√

�t
+ μ

√
�t

(
 –

ν̄x,κ–

ν̄x,κ–

))]
.

We have the following normal equations

∂F
∂�

= ,
∂F
∂μ

= ,
∂F
∂β

= ,
∂F
∂α

= ,
∂F
∂μ

= ,
∂F
∂μ

= .
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In other words,

a� + aμ + aβ + aα + aμ = b,

a� + aμ + aβ + aα + aμ = b,

a� + aμ + aβ + aα + aμ = b,

a� + aμ + aβ + aα + aμ = b,

a� + aμ + aβ + aα + aμ = b,

and

μ

n∑

κ=

(
 –

ν̄x,κ–

ν̄x,κ–

)

=


�t

n∑

κ=

[
x,κ – x,κ–

x,κ–

(
ν̄x,κ–

ν̄x,κ–
– 

)]
,

where

a = a = a = a = a = a = , a =
n∑

κ=

[


x
,κ–

+

v̄



]
,

a = a = –
n∑

κ=

[


x,κ–
+

v̄

v̄


]
, a = a = –

n∑

κ=

[
x,κ–

x,κ–
+

x,κ–

v̄

]
,

a = a =

v̄

n∑

κ=

[
ν̄

ν̄
–

x,κ–

x,κ–

]
, a = n

[
 +

v̄


v̄


]
,

a = a =
n∑

κ=

[
x,κ– +

v̄

v̄
x,κ–

]
, a = a =

v̄

v̄

n∑

κ=

(
x,κ–

x,κ–
–

v̄

v̄

)
,

a =
n∑

κ=

[
x

,κ– + x
,κ–

]
, a = a =

n∑

κ=

[(
x,κ–

x,κ–
–

ν̄

ν̄

)
x,κ–

]
,

a =
n∑

κ=

[(
 –

ν̄x,κ–

ν̄x,κ–

)

+
(

ν̄

ν̄
–

x,κ–

x,κ–

)]
,

a = a = a =
n∑

κ=

(
 –

ν̄x,κ–

ν̄x,κ–

)

,

b =


�t

n∑

κ=

[
x,κ – x,κ–

x
,κ–

–

v̄

x,κ – x,κ–

x,κ–

]
,

b =


�t

n∑

κ=

[
x,κ – x,κ–

x,κ–

v̄

v̄
–

x,κ – x,κ–

x,κ–

]
,

b =


�t

n∑

κ=

[
x,κ – x,κ–

x,κ–
x,κ– –

x,κ – x,κ–

x,κ–
x,κ–

]
,

b =


�t

n∑

κ=

[
x,κ – x,κ–

x,κ–

(
ν̄x,κ–

ν̄x,κ–
– 

)
–

x,κ – x,κ–

x,κ–

(
ν̄

ν̄
–

x,κ–

x,κ–

)]
,

b =


�t

n∑

κ=

[
x,κ – x,κ–

x,κ–

(
ν̄x,κ–

ν̄x,κ–
– 

)]
.
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Thus, we have point estimators as

�̂ =
D

D
, μ̂ =

D

D
, β̂ =

D

D
, α̂ =

D

D
, μ̂ =

D

D
, ()

and

μ̂ =


�t

n∑

κ=

[
x,κ – x,κ–

x,κ–

(
ν̄x,κ–

ν̄x,κ–
– 

)] / n∑

κ=

(
 –

ν̄x,κ–

ν̄x,κ–

)

, ()

where

D =

∣∣
∣∣
∣∣
∣∣∣
∣

b a · · · a

b a · · · a
...

...
...

b a · · · a

∣∣
∣∣
∣∣
∣∣∣
∣

, Di =

∣∣
∣∣
∣∣
∣∣∣
∣

a · · · b · · · a

a · · · b · · · a
...

...
...

a · · · b · · · a

∣∣
∣∣
∣∣
∣∣∣
∣

,

D =

∣∣
∣∣
∣∣
∣∣∣
∣

a a · · · a b

a a · · · a b
...

...
...

...
a a · · · a b

∣∣
∣∣
∣∣
∣∣∣
∣

, D =

∣∣
∣∣
∣∣
∣∣∣
∣

a a · · · a

a a · · · a
...

...
...

a a · · · a

∣∣
∣∣
∣∣
∣∣∣
∣

.

Combining ()-(), we get the point estimator as

γ̂ = (μ̂ + α̂)
∑n

κ= x,κ∑n
κ= x,κ

+ μ̂

∑n
κ= x,κ∑n
κ= x,κ

, σ̂ =
μ̂

∑n
κ= x,κ

γ̂
∑n

κ= x,κ
,

μ̂ =
�̂


n
∑n

κ= x,κ
– μ̂

∑n
κ= x,κ∑n
κ= x,κ

+ α̂

∑n
κ= x,κ∑n
κ= x,κ

– γ̂ .
()

We have estimated the drift coefficients of the SDE (). Next, we estimate the diffusion
coefficients σ, σ, σ, and σ. If we estimate the drift coefficients of the smoking model,
then we can apply regression analysis approach to giving the unbiased estimators σ̂, σ̂,
σ̂, and σ̂. However, for the auto-regression case, we will provide an efficient and simple
method. Our method relies heavily on the properties of quadratic variation, which are
independent of the drift coefficients.

By Itô’s formula, we find

d log x(t) =
[

�

x(t)
– μ – βx(t) –



σ 



]
dt + σ dB(t),

d log x(t) =
[

–μ – γ –


σ 

 + βx(t) + α
x(t)
x(t)

]
dt + σ dB(t),

d log x(t) =
[

–μ –


σ 

 – α + γ
x(t)
x(t)

]
dt + σ dB(t),

d log x(t) =
[

–μ + σγ
x(t)
x(t)

–


σ 



]
dt + σ dB(t).
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Then, for ∀t > ,

log x(t) = log x() +
∫ t



[
�

x(s)
– μ – βx(s) –



σ 



]
ds +

∫ t


σ dB(s),

log x(t) = log x() +
∫ t



[
–(μ + γ ) –



σ 

 + βx(s) + α
x(s)
x(s)

]
ds +

∫ t


σB(s),

log x(t) = log x() +
∫ t



[
–μ –



σ 

 – α + γ
x(s)
x(s)

]
ds +

∫ t


σB(s),

log x(t) = log x() +
∫ t



[
–μ + σγ

x(s)
x(s)

–


σ 



]
ds +

∫ t


σ dB(s).

It is not difficult to see log xi(t), i = , , , , are semimartingales. By the properties of the
quadratic variation, it follows that

[log x, log x](t)

= 
[∫ ·



(
�

x(s)
– μ – βx(s) –



σ 



)
ds,

∫ ·


σ dB(s)

]
(t)

+
[∫ ·



(
�

x(s)
– μ – βx(s) –



σ 



)
ds,

∫ ·



(
�

x(s)
– μ – βx(s) –



σ 



)
ds

]
(t)

+
[∫ ·


σ dB(s),

∫ ·


σ dB(s)

]
(t). ()

Applying Lemma . to () we find

[∫ ·



(
�

x(s)
– μ – βx(s) –



σ 



)
dt,

∫ ·


σ dB(s)

]
(t)

=
∫ t


σ

(
�

x(s)
– μ – βx(s) –



σ 



)
d[s, B](s)

= ,
[∫ ·



(
�

x(s)
– μ – βx(s) –



σ 



)
ds,

∫ ·



(
�

x(s)
– μ – βx(s) –



σ 



)
ds

]
(t)

= ,

and

[∫ ·


σ dB(s),

∫ ·


σ dB(s)

]
(t) = σ 

 t.

Consequently

[log x, log x](t) = σ 
 t, a.s.

Similarly, we have

[log xi, log xi](t) = σ 
i t, i = , , , a.s.
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It then follows that

σ 
i =


t

[log xi, log xi](t), i = , , , , a.s.

According to Definition ., when n → ∞, �t →  with t = n�t, we have


n�t

n∑

κ=

(log xi,κ – log xi,κ–) → 
t

[log xi, log xi](t) i = , , , , a.s.

Thus, we get the estimators

σ̂ 
i =


n�t

n∑

κ=

(log xi,κ – log xi,κ–), i = , , , . ()

Applying Definition . again, we have the following corollary.

Corollary . For i = , , , , the estimators σ̂i are strongly consistent, that is,

P
(

lim
�t→

σ̂ 
i = σ 

i

)
= .

Proof Recall the well-known fact that [B, B](t) = t a.s. Then one can obtain the desired
strong consistence by the definition of the quadratic variation. �

An example is given to illustrate the efficiency of our methods.

Example . Now, we keep the system parameters the same as in Example .. We
can perform a computer simulation of , ,  iterations of the single path of x(t) =
(x(t), x(t), x(t), x(t)) with initial value x() = , x() = , x() = , x() = 
for the SDE () using the EM method (see Mao []) with step size � = .. Taking the
averages of  times of computing (), (), and (), respectively, based on the random
numbers from model () we get

�̂ = ., μ̂ = ., μ̂ = ., μ̂ = .,

μ̂ = ., β̂ = ., α̂ = ., γ̂ = ., σ̂ = .,

σ̂ = ., σ̂ = ., σ̂ = ., σ̂ = ..

We see the results of the above estimators are very close to the true values.
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