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Abstract
Because of the non-local properties of fractional operators, obtaining the analytical
solutions of partial differential equations with fractional variable order is more
challenging. Efficiently solving these equations naturally becomes an urgent topic.
This paper reports an efficient numerical solution of the Rayleigh-Stokes (R-S)
problem with variable-order fractional derivative for a heated generalized second
grade fluid. The shifted Jacobi polynomials are employed as basis functions for the
approximate solution of the aforementioned problem in a bounded domain, and the
variable-order derivative is given by the means of Riemann-Liouville sense. The
proposed method is a combination of the shifted Jacobi-Gauss collocation (SJ-G-C)
approach for the spatial discretization and the shifted Jacobi-Gauss-Radau collocation
(SJ-GR-C) approach for temporal discretization. The aforementioned problem is then
reduced to a problem that consists in a system of easily solvable algebraic equations.
Finally, numerical problems are presented to show the effectiveness of the proposed
numerical method.

Keywords: variable-order fractional derivative; collocation method; Jacobi
polynomials; Gauss-Lobatto quadrature; two-dimensional Rayleigh-Stokes problem

1 Introduction
The study of fractional differential equations is an important area of research because of
their appearance in various fields of study such as fluid mechanics, physics, engineering,
and biology [–]. Particularly, it has been shown that fractional calculus is a powerful
tool for modeling various natural phenomena, because of the non-local nature and long-
range history dependence of fractional differential operators. Tan and Xu [] proposed
the fractional derivative between two parallel plates for a class of unsteady flows of a gen-
eralized second grade fluid and obtained exact analytical solutions by using Laplace and
Fourier transformations. In addition, Shen et al. [] presented the fractional-order R-S
problem for a heated generalized second grade fluid, and the solution of this problem is
obtained by the Fourier and fractional Laplace transforms. Stokes’ first problem has been
studied by Qi and Xu [] for a viscoelastic fluid with the generalized Oldroyd-B model.

Several analytical methodologies are proposed and developed to provide the analyti-
cal solutions of the fractional differential equations depending on Laplace, Mellin, and
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Fourier transforms, by many authors; see [, , –]. These methods are employed
for linear fractional differential equations, and cannot be used for nonlinear equations.
Indeed, most of analytical solutions contain infinite series and special functions, and thus
are complicated and inconvenient for computational and numerical situations. Therefore,
for most cases, it is desirable to propose and develop numerical solutions for solving such
problems. Wu [] proposed an implicit numerical approach for Stokes’ first problem of
fractional order. Chen et al. [] proposed two numerical approaches for the same prob-
lem. Mohebbi et al. [] proposed a combination of difference scheme and the radial basis
function with the Kansa approach for solving of the fractional-order R-S problem.

It is well known that the spectral methods have gained increasing popularity for sev-
eral decades, especially in solving differential equations and in the field of computational
fluid dynamics (see, e.g., [–] and the references therein). Spectral methods have also
been applied to constant-order fractional differential equations when the exact solutions
are smooth; see, e.g., [–]. As in the traditional spectral methods for integer-order dif-
ferential equations, it is extremely important to choose an appropriate basis function for
the solution of constant-order fractional differential equations. Recently, spectral method
were developed to solve partial fractional differential equations in which the choice of the
basis function is given by means of Jacobi polynomials; see [, ].

Nowadays, numerical approximation theory for variable-order fractional differential
equations is attracting more and more attention from the research community [–].
Inspired by [] and [], this paper aims to numerically solve the variable-order R-S prob-
lem for a heated generalized second grade fluid subject to initial-boundary and non-local
conditions. The proposed method presents a novel coupling of the shifted Jacobi-Gauss
scheme for the spatial discretization and the shifted Jacobi-Gauss-Radau scheme for tem-
poral discretization. This treatment improves the accuracy of the scheme greatly. There-
fore, the aforementioned problem with its non-local conditions is reduced to a system of
linear algebraic equations. This method results in an accurate solution that is continuous
in the temporal and spatial domains and is computational efficient.

The paper is laid out as follows. The definitions of the fractional calculus and some prop-
erties of Jacobi polynomials are introduced in Section . The spectral collocation methods
for the variable-order R-S problem subject to boundary, non-local, and mixed conditions
are presented in Section  and then illustrated, with three examples in Section . The
conclusion is given in Section .

2 Preliminaries
We first recall some definitions and preliminaries of the variable-order fractional differen-
tial and integral operators and some knowledge of orthogonal shifted Jacobi polynomials
that are most relevant to spectral approximations.

Definition . The Riemann-Liouville and Caputo differential operators of constant or-
der γ , when n –  ≤ γ < n, of f (t) are given, respectively, by

Dγ
t f (t) =


�(n – γ )

dn

dtn

∫ t



f (s)
(t – s)γ –n+ ds,

C
 Dγ

t f (t) =


�(n – γ )

∫ t



f (n)(s)
(t – s)γ –n+ ds,

(.)

where �(·) represents the Euler gamma function.
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Definition . The left Riemann-Liouville variable-order fractional differential operator
of order γ (t) is given by

Dγ (t)
t f (t) =


�(n – γ (t))

dn

dtn

∫ t



f (s)
(t – s)γ (t)–n+ ds, (.)

where n –  < γmin < γ (t) < γmax < n, n ∈N for all t ∈ [, τ ].

Definition . The Caputo variable-order fractional differential operator is given by []

C
 Dγ (t)

t f (t) =


�( – γ (t))

∫ t



f ′(s)
(t – s)γ (t) ds, (.)

where  < γ (t) ≤  for all t ∈ [, τ ].

It is important to note here that the constant-order fractional derivative can be seen as
a special case of the variable-order fractional derivative. These two definitions are related
by the following relation:

Dγ (t)
t f (t) =

n–∑
k=

f (k)()tk–γ (t)

�(k +  – γ (t))
+ C

 Dγ (t)
t f (t). (.)

The Jacobi polynomials, denoted by P(θ ,ϑ)
j (x) (j = ,  . . .); θ > –, ϑ > – and defined on

the interval [–, ] are generated from the three-term recurrence relation:

P(θ ,ϑ)
i+ (x) =

(
a(θ ,ϑ)

i x – b(θ ,ϑ)
i

)
P(θ ,ϑ)

i (x) – c(θ ,ϑ)
i P(θ ,ϑ)

i– (x), i ≥ ,

P(θ ,ϑ)
 (x) = , P(θ ,ϑ)

 (x) =



(θ + ϑ + )x +



(θ – ϑ),

where

a(θ ,ϑ)
i =

(i + θ + ϑ + )(i + θ + ϑ + )
(i + )(i + θ + ϑ + )

,

b(θ ,ϑ)
i =

(i + θ + ϑ + )(ϑ – θ)
(i + )(i + θ + ϑ + )(i + θ + ϑ)

,

c(θ ,ϑ)
i =

(i + θ + ϑ + )(i + θ )(i + ϑ)
(i + )(i + θ + ϑ + )(i + θ + ϑ)

.

The formula that relates Jacobi polynomials and their derivatives is

D(q)P(θ ,ϑ)
k (x) = P(θ ,ϑ ,q)

k (x) = –q �(k + θ + ϑ + q + )
�(k + θ + ϑ + )

P(θ+q,ϑ+q)
k–q (x). (.)

The orthogonality condition is

(
P(θ ,ϑ)

k (x), P(θ ,ϑ)
l (x)

)
w(θ ,ϑ) =

∫ 

–
P(θ ,ϑ)

k (x)P(θ ,ϑ)
l (x)w(θ ,ϑ)(x) dx = h(θ ,ϑ)

k δlk , (.)

where w(θ ,ϑ) = ( – x)θ ( + x)ϑ , h(θ ,ϑ)
k = θ+ϑ+�(k+θ+)�(k+ϑ+)

(k+θ+ϑ+)k!�(k+θ+ϑ+) .
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Let the shifted Jacobi polynomials P(θ ,ϑ)
i ( x

L – ) be denoted by P(θ ,ϑ)
L,i (x), then they can be

obtained with the aid of the following recurrence formula:

P(θ ,ϑ)
L,i+(x) =

(
a(θ ,ϑ)

i

(
x
L

– 
)

– b(θ ,ϑ)
i

)
P(θ ,ϑ)

L,i (x) – c(θ ,ϑ)
i P(θ ,ϑ)

L,i–(x), i ≥ ,

P(θ ,ϑ)
L, (x) = , P(θ ,ϑ)

L, (x) =

L

(θ + ϑ + )x – (ϑ + ).
(.)

The analytic form of the shifted Jacobi polynomials P(θ ,ϑ)
L,i (x) of degree i is given by

P(θ ,ϑ)
L,i (x) =

i∑
k=

(–)i+k �(i + ϑ + )�(i + k + θ + ϑ + )
�(k + ϑ + )�(i + θ + ϑ + )(i – k)!k!Lk xk , (.)

and the orthogonality condition is

∫ L


P(θ ,ϑ)

L,j (x)P(θ ,ϑ)
L,k (x)w(θ ,ϑ)

L (x) dx = �
(θ ,ϑ)
L,k δjk , (.)

where w(θ ,ϑ)
L (x) = xϑ (L – x)θ and �

(θ ,ϑ)
L,k = Lθ+ϑ+�(k+θ+)�(k+ϑ+)

(k+θ+ϑ+)k!�(k+θ+ϑ+) .
The shifted Jacobi-Gauss quadrature is commonly used to evaluate the previous inte-

grals accurately. For any φ ∈ SN+[, L], we have

∫ L


φ(x)w(θ ,ϑ)

L (x) dx =
N∑

j=

	
(θ ,ϑ)
G,L,j φ

(
x(θ ,ϑ)

G,L,j
)
,

where SN [, L] is the set of polynomials of degree less than or equal to N , x(θ ,ϑ)
G,L,j ( ≤ j ≤ N )

and 	
(θ ,ϑ)
G,L,j ( ≤ j ≤ N ) are used, as usual, the nodes and the corresponding Christoffel

numbers in the interval [, L], respectively.
For the shifted Jacobi-Gauss (SJ-G) case, x(θ ,ϑ)

G,L,j ( ≤ j ≤ N ) are the zeros of P(θ ,ϑ)
L,N+(x) and

the weights

	
(θ ,ϑ)
G,L,j =

C(θ ,ϑ)
L,N

(L – x(θ ,ϑ)
G,L,j )x

(θ ,ϑ)
G,L,j [∂xP(θ ,ϑ)

N+ (x(θ ,ϑ)
G,L,j )]

,  ≤ j ≤ N , (.)

where

C(θ ,ϑ)
L,N =

Lθ+ϑ+�(N + θ + )�(N + ϑ + )
(N + )!�(N + θ + ϑ + )

,

while the nodes and the corresponding Christoffel numbers in the shifted Jacobi-Gauss-
Radau (SJ-GR) quadrature are given by x(θ ,ϑ)

R,L, = , x(θ ,ϑ)
R,L,j ( ≤ j ≤ N ) are the zeros of

P(θ ,ϑ+)
L,N (x), and the weights

	
(θ ,ϑ)
R,L, =

(L)θ+ϑ+(ϑ + )�(ϑ + )�(N + )�(N + θ + )
�(N + ϑ + )�(N + θ + ϑ + )

,

	
(θ ,ϑ)
R,L,j =

C(θ ,ϑ+)
L,N–

(L – x(θ ,ϑ)
R,L,j )(x(θ ,ϑ)

R,L,j )∂x[P(θ ,ϑ+)
N (x(θ ,ϑ)

R,L,j )]
,  ≤ j ≤ N .

(.)
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A function u(x), square integrable in [, L], may be expressed in terms of shifted Jacobi
polynomials as

u(x) =
∞∑
j=

cjP(θ ,ϑ)
L,j (x),

where the coefficients cj are given by

cj =


�
(θ ,ϑ)
L,j

∫ L


u(x)P(θ ,ϑ)

L,j (x)w(θ ,ϑ)
L (x) dx, j = , , , . . . . (.)

The qth derivative of P(θ ,ϑ)
L,k (x) can be written as

DqP(θ ,ϑ)
L,k (x) = P(θ ,ϑ ,q)

L,k (x) =
�(q + k + θ + ϑ + )
Lq�(k + θ + ϑ + )

P(θ+q,ϑ+q)
L,k–q (x). (.)

Accordingly, we can calculate the Caputo derivative of the shifted Jacobi polynomials
from

C
 Dγ (t)

t P(θ ,ϑ)
L,i (x)

= P(θ ,ϑ ,γ (t))
L,i (x)

=
i∑

k=

(–)i+k�(i + ϑ + )�(i + k + θ + ϑ + )
�(k + ϑ + )�(i + θ + ϑ + )(i – k)!Lk�(k – γ (t) + )

xk–γ (t). (.)

3 Jacobi collocation method
This section introduces three numerical schemes that are based on the shifted Jacobi col-
location method to numerically solve the D variable-order fractional R-S problem with
different types of boundary conditions. In the following, it is important to mention here
that the shifted Jacobi-Gauss points are employed for the spatial approximation, however,
we employ the shifted Jacobi-Gauss-Radau points for the temporal approximation.

Now, we present the methodology of the shifted Jacobi collocation scheme for solving
the D variable-order fractional R-S problem with initial-boundary conditions.

3.1 R-S problem with Dirichlet boundary conditions
The main objective is to extend the Jacobi collocation method for handling the variable-
order fractional R-S problem:

∂u(x, y, t)
∂t

= D–γ (x,y,t)
t

(
k

∂u(x, y, t)
∂x + k

∂u(x, y, t)
∂y

)
+ k

∂u(x, y, t)
∂x

+ k
∂u(x, y, t)

∂y + f (x, t, y), (x, y) ∈ �, t ∈ [, T], (.)

subject to

u(x, y, ) = g(x, y), (x, y) ∈ �, (.)
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and the Dirichlet boundary conditions

u(, y, t) = g(y, t), u(L, y, t) = g(y, t),

u(x, , t) = g(x, t), u(x, L, t) = g(x, t),
(.)

where � = {(x, y)| ≤ x, y ≤ L}, γ (x, y, t) satisfies  < γmin < γ (x, y, t) < γmax <  and
k, k, k, k >  are the diffusion coefficients. Here, D–γ (x,y,t)

t u(x, u, t) is the variable-order
Riemann-Liouville fractional partial derivative of order  – γ (x, y, t).

By virtue of (.), we have

D–γ (x,y,t)
t

∂u(x, y, t)
∂x = C

 D–γ (x,y,t)
t

∂u(x, y, t)
∂x +

∂u(x, y, t)
∂x

∣∣∣∣
t=

tγ (x,y,t)–

�(γ (x, y, t))
,

D–γ (x,y,t)
t

∂u(x, y, t)
∂y = C

 D–γ (x,y,t)
t

∂u(x, y, t)
∂y +

∂u(x, y, t)
∂y

∣∣∣∣
t=

tγ (x,y,t)–

�(γ (x, y, t))
.

(.)

Substituting (.) into (.), we have

∂u(x, y, t)
∂t

= k
C
 D–γ (x,y,t)

t
∂u(x, y, t)

∂x + k
C
 D–γ (x,y,t)

t
∂u(x, y, t)

∂y

+ k
∂u(x, y, t)

∂x + k
∂u(x, y, t)

∂y + k
∂u(x, y, t)

∂x

∣∣∣∣
t=

tγ (x,y,t)–

�(γ (x, y, t))

+ k
∂u(x, y, t)

∂y

∣∣∣∣
t=

tγ (x,y,t)–

�(γ (x, y, t))
+ f (x, y, t) (.)

subject to the conditions (.) and (.).
Let us expand the approximate solution in a doubly shifted Jacobi series,

u(x, y, t) =
N∑

i,j,k=

ûi,j,kP(θ,ϑ)
L,i (x)P(θ,ϑ)

L,j (y)P(θ,ϑ)
T ,k (t)

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, y, t), (.)

where P i,j,k
 (x, y, t) = P(θ,ϑ)

L,i (x)P(θ,ϑ)
L,j (y)P(θ,ϑ)

T ,k (t).
The approximation of the temporal partial derivative ∂u(x,y,t)

∂t can easily be computed by
using (.) as follows:

∂u(x, y, t)
∂t

=
N∑

i,j,k=

ûi,j,kP(θ,ϑ)
L,i (x)P(θ,ϑ)

L,j (y)P(θ,ϑ,)
T ,k (t)

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, y, t), (.)

where P i,j,k
 (x, y, t) = P(θ,ϑ)

L,i (x)P(θ,ϑ)
L,j (y)P(θ,ϑ,)

T ,k (t).



Bhrawy et al. Advances in Difference Equations  (2016) 2016:272 Page 7 of 17

Also, it is easy to approximate the spatial partial derivatives ∂u(x,y,t)
∂x and ∂u(x,y,t)

∂y as follows:

∂u(x, y, t)
∂x

=
N∑

i,j,k=

ûi,j,kP(θ,ϑ,)
L,i (x)P(θ,ϑ)

L,j (y)P(θ,ϑ)
T ,k (t) =

N∑
i,j,k=

ûi,j,kP i,j,k
 (x, y, t), (.)

∂u(x, y, t)
∂y

=
N∑

i,j,k=

ûi,j,kP(θ,ϑ)
L,i (x)P(θ,ϑ,)

L,j (y)P(θ,ϑ)
T ,k (t) =

N∑
i,j,k=

ûi,j,kP i,j,k
 (x, y, t), (.)

where

P i,j,k
 (x, y, t) = P(θ,ϑ,)

L,i (x)P(θ,ϑ)
L,j (y)P(θ,ϑ)

T ,k (t)

and

P i,j,k
 (x, y, t) = P(θ,ϑ)

L,i (x)P(θ,ϑ,)
L,j (y)P(θ,ϑ)

T ,k (t).

Identical steps can be implemented to the second spatial partial derivatives, to get

∂u(x, y, t)
∂x =

N∑
i,j,k=

ûi,j,kP(θ,ϑ,)
L,i (x)P(θ,ϑ)

L,j (y)P(θ,ϑ)
T ,k (t) =

N∑
i,j,k=

ûi,j,kP i,j,k
 (x, y, t), (.)

∂u(x, y, t)
∂y

=
N∑

i,j,k=

ûi,j,kP(θ,ϑ)
L,i (x)P(θ,ϑ,)

L,j (y)P(θ,ϑ)
T ,k (t) =

N∑
i,j,k=

ûi,j,kP i,j,k
 (x, y, t), (.)

where

P i,j,k
 (x, y, t) = P(θ,ϑ,)

L,i (x)P(θ,ϑ)
L,j (y)P(θ,ϑ)

T ,k (t)

and

P i,j,k
 (x, y, t) = P(θ,ϑ)

L,i (x)P(θ,ϑ,)
L,j (y)P(θ,ϑ)

T ,k (t).

A straightforward calculation shows that the fractional derivative of variable order of
the approximate solution can be computed by

C
 D–γ (x,y,t)

t
∂u(x, y, t)

∂x =
N∑

i,j,k=

ûi,j,kP(θ,ϑ,)
L,i (x)P(θ,ϑ)

L,j (y)P(θ,ϑ,–γ (x,y,t))
T ,k (t)

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, y, t), (.)

C
 D–γ (x,y,t)

t
∂u(x, y, t)

∂y =
N∑

i,j,k=

ûi,j,kP(θ,ϑ)
L,i (x)P(θ,ϑ,)

L,j (y)P(θ,ϑ,–γ (x,y,t))
T ,k (t)

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, y, t), (.)
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where

P i,j,k
 (x, y, t) = P(θ,ϑ,)

L,i (x)P(θ,ϑ)
L,j (y)P(θ,ϑ,–γ (x,y,t))

T ,k (t),

P i,j,k
 (x, y, t) = P(θ,ϑ)

L,i (x)P(θ,ϑ,)
L,j (y)P(θ,ϑ,–γ (x,y,t))

T ,k (t).

Therefore, based on (.)-(.), we can write (.) in the form

N∑
i,j,k=

ûi,j,kP i,j,k
 (x, y, t)

= k

N∑
i,j,k=

ûi,j,kP i,j,k
 (x, y, t) + k

N∑
i,j,k=

ûi,j,kP i,j,k
 (x, y, t)

+ k

N∑
i,j,k=

ûi,j,kP i,j,k
 (x, y, t) + k

N∑
i,j,k=

ûi,j,kP i,j,k
 (x, y, t)

+ f (x, t, y) + k

N∑
i,j,k=

ûi,j,kP i,j,k
 (x, y, )

tγ (x,y,t)–

�(γ (x, y, t))

+ k

N∑
i,j,k=

ûi,j,kP i,j,k
 (x, y, )

tγ (x,y,t)–

�(γ (x, y, t))
, (.)

whereas the numerical treatment of initial and boundary conditions are

u(x, y, ) =
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, y, ) = g(x, y),

u(, y, t) =
N∑

i,j,k=

ûi,j,kP i,j,k
 (, y, t) = g(y, t),

u(L, y, t) =
N∑

i,j,k=

ûi,j,kP i,j,k
 (L, y, t) = g(y, t), (.)

u(x, , t) =
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, , t) = g(x, t),

u(x, L, t) =
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, L, t) = g(x, t).

In the proposed shifted Jacobi collocation method, the residual of (.) is set to be zero
at N × (N – ) of collocation points. Moreover, the initial-boundary conditions in (.)
will be collocated at collocation points. First of all, we have N ×(N –) algebraic equations
for (N + ) unknowns of ûi,j,k ,

N∑
i,j,k=

ûi,j,kFi,j,k
r,s,τ = f

(
x(θ ,ϑ)

G,L,r, y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ
)
,

r = , . . . , N – ; s = , . . . , N – , τ = , . . . , N , (.)
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where

Fi,j,k
r,s,τ = P i,j,k


(
x(θ ,ϑ)

G,L,r, y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ
)

– kP i,j,k


(
x(θ ,ϑ)

G,L,r, y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ
)

– kP i,j,k


(
x(θ ,ϑ)

G,L,r, y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ
)

– kP i,j,k


(
x(θ ,ϑ)

G,L,r, y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ
)

– kP i,j,k


(
x(θ ,ϑ)

G,L,r , y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ
)

–
(t(θ ,ϑ)

R,T ,τ )
γ (x(θ ,ϑ)

G,L,r ,y(θ ,ϑ)
G,L,s ,t(θ ,ϑ)

R,T ,τ )–

�(γ (x(θ ,ϑ)
G,L,r, y(θ ,ϑ)

G,L,s, t(θ ,ϑ)
R,T ,τ ))

× [
kP i,j,k


(
x(θ ,ϑ)

G,L,r, y(θ ,ϑ)
G,L,s, 

)
+ kP i,j,k


(
x(θ ,ϑ)

G,L,r , y(θ ,ϑ)
G,L,s, 

)]
. (.)

Also we have (N + ) algebraic equations produce due to the initial conditions

N∑
i,j,k=

ûi,j,kP i,j,k


(
x(θ ,ϑ)

G,L,r , y(θ ,ϑ)
G,L,s, 

)
= g

(
x(θ ,ϑ)

G,L,r , y(θ ,ϑ)
G,L,s

)
, r = , . . . , N ; s = , . . . , N . (.)

Furthermore, using the boundary conditions, we have  × N algebraic equations

N∑
i,j,k=

ûi,j,kP i,j,k


(
, y(θ ,ϑ)

G,L,s, t(θ ,ϑ)
R,T ,τ

)
= g

(
y(θ ,ϑ)

G,L,s, t(θ ,ϑ)
R,T ,τ

)
,

N∑
i,j,k=

ûi,j,kP i,j,k


(
L, y(θ ,ϑ)

G,L,s, t(θ ,ϑ)
R,T ,τ

)
= g

(
y(θ ,ϑ)

G,L,s, t(θ ,ϑ)
R,T ,τ

)
,

N∑
i,j,k=

ûi,j,kP i,j,k


(
x(θ ,ϑ)

G,L,r, , t(θ ,ϑ)
R,T ,τ

)
= g

(
x(θ ,ϑ)

G,L,r, t(θ ,ϑ)
R,T ,τ

)
,

N∑
i,j,k=

ûi,j,kP i,j,k


(
x(θ ,ϑ)

G,L,r, L, t(θ ,ϑ)
R,T ,τ

)
= g

(
x(θ ,ϑ)

G,L,r, t(θ ,ϑ)
R,T ,τ

)
,

(.)

where r = , . . . , N – ; s = , . . . , N – ; τ = , . . . , N .
This in turn produces (N + ) algebraic equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
i,j,k= ûi,j,kFi,j,k

r,s,τ = f (x(θ ,ϑ)
G,L,r , y(θ ,ϑ)

G,L,s, t(θ ,ϑ)
R,T ,τ ), r = , . . . , N – ; s = , . . . , N – ;

τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (x(θ ,ϑ)
G,L,r , y(θ ,ϑ)

G,L,s, ) = g(x(θ ,ϑ)
G,L,r , y(θ ,ϑ)

G,L,s), r = , . . . , N ; s = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (, y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ) = g(y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ), s = , . . . , N – ; τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (L, y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ) = g(y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ), s = , . . . , N – ; τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (x(θ ,ϑ)
G,L,r , , t(θ ,ϑ)

R,T ,τ ) = g(x(θ ,ϑ)
G,L,r , t(θ ,ϑ)

R,T ,τ ), r = , . . . , N – ; τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (x(θ ,ϑ)
G,L,r , L, t(θ ,ϑ)

R,T ,τ ) = g(x(θ ,ϑ)
G,L,r , t(θ ,ϑ)

R,T ,τ ), r = , . . . , N – ; τ = , . . . , N .

(.)

3.2 R-S problem with Neumann boundary conditions
Since many application problems in science and engineering involve Neumann boundary
conditions [, ], it is important to extend the result of the present section to account
for more general boundary conditions so that the shifted Jacobi collocation method can
be used efficiently to simulate these models.
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Let us consider the R-S problem (.) subject to (.) and Neumann boundary condi-
tions,

∂u(, y, t)
∂x

= g(y, t),
∂u(L, y, t)

∂x
= g(y, t),

∂u(x, , t)
∂y

= g(x, t),
∂u(x, L, t)

∂y
= g(y, t).

(.)

Depending on the information mentioned in the last subsection, we get

N∑
i,j,k=

ûi,j,kFi,j,k
r,s,τ = f

(
x(θ ,ϑ)

G,L,r, y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ
)
,

r = , . . . , N – ; s = , . . . , M – ; τ = , . . . , N , (.)

where Fi,j,k
r,s,τ is given in equation (.). In addition to the previous equation, we get the

following:

u(x, y, ) =
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, y, ) = g(x, y),

∂u(, y, t)
∂x

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (, y, t) = g(y, t),

∂u(L, y, t)
∂x

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (L, y, t) = g(y, t), (.)

∂u(x, , t)
∂y

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, , t) = g(x, t),

∂u(x, L, t)
∂y

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, L, t) = g(x, t).

By collocating these equations at the collocation points, the approximate solution can be
obtained from solving the generated algebraic system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
i,j,k= ûi,j,kFi,j,k

r,s,τ = f (x(θ ,ϑ)
G,L,r , y(θ ,ϑ)

G,L,s, t(θ ,ϑ)
R,T ,τ ), r = , . . . , N – ; s = , . . . , N – ;

τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (x(θ ,ϑ)
G,L,r , y(θ ,ϑ)

G,L,s, ) = g(x(θ ,ϑ)
G,L,r , y(θ ,ϑ)

G,L,s), r = , . . . , N ; s = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (, y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ) = g(y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ), s = , . . . , N – ; τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (L, y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ) = g(y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ), s = , . . . , N – ; τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (x(θ ,ϑ)
G,L,r , , t(θ ,ϑ)

R,T ,τ ) = g(x(θ ,ϑ)
G,L,r , t(θ ,ϑ)

R,T ,τ ), r = , . . . , N – ; τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (x(θ ,ϑ)
G,L,r , L, t(θ ,ϑ)

R,T ,τ ) = g(x(θ ,ϑ)
G,L,r , t(θ ,ϑ)

R,T ,τ ), r = , . . . , N – ; τ = , . . . , N .

(.)

3.3 R-S problem with mixed boundary conditions
This subsection focuses on developing the shifted Jacobi collocation method to numeri-
cally solve the R-S problem (.) subject to (.) and four non-local boundary conditions:

∂u(, y, t)
∂x

= g(y, t),
∫ L


u(x, y, t) dx = g(y, t),
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∂u(x, , t)
∂y

= g(x, t),
∫ L


u(x, y, t) dy = g(x, t), (.)

 ≤ a ≤ a ≤ L,  ≤ b ≤ b ≤ L, t ∈ [, T].

Based on the previous initial and mixed boundary conditions, we get the following ap-
proximations:

u(x, y, ) =
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, y, ) = g(x, y),

∂u(, y, t)
∂x

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (, y, t) = g(y, t),

∫ L


u(x, y, t) dx =

N∑
i,j,k=

ûi,j,k

(∫ L


P(θ ,ϑ)

L,i (x) dx
)

P(θ ,ϑ)
L,j (y)P(θ ,ϑ)

T ,k (t)

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (y, t) = g(y, t), (.)

∂u(x, , t)
∂y

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, , t) = g(x, t),

∫ L


u(x, y, t) dx =

N∑
i,j,k=

ûi,j,kP(θ ,ϑ)
L,i (x)

(∫ L


P(θ ,ϑ)

L,j (y) dy
)

P(θ ,ϑ)
T ,k (t)

=
N∑

i,j,k=

ûi,j,kP i,j,k
 (x, t) = g(x, t),

where

P i,j,k
 (y, t) =

(∫ L


P(θ ,ϑ)

L,i (x) dx
)

P(θ ,ϑ)
L,j (y)P(θ ,ϑ)

T ,k (t),

P i,j,k
 (x, t) = P(θ ,ϑ)

L,i (x)
(∫ L


P(θ ,ϑ)

L,j (y) dy
)

P(θ ,ϑ)
T ,k (t).

(.)

According to this, the following system of (M + ) algebraic equations is obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
i,j,k= ûi,j,kFi,j,k

r,s,τ = f (x(θ ,ϑ)
G,L,r , y(θ ,ϑ)

G,L,s, t(θ ,ϑ)
R,T ,τ ), r = , . . . , N – ; s = , . . . , N – ;

τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (x(θ ,ϑ)
G,L,r , y(θ ,ϑ)

G,L,s, ) = g(x(θ ,ϑ)
G,L,r , y(θ ,ϑ)

G,L,s), r = , . . . , N ; s = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (, y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ) = g(y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ), s = , . . . , N – ; τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ) = g(y(θ ,ϑ)
G,L,s, t(θ ,ϑ)

R,T ,τ ), s = , . . . , N – ; τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (x(θ ,ϑ)
G,L,r , , t(θ ,ϑ)

R,T ,τ ) = g(x(θ ,ϑ)
G,L,r , t(θ ,ϑ)

R,T ,τ ), r = , . . . , N – ; τ = , . . . , N ,∑N
i,j,k= ûi,j,kP i,j,k

 (x(θ ,ϑ)
G,L,r , t(θ ,ϑ)

R,T ,τ ) = g(x(θ ,ϑ)
G,L,r , t(θ ,ϑ)

R,T ,τ ), r = , . . . , N – ; τ = , . . . , N .

(.)

The above system may be solved by implementing the Mathematica package FindRoot.
The default method of this package is Newton’s method. In fact, if we start with a zero
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initial approximation for the solution, the package produces an accurate approximate so-
lution of the problem.

4 Numerical examples
This section reports several numerical examples to ensure the high accuracy and applica-
bility of the present scheme. The results obtained from the present method will be com-
pared with those mentioned in the recent literature.

Example  Consider the problem [],

∂u(x, y, t)
∂t

= D–γ (x,y,t)
t

(
∂u(x, y, t)

∂x +
∂u(x, y, t)

∂y

)
+

∂u(x, y, t)
∂x

+
∂u(x, y, t)

∂y + f (x, y, t), (x, y, t) ∈ [, ] × [, ] × [, ], (.)

u(, y, t) = eyt, u(, y, t) = ey+t,

u(x, , t) = ext, u(x, , t) = ex+t, (x, y, t) ∈ [, ] × [, ] × [, ],

u(x, y, ) = , (x, y) ∈ (, ) × [, ],

where

f (x, y, t) = ex+y
(

t – t –
t+γ (x,y,t)

�( + γ (x, y, t))

)
.

The exact solution is

u(x, y, t) = ex+yt, (x, y, t) ∈ [, ] × [, ] × [, ].

Chen et al. [] develop implicit and explicit schemes to obtain numerical solutions of
the above problem with different choices of �t and �x, where �t and �x are time and
space step sizes, respectively. In Table , we contrast our results based on maximum ab-
solute errors (MAEs) obtained by the present method for the shifted Jacobi parameters
θi = ϑi = , i = , ,  with the corresponding results of the implicit scheme [] and the ex-
plicit scheme [] at γ (x, y, t) = sin(xyt + π

 ). For different choices of γ (x, y, t), the MAEs
with θi = ϑi = , i = , , , are listed in Table .

In addition, to ensure the convergence and high accuracy of the present algorithm, in
Figure , the logarithmic graph of MAEs (log Error) at γ (x, y, t) = sin(xyt + π

 ) with dif-
ferent values of the shifted Jacobi parameters is presented. The conclusion is that the nu-
merical errors for all chosen shifted Jacobi parameters θi, ϑi, i = , , , decay rapidly as the

Table 1 Comparing MAEs of the present method at θi = ϑi = 0, i = 1, 2, 3, and the method in
[32] for Example 1

Implicit method [32] �t =�2
x =

1
4 �t =�2

x =
1
16 �t =�2

x =
1
64 �t =�2

x =
1
256

1.39× 10–2 4.49× 10–3 1.18× 10–3 3.06× 10–4

Explicit method [32] �t = 1
15 , �

2
x =

1
2 �t = 1

54 , �
2
x =

1
3 �t = 1

114 , �
2
x =

1
4 �t = 1

192 , �
2
x =

1
5

4.57× 10–2 2.78× 10–3 1.19× 10–3 4.98× 10–4

Our method N = 4 N = 6 N = 8 N = 10
1.30× 10–4 2.39× 10–7 2.08× 10–10 2.13× 10–13
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Table 2 MAEs of problem (4.1) at θi = ϑi = 0, i = 1, 2, 3

γ (x, y, t) N = 4 N = 6 N = 8 N = 10

0.5 1.31× 10–4 2.40× 10–7 2.08× 10–10 2.13× 10–13

cos(xyt + 1
100 ) 4.48× 10–4 7.12× 10–7 2.13× 10–10 1.82× 10–13

exyt+cos(xyt)
20 4.48× 10–4 2.35× 10–7 2.09× 10–10 2.16× 10–13

√
xyt+1
15 1.31× 10–4 2.40× 10–7 2.08× 10–10 2.10× 10–13

Figure 1 Convergence of problem (4.1) at γ (x, y, t) = sin(xyt + 2π
5 ) and various choices of θi = ϑi ,

i = 1, 2, 3.

parameter N increases. This confirms that the present method achieves a highly accurate
numerical solution for variable-order partial FDE.

Example  Consider the following problem:

∂u(x, y, t)
∂t

= D–γ (x,y,t)
t

(
∂u(x, y, t)

∂x + 
∂u(x, y, t)

∂y

)
+

∂u(x, y, t)
∂x

+
∂u(x, y, t)

∂y + f (x, t, y), (x, y, t) ∈ [, ] × [, ] × [, ], (.)

where

f (x, y, t) = et sin(x + y) +
tγ (x,y,t)– sin(x + y)

�(γ (x, y, t))

+
et(�(γ (x, y, t)) – �(γ (x, y, t), t)) sin(x + y)

�(γ (x, y, t))
,

where �(r, t) is the incomplete gamma function of t. The initial and Neumann boundary
conditions can be extracted from

u(x, y, t) = et sin(x + y).

In Table , we introduce the MAEs of u(x, y, t) of problem (.) at γ (x, y, t) = .,
γ (x, y, t) = +(yt)–cos(xt)

 and θ = ϑ = –θ = –ϑ = –θ = –ϑ = –/ with various choices
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Table 3 MAEs at θ1 = ϑ1 = –θ2 = –ϑ2 = –θ3 = –ϑ3 = –1/2 with various values of γ (x, y, t) and N
for Example 2

M γ (x, y, t) = 0.7 γ (x, y, t) = 9+(yt)3–cos2(xt)
60

4 4.527× 10–3 1.471× 10–3

5 1.539× 10–3 1.566× 10–3

6 1.536× 10–5 1.152× 10–5

7 3.785× 10–6 2.479× 10–6

8 2.566× 10–8 7.188× 10–8

9 4.964× 10–9 5.689× 10–9

10 2.420× 10–11 5.576× 10–11

Figure 2 The space-time graphs of the error function at various values of t with γ (x, y, t) = 11–cos2(xt)
11 ,

N = 10 and θi = ϑi = 0, i = 1, 2, 3, for Example 2.

of N . From the results of this table, it is observed that the approximate solutions are very
accurate for few values of N . Figure  demonstrates that the errors are very small even for
the small number of collocation nodes taken.

Example  Finally, we consider the following problem with mixed boundary conditions:

∂u(x, y, t)
∂t

= D–γ (y,t)
t

(
∂u(x, y, t)

∂x +
∂u(x, y, t)

∂y

)
+

∂u(x, y, t)
∂x

+
∂u(x, y, t)

∂y + f (x, y, t), (x, y, t) ∈ [, ] × [, ] × [, ], (.)
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Table 4 Maximum absolute errors of Example 3

N θ1 = ϑ1 = 0
θ2 = ϑ2 = 0
θ3 = ϑ3 = 0

θ1 = ϑ1 = –1/2
θ2 = ϑ2 = 1/2
θ3 = ϑ3 = 1/2

θ1 = ϑ1 = –1/2
θ2 = ϑ2 = –1/2
θ3 = ϑ3 = –1/2

θ1 = ϑ1 = –1/2
θ2 = ϑ2 = 0
θ3 = ϑ3 = 0

4 1.022× 10–3 1.951× 10–3 8.773× 10–4 1.022× 10–3

6 3.934× 10–6 1.469× 10–6 8.563× 10–7 1.184× 10–6

8 2.010× 10–9 2.754× 10–9 1.180× 10–9 2.010× 10–9

10 1.946×10–12 2.901× 10–12 1.034× 10–12 2.103× 10–12

with the initial and non-local boundary conditions

u(x, y, ) = ,

∂u(, y, t)
∂x

= ,
∫ 


u(x, y, t) dx = t cos(x) sin(), (.)

∂u(x, , t)
∂y

= ,
∫ 


u(x, y, t) dx = t cos(y) sin(),

where

f (x, y, t) =
(
t + t) cos(x) cos(y) +

t+γ (y,t) cos(x) cos(y)
�( + γ (y, t))

and

γ (y, t) =
 – cos(yt)


.

The exact solution is

u(x, y, t) = t cos(x) cos(y).

Table  lists the results obtained by the implementation of the proposed algorithm for
different values of θi, ϑi and N . It is observed that an excellent approximation for the ex-
act solution is achieved for limited collocation nodes. Therefore, we have demonstrated
that the present method provides an accurate approximation for problems with non-local
conditions.

5 Conclusions
We presented a collocation method to achieve an accurate numerical solution for the
variable-order R-S problem for a heated generalized second grade fluid subject to initial-
boundary and non-local conditions. One of the most significant advantages of the present
technique is that a fully spectral method was implemented for the time and space variables
by using SJ-GR-C and SJ-G-C approximations, respectively. The problem with its condi-
tions was then reduced to an algebraic system. The greatest feature of the present scheme
is, adding a few terms of the SJ-G and SJ-GR collocation points, a full agreement between
the approximate and exact solution was achieved. Through the numerical examples and
specially a comparison between the obtained approximate solution and those obtained
by other approximations, we demonstrate the validity and high accuracy of the method
presented.
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