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Abstract
This paper presents alternative representations to traditional calculus of the
Euler-Lagrangian equations, in the alternative representations these equations
contain fractional operators. In this work, we consider two problems, the Lagrangian
of a Pais-Uhlenbeck oscillator and the Hamiltonian of a two-electric pendulum model
where the fractional operators have a regular kernel. The Euler-Lagrange formalism
was used to obtain the dynamic model based on the Caputo-Fabrizio operator and
the new fractional operator based on the Mittag-Leffler function. The simulations
showed the effectiveness of these two representations for different values of γ .
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operator; Atangana-Baleanu-Caputo operator; Crank-Nicholson scheme;
Euler-Lagrange formalism

1 Introduction
Fractional calculus (FC) has become an alternative mathematical method to describe
models with non-local behavior. The models represented by fractional differential equa-
tions describe real-world problems. Several applications replacing the integer temporal
operator by an operator of fractional order are presented in [–]. In classical mechan-
ics, the Lagrangian and Hamiltonian formulations describe dissipative systems. In this
context, different authors have heeded to the Lagrangian and Hamiltonian approaches of
fractional order [–].

Analytical solutions of the fractional derivatives are hardly available, in this sense, nu-
merical methods has been reported in [, ]. In [], using Liouville-Caputo deriva-
tives the Euler-Lagrange equations corresponding an oscillator were stated as a se-
ries formulation; in [] the fractional simple pendulum was studied using a fractional
space representation. In [], the fractional discrete Lagrangians were analyzed using
the Riemann-Liouville fractional derivatives. The fractional Hamiltonians are non-local
and they are associated with dissipative systems. Constructing a complete description for
non-conservative systems can be viewed as one of the promising applications of FC. Other
interesting applications were given in [–].
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The Pais-Uhlenbeck oscillator (P-U) is a model for a higher derivative theory []. In
the field of higher derivative theories was introduced in order to get rid of ultraviolet di-
vergences []. In recent papers the P-U oscillator has been studied in the context of dy-
namical realizations of non-relativistic groups [–]. Baleanu et al. in [] studied the
fractional P-U oscillator based on the Riemann-Liouville fractional derivative, numerical
results are obtained using the decomposition method via the Grünwald-Letnikov frac-
tional operator and in [] the authors study numerically the fractional Euler-Lagrange
equation of the two-electric pendulum case via the Riemann-Liouville derivative and the
numerical method used was based on the Grünwald-Letnikov definition of left and right
fractional derivatives.

In various places, it is mentioned that the fractional derivative portrays the memory
effect, which has not been proven in practice. Michele Caputo and Mauro Fabrizio pre-
sented a novel operator based on the exponential function with regular kernel [–],
nevertheless, due to their properties, some researchers have concluded that this operator
can be view as filter regulator []. To solve the problem, Atangana and Baleanu proposed
two fractional operators with non-singular and non-local kernel, these novel operators
preserve the benefits of the Caputo-Fabrizio operator [–].

This manuscript is focused on the fractional Euler-Lagrange equation of the P-U os-
cillator and the Hamiltonian of a two-electric pendulum model via the Caputo-Fabrizio
operator and the new fractional operator based on the Mittag-Leffler function. We obtain
numerical solutions of these representations and compare their effectiveness to describe
real-world problems.

We organize this manuscript as follows: in Section , we outline the fundamentals to use
the fractional operators. In Section , alternative representations of the Pais-Uhlenbeck
oscillator model and the two-electric pendulum model are derived. Finally, in Section .
are presented the conclusions.

2 Fractional operators
The Caputo-Fabrizio definition of a fractional operator is as follows [, ]:

CF
 Dγ

t f (t) =
B(γ )
 – γ

∫ t


ḟ (θ ) exp

[
–

γ (t – θ )
 – γ

]
dθ , ()

where dγ

dtγ = CF
 Dγ

t is a Caputo-Fabrizio operator with respect to t, B(γ ) is a normalization
function such that B() = B() = , in this fractional derivative the exponential function
aids to reduce the risk of singularity, furthermore, the derivative of a constant is equal to
zero and the kernel does not have a singularity for t = θ .

The Laplace transform of () is defined as follows []:

L
[CF

 D(γ +n)
t f (t)

]
=


 – γ

L
[
f (γ +n)t

]
L

[
exp

(
–

γ

 – γ
t
)]

=
sn+L [f (t)] – snf () – sn–f ′() – · · · – f (n)()

s + γ ( – s)
, ()

for this representation in the time domain it is suitable to use the Laplace transform [].
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From this expression we have

L
[CF

 Dα
t f (t)

]
=

sL [f (t)] – f ()
s + α( – s)

, n = ,

L
[CF

 D(α+)
t f (t)

]
=

sL [f (t)] – sf () – f ′()
s + α( – s)

, n = .
()

The Atangana-Baleanu operator with fractional order in the Liouville-Caputo sense is
given as

ABC
 Dγ

t f (t) =
B(γ )
 – γ

∫ t


ḟ (θ )Eγ

[
–γ

(t – θ )γ

 – γ

]
dθ , ()

where B(γ ) represents a normalization function [].
The Laplace transform of () produces []

L
[ABC

 Dγ
t f (t)

]
(s) =

B(γ )
 – γ

L

[∫ t


ḟ (θ )Eγ

[
–γ

(t – θ )γ

 – γ

]
dθ

]

=
B(γ )
 – γ

sγ L [f (t)](s) – sγ –f ()
sγ + γ

–γ

. ()

The Atangana-Baleanu fractional integral is defined as

AB
a Iα

t f (t) =
 – α

B(α)
f (t) +

α

B(α)�(α)

∫ t


f (s)(t – s)α– ds. ()

3 Examples
3.1 Pais-Uhlenbeck oscillator
The model is characterized by a fourth-order differential equation, by a complex canonical
transformation the P-U oscillator is reduced into two independent harmonic oscillators.

The fractional Lagrangian of this oscillator is defined as follows []:

L =


(

aDγ
t x

) –
ω

 + ω



(

aDγ
t x

) +
ω

 ω




x. ()

The Euler-Lagrange equation is given as

∂L
∂x

+
(

tDγ

b
) ∂L
∂aDγ

t x
+

(
tDγ

b
) ∂L
∂aDγ

t x
= . ()

Using () we can rewrite

(
ω

 ω


)
x –

(
ω

 + ω

)(

tDγ

b
)(

aDγ
t
)
x +

(
tDγ

b
)(

aDγ
t

)
x = . ()

Considering the Liouville-Caputo, Caputo-Fabrizio and Atangana-Baleanu-Caputo
fractional derivatives we obtain numerical solutions for ().
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Space state representation
The model can be expressed as

ẋ(t) = x(t),

ẋ(t) = x(t),

ẋ(t) = x(t),

ẋ(t) = –
(
ω

 ω


)
x(t) +

(
ω

 + ω

)
x(t).

()

Fractional space state representation
Let us obtain the representation of the system () by introducing the operator CF

 Dγ
t and

ABC
 Dγ

t for each derivative.

Caputo-Fabrizio sense
In the Caputo-Fabrizio sense the P-U oscillator system () is given as

CF
 Dγ

t x(t) = x(t),
CF
 Dγ

t x(t) = x(t),
CF
 Dγ

t x(t) = x(t),
CF
 Dγ

t x(t) = –
(
ω

 ω


)
x(t) +

(
ω

 + ω

)
x(t).

()

Applying the Laplace transform () on (), we have

sL [x(t)] – x()
s + γ ( – s)

= L
[
x(t)

]
,

sL [x(t)] – x()
s + γ ( – s)

= L
[
x(t)

]
,

sL [x(t)] – x()
s + γ ( – s)

= L
[
x(t)

]
,

sL [x(t)] – x()
s + γ ( – s)

= L
[
–
(
ω

 ω


)
x(t) +

(
ω

 + ω

)
x(t)

]
,

()

we transform equation () to

L
[
x(t)

]
=

x()
s

+ A · L [
x(t)

]
,

L
[
x(t)

]
=

x()
s

+ A · L [
x(t)

]
,

L
[
x(t)

]
=

x()
s

+ A · L [
x(t)

]
,

L
[
x(t)

]
=

x()
s

+ A · L [
–
(
ω

 ω


)
x(t) +

(
ω

 + ω

)
x(t)

]
,

()

where A = s+γ (–s)
s .
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Applying on both sides of equation () the inverse Laplace transform, we have

x(t) = x() + L –{A · L [
x(t)

]}
,

x(t) = x() + L –{A · L [
x(t)

]}
,

x(t) = x() + L –{A · L [
x(t)

]}
,

x(t) = x() + L –{A · L [
–
(
ω

 ω


)
x(t) +

(
ω

 + ω

)
x(t)

]}
.

()

Iteratively equation () is represented as follows:

xm+(t) = xm (t) + L –{A · L [
xm (t)

]}
,

xm+(t) = xm (t) + L –{A · L [
xm (t)

]}
,

xm+(t) = xm (t) + L –{A · L [
xm (t)

]}
,

xm+(t) = xm (t) + L –{A · L [
–
(
ω

 ω


)
xm (t) +

(
ω

 + ω

)
xm (t)

]}
,

()

where

x (t) = x(), x(t) = lim
m→∞ xm (t),

x (t) = x(), x(t) = lim
m→∞ xm (t),

x (t) = x(), x(t) = lim
m→∞ xm (t),

x (t) = x(), x(t) = lim
m→∞ xm (t).

()

Now, we use the numerical approximation scheme recently developed in [], where the
stability and convergence analysis are discussed. The Adams-Moulton rule for the system
() is given by

x(n+)(t) = x()(t) +
{

 – γ

B(γ )
[
x(n+)(t)

]}
+

γ

B(γ )

∞∑
k=

ε,k,n · [x(n)(t)
]
,

x(n+)(t) = x()(t) +
{

 – γ

B(γ )
[
x(n+)(t)

]}
+

γ

B(γ )

∞∑
k=

ε,k,n · [x(n)(t)
]
,

x(n+)(t) = x()(t) +
{

 – γ

B(γ )
[
x(n+)(t)

]}
+

γ

B(γ )

∞∑
k=

ε,k,n · [x(n)(t)
]
, ()

x(n+)(t) = –
(
ω

 ω


)
x()(t) +

{
 – γ

B(γ )
[
x(n+)(t)

]}
+

γ

B(γ )

∞∑
k=

ε,k,n · [x(n)(t)
]

+
(
ω

 + ω

)
x()(t) +

{
 – γ

B(γ )
[
x(n+)(t)

]}
+

γ

B(γ )

∞∑
k=

ε,k,n · [x(n)(t)
]
,

where

ε(,,,,),k,n+

{
nγ – (n – γ )(n + )γ , k = ,
(n – k + )γ + + (n – k)γ + – (n – k + )γ +,  ≤ k ≤ n.
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Figure 1 Numerical evaluation of equation (15). (a) ω1 = 0.1, ω2 = 1; (b) ω1 = 0.6, ω2 = 0.9; (c) ω1 = 0.9,
ω2 = 0.4, and (d) ω1 = 0.5, ω2 = 0.5. For all cases: a solid line corresponds to γ = 1, a dash line corresponds to
γ = 0.9, a dot line corresponds to γ = 0.8, and a dash-dot line corresponds to γ = 0.7.

Numerical simulations
Figures (a), (b), (c), and (d) show the position x(t) considering different values of ω,
ω, and order γ , for all cases a = b =  and initial conditions equal to zero, the total sim-
ulation time considered is  seconds and the computational step  × –. Similar results
are obtained using the approximation ().

Atangana-Baleanu-Caputo sense
In the Atangana-Baleanu-Caputo sense the P-U oscillator system () is given by

ABC
 Dγ

t x = x,
ABC
 Dγ

t x = x,
ABC
 Dγ

t x = x,
ABC
 Dγ

t x = –
(
ω

 ω


)
x +

(
ω

 + ω

)
x.

()

Equation () is equivalent to the following:

x(t) – η(t) =
 – γ

B(γ )
[
x(t)

]
+ B ·

∫ t


(t – ε)γ –[x(ε)

]
dε,

x(t) – η(t) =
 – γ

B(γ )
[
x(t)

]
+ B ·

∫ t


(t – ε)γ –[x(ε)

]
dε,



Coronel-Escamilla et al. Advances in Difference Equations  (2016) 2016:283 Page 7 of 17

x(t) – η(t) =
 – γ

B(γ )
[
x(t)

]
+ B ·

∫ t


(t – ε)γ –[x(ε)

]
dε, ()

x(t) – η(t) =
 – γ

B(γ )
[
–
(
ω

 ω


)
x(t) +

(
ω

 + ω

)
x(t)

]

+ B ·
∫ t


(t – ε)γ –[–

(
ω

 ω


)
x(ε) +

(
ω

 + ω

)
x(ε)

]
dε,

where B = γ

B(γ )+�(γ ) . Equation () can be iteratively represented as follows:

x(t) = η(t), x(t) = η(t),

x(t) = η(t), x(t) = η(t),
()

where

xm+ (t) =
 – γ

B(γ )
[
xm (t)

]
+ B ·

∫ t


(t – ε)γ –[xm (ε)

]
dε,

xm+ (t) =
 – γ

B(γ )
[
xm (t)

]
+ B ·

∫ t


(t – ε)γ –[xm (ε)

]
dε,

xm+ (t) =
 – γ

B(γ )
[
xm (t)

]
+ B ·

∫ t


(t – ε)γ –[xm (ε)

]
dε, ()

xm+ (t) =
 – γ

B(γ )
[
–
(
ω

 ω


)
xm (t) +

(
ω

 + ω

)
xm (t)

]

+ B ·
∫ t


(t – ε)γ –[–

(
ω

 ω


)
xm (ε) +

(
ω

 + ω

)
xm (ε)

]
dε.

When the number of iteration tends to infinity we obtain the exact solutions of ().
Then we make use of the numerical approximation scheme recently developed in [].

The numerical approximation of () is given by

AB
 Iα

t
[
f (tn+)

]
=

 – α

B(α)

[
f (tn+) – f (tn)



]
+

α

�(α)

∞∑
k=

[
f (tk+) – f (tk)



]
bα

k , ()

where

bα
k = (k + )–α – (k)–α , ()

using the above numerical scheme the system () is represented by

x(n+)(t) – x(n)(t) = xn
()(t) +

{
 – γ

B(γ )

[
x(n+)(t) – x(n)(t)



]}

+
γ

B(γ )

∞∑
k=

bγ

k ·
[

x(k+)(t) – x(k)(t)


]
,

x(n+)(t) – x(n)(t) = xn
()(t) +

{
 – γ

B(γ )

[
x(n+)(t) – x(n)(t)



]}

+
γ

B(γ )

∞∑
k=

bγ

k ·
[

x(k+)(t) – x(k)(t)


]
,
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x(n+)(t) – x(n)(t) = xn
()(t) +

{
 – γ

B(γ )

[
x(n+)(t) – x(n)(t)



]}

+
γ

B(γ )

∞∑
k=

bγ

k · (ω
 ω



)[x(k+)(t) – x(k)(t)



]
, ()

x(n+)(t) – x(n)(t) = xn
()(t) –

{
 – γ

B(γ )
(
ω

 ω


)[x(n+)(t) – x(n)(t)



]}

+
γ

B(γ )

∞∑
k=

bγ

k · (ω
 ω



) ·

[
x(k+)(t) – x(k)(t)



]

+
{

 – γ

B(γ )
(
ω

 + ω

)[x(n+)(t) – x(n)(t)



]}

+
γ

B(γ )

∞∑
k=

bγ

k · (ω
 + ω


) ·

[
x(k+)(t) – x(k)(t)



]
.

Numerical simulations
Figures (a), (b), (c), and (d) show the position x(t) considering different values of ω,
ω, and order γ , for all cases a = b =  and initial conditions equal to zero, the total sim-
ulation time considered is  seconds and computational step  × –. Similar results are
obtained using the approximation ().

Figure 2 Numerical evaluation of equation (24). (a) ω1 = 0.1, ω2 = 1; (b) ω1 = 0.6, ω2 = 0.9; (c) ω1 = 0.9,
ω2 = 0.4, and (d) ω1 = 0.5, ω2 = 0.5. For all cases: a solid line corresponds to γ = 1, a dash line corresponds to
γ = 0.9, a dot line corresponds to γ = 0.8, and a dash-dot line corresponds to γ = 0.7.



Coronel-Escamilla et al. Advances in Difference Equations  (2016) 2016:283 Page 9 of 17

3.2 Two-electric pendulum case
The authors in [] studied numerically the fractional Euler-Lagrange equation of the two-
electric pendulum model via Riemann-Liouville derivative. From this alternative repre-
sentation we employ the Caputo-Fabrizio and Atangana-Baleanu-Caputo operators with
fractional order to accurately describe this system.

The electric pendulum consists of two planar pendulums, each one have a link with
length λ, and a mass m. The kinetic energy is

K =



m
(
q̇

 + q̇

)
, ()

the two generalized variables are q and q.
The potential energy is obtained by the sum of two terms; one is caused by the gravity

force, the other is an electrostatic; thus the potential energy is given by

U =



mg
λ

(
q

 + q

)

+
e

d + q – q
, ()

where g is the gravity constant and e is the electron charge. Now, the Lagrangian of the
two-electric pendulum model is given by

L =



m
(
q̇

 + q̇

)

–



mg
λ

(
q

 + q

)

–
e

d + q – q
. ()

Now, we can fractionalize the Lagrangian () as follows:

LF =



m
(

aDγ
t q

 + aDγ
t q


)

–



mg
λ

(
q

 + q

)

–
e

d + q – q
. ()

According to the Euler-Lagrange formulation for two generalized variables, we can ob-
tain the fractional Lagrange model of the two-electric pendulum oscillator as follows:

aDγ
t aDγ

t q +
g
λ

q +
e

m(d + q – q) = ,

aDγ
t aDγ

t q +
g
λ

q –
e

m(d + q – q) = .
()

The Lagrangian formulation is an explicit function of the coordinates qi and q̇i, how-
ever, the Hamilton formulation is an explicit function of the coordinates qi and pi are the
generalized position and generalized momentum, respectively.

We can get the generalized momenta from the fractional Lagrangian of the system as
follows:

pi =
∂LF

∂aDγ
t qi

, ()

where LF is the fractional Lagrangian of the system () and i = , .
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The generalized momenta are given by

p =
∂L

∂aDγ
t q

= m
(

aDγ
t q

)
,

p =
∂L

∂aDγ
t q

= m
(

aDγ
t q

)
.

()

In order to obtain the fractional Hamiltonian of the system, we use the Legendre trans-
formation as follows:

HF (t, qi, pi) =
∑

i

pi aDγ
t qi(qi, pi) – L

(
t, qi, aDγ

t qi(qi, pi)
)
. ()

Using equation (), we can compute the fractional Hamiltonian of the system as

HF =
p


m

+
p


m

+
mg
l

(
q

 + q

)

+
e

d + q – q
. ()

According to the Hamilton formulation for four generalize coordinates, we can obtain
the fractional Hamilton model of the two-electric pendulum model as follows:

aDγ
t q =

p

m
,

aDγ
t q =

p

m
,

aDγ
t q = –

mgq

λ
–

e

d + q – q
,

aDγ
t q = –

mgq

λ
+

e

d + q – q
.

()

Caputo-Fabrizio sense
Now, we assume that the operator Dα

t represents a fractional operator in the Caputo-
Fabrizio sense CF

 Dα
t . Applying Laplace transform () on equation (), we have

sL [q(t)] – q()
s + γ ( – s)

=
(


m

)
· L [

p(t)
]
,

sL [q(t)] – q()
s + γ ( – s)

=
(


m

)
· L [

p(t)
]
,

sL [p(t)] – p()
s + γ ( – s)

= –
(

mg
λ

)
· L [

q(t)
]

– e · L
[


d + q(t) – q(t)

]
,

sL [p(t)] – p()
s + γ ( – s)

= –
(

mg
λ

)
· L [

q(t)
]

+ e · L
[


d + q(t) – q(t)

]
,

()

we transform equation () to

L
[
q(t)

]
=

q()
s

+
(

A
m

)
· L [

p(t)
]
,

L
[
q(t)

]
=

q()
s

+
(

A
m

)
· L [

p(t)
]
, ()
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L
[
p(t)

]
=

p()
s

–
(

Amg
λ

)
· L [

q(t)
]

–
(
Ae) · L

[


d + q(t) – q(t)

]
,

L
[
p(t)

]
=

p()
s

–
(

Amg
λ

)
· L [

q(t)
]

+
(
Ae) · L

[


d + q(t) – q(t)

]
,

where A = s+γ (–s)
s .

Applying the inverse Laplace transform on both sides of equation (), we have

q(t) = q() +
(


m

)
L –{A · L [

p(t)
]}

,

q(t) = q() +
(


m

)
L –{A · L [

p(t)
]}

,

p(t) = p() –
(

mg
λ

)
· L –{A · L [

q(t)
]}

– e · L –
{

A · L
[


d + q(t) – q(t)

]}
,

p(t) = p() –
(

mg
λ

)
· L –{A · L [

q(t)
]}

+ e · L –
{

A · L
[


d + q(t) – q(t)

]}
.

()

Iteratively () is represented as follows:

qm+(t) = qm () +
(


m

)
L –{A · L [

pm (t)
]}

,

qm+(t) = qm () +
(


m

)
L –{A · L [

pm (t)
]}

,

pm+(t) = pm () –
(

mg
λ

)
· L –{A · L [

qm (t)
]}

– e · L –
{

A · L
[


d + qm (t) – qm (t)

]}
,

pm+(t) = pm () –
(

mg
λ

)
· L –{A · L [

qm (t)
]}

+ e · L –
{

A · L
[


d + qm (t) – qm (t)

]}
,

()

where

q (t) = q(), q(t) = lim
m→∞ qm (t),

q (t) = q(), q(t) = lim
m→∞ qm (t),

q (t) = q(), q(t) = lim
m→∞ qm (t),

q (t) = q(), q(t) = lim
m→∞ qm (t).

()

Now, we use the numerical approximation scheme of the new Caputo-Fabrizio frac-
tional operator recently developed in []. The Adams-Moulton rule for the system ()
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is given by

q(n+)(t) = q()(t) +
{

 – γ

B(γ )

[(

m

)
p(n+)(t)

]}

+
γ

B(γ )

∞∑
k=

ε,k,n ·
[(


m

)
p(n)(t)

]
,

q(n+)(t) = q()(t) +
{

 – γ

B(γ )

[(

m

)
p(n+)(t)

]}

+
γ

B(γ )

∞∑
k=

ε,k,n ·
[(


m

)
p(n)(t)

]
,

p(n+)(t) = p()(t) +
{

 – γ

B(γ )

[
–
(

mg
λ

)
q(n+)(t) –

e

d + q(n+)(t) – q(n+)(t)

]}

+
γ

B(γ )

∞∑
k=

ε,k,n ·
[

–
(

mg
λ

)
q(n)(t) –

e

d + q(n)(t) – q(n)(t)

]
,

p(n+)(t) = p()(t) +
{

 – γ

B(γ )

[
–
(

mg
λ

)
q(n+)(t) +

e

d + q(n+)(t) – q(n+)(t)

]}

+
γ

B(γ )

∞∑
k=

ε,k,n ·
[

–
(

mg
λ

)
q(n)(t) +

e

d + q(n)(t) – q(n)(t)

]
,

()

where

ε(,,,),k,n+

{
nγ – (n – γ )(n + )γ , k = ,
(n – k + )γ + + (n – k)γ + – (n – k + )γ +,  ≤ k ≤ n.

Numerical simulations
Figures (a), (b), (c), and (d) show q(t) and q(t) considering the following values:
m =  Kg, λ =  m, d =  m and different values of α, the total simulation time considered
is  seconds, computational step × –, and the following initial conditions: q() = .
and q() = .. Similar results are obtained using the approximation ().

Atangana-Baleanu-Caputo sense
Now, we assume that the operator Dγ

t represents a fractional operator in the Atangana-
Baleanu-Caputo sense ABC

 Dγ
t . Equation () is equivalent to the following:

q(t) – η(t) =
(

 – γ

B(γ )

)(

m

)[
p(t)

]
+

(
B
m

)
·
∫ t


(t – ε)γ –[p(ε)

]
dε,

q(t) – η(t) =
(

 – γ

B(γ )

)(

m

)[
p(t)

]
+

(
B
m

)
·
∫ t


(t – ε)γ –[p(ε)

]
dε,

p(t) – η(t) = –
(

 – γ

B(γ )

)(
mg
λ

)[
q(t)

]
–

(
mgB
λ

)
·
∫ t


(t – ε)γ –[q(ε)

]
dε

–
(

 – γ

B(γ )

)(
e)[ 

d + q(t) – q(t)

]
()

–
(
eB

) ·
∫ t


(t – ε)γ –

[


d + q(ε) – q(ε)

]
dε,
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Figure 3 Numerical evaluation of equation (38) in Caputo-Fabrizio sense. (a) γ = 1; (b) γ = 0.9;
(c) γ = 0.85, and (d) γ = 0.8.

p(t) – η(t) = –
(

 – γ

B(γ )

)(
mg
λ

)[
q(t)

]
–

(
mgB
λ

)
·
∫ t


(t – ε)γ –[q(ε)

]
dε

+
(

 – γ

B(γ )

)(
e)[ 

d + q(t) – q(t)

]

–
(
eB

) ·
∫ t


(t – ε)γ –

[


d + q(ε) – q(ε)

]
dε,

where B = γ

B(γ )+�(γ ) . Equation () can be iteratively represented as follows:

q(t) = η(t), p(t) = η(t),

q(t) = η(t), p(t) = η(t),
()

where

qm+ (t) – η(t) =
(

 – γ

B(γ )

)(

m

)[
pm (t)

]
+

(
B
m

)
·
∫ t


(t – ε)γ –[pm (ε)

]
dε,

qm+ (t) – η(t) =
(

 – γ

B(γ )

)(

m

)[
pm (t)

]
+

(
B
m

)
·
∫ t


(t – ε)γ –[pm (ε)

]
dε,

pm+ (t) – η(t) = –
(

 – γ

B(γ )

)(
mg
λ

)[
qm (t)

]
–

(
mgB
λ

)
·
∫ t


(t – ε)γ –[qm (ε)

]
dε
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–
(

 – γ

B(γ )

)(
e)[ 

d + qm (t) – qm (t)

]
()

–
(
eB

) ·
∫ t


(t – ε)γ –

[


d + qm (ε) – qm (ε)

]
dε,

pm+ (t) – η(t) = –
(

 – γ

B(γ )

)(
mg
λ

)[
qm (t)

]
–

(
mgB
λ

)
·
∫ t


(t – ε)γ –[qm (ε)

]
dε

+
(

 – γ

B(γ )

)(
e)[ 

d + qm (t) – qm (t)

]

–
(
eB

) ·
∫ t


(t – ε)γ –

[


d + qm (ε) – qm (ε)

]
dε,

when the number of iteration tends to infinity we obtain the exact solutions of ().
Now, we use of the numerical approximation scheme of the new Atangana-Baleanu-

Caputo fractional operator recently developed in []. Using the numerical approximation
of the Atangana-Baleanu fractional integral () we have

q(n+)(t) – q(n)(t) = qn
()(t) +

{
 – γ

B(γ )

[(

m

)(
p(n+)(t) – p(n)(t)



)]}

+
γ

B(γ )

∞∑
k=

bγ

k ·
[(


m

)(
p(k+)(t) – p(k)(t)



)]
,

q(n+)(t) – q(n)(t) = qn
()(t) +

{
 – γ

B(γ )

[(

m

)(
p(n+)(t) – p(n)(t)



)]}

+
γ

B(γ )

∞∑
k=

bγ

k ·
[(


m

)(
p(k+)(t) – p(k)(t)



)]
,

p(n+)(t) – p(n)(t) = pn
()(t) +

{
 – γ

B(γ )

[
–
(

mg
λ

)(
q(n+)(t) – q(n)(t)



)

–
e

d + ( q(n+)(t)–q(n)(t)
 ) – ( q(n+)(t)–q(n)(t)

 )

]}

+
γ

B(γ )

∞∑
k=

bγ

k ·
[

–
(

mg
λ

)(
q(n+)(t) – q(n)(t)



)

–
e

d + ( q(n+)(t)–q(n)(t)
 ) – ( q(n+)(t)–q(n)(t)

 )

]
,

p(n+)(t) – p(n)(t) = pn
()(t) +

{
 – γ

B(γ )

[
–
(

mg
λ

)(
q(n+)(t) – q(n)(t)



)

+
e

d + ( q(n+)(t)–q(n)(t)
 ) – ( q(n+)(t)–q(n)(t)

 )

]}

+
γ

B(γ )

∞∑
k=

bγ

k ·
[

–
(

mg
λ

)(
q(n+)(t) – q(n)(t)



)

+
e

d + ( q(n+)(t)–q(n)(t)
 ) – ( q(n+)(t)–q(n)(t)

 )

]
.

()
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Figure 4 Numerical evaluation of equation (44) in Atangana-Baleanu-Caputo sense. (a) γ = 1;
(b) γ = 0.9; (c) γ = 0.85, and (d) γ = 0.8.

Numerical simulations
Figures (a), (b), (c), and (d) show q(t) and q(t) considering the following values: m =
 Kg, λ =  m, d =  m and different values of α, the total simulation time considered is 
seconds, the computational step × –, and the following initial conditions: q() = .
and q() = .. Similar results are obtained using the approximation ().

4 Conclusions
The modifications of the Pais-Uhlenbeck oscillator model and two-electric pendulum
model were developed using different fractional operators with regular kernel. The alter-
native models were performed for different orders of the derivative and the classical cases
are obtained numerically using the Euler numerical method. Based on concepts in the
Caputo-Fabrizio and Atangana-Baleanu-Caputo sense, a derivation of the special solution
was achieved via an iterative approach and using an iterative methodology via the Crank-
Nicholson scheme. These operators are considered as filters, the first operator based on
the exponential function with regular kernel and the second with Mittag-Leffler kernel.
This fractional operator has a non-local, free singular kernel and the integral associated
to this derivative is the average of the given function and its Riemann-Liouville fractional
integral.

It was observed that as γ → , the numerical solutions converge to those obtained by
integer-order modeling. The numerical solutions of the fractional differential model de-
scribe long term memory effects (attenuation or dissipation); in the case when γ ← , the
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fractional temporal differentiation represents non-local displacement effects due to the
dissipation of energy. Therefore, these dissipation effects are characterized by the frac-
tional order γ , which is related to the displacement of the systems in fractal geometries.

The fractional operators used here reveal behaviors that cannot be obtained with the
standard model. We can conclude that the Atangana-Baleanu Caputo fractional operator
due to the Mittag-Leffler kernel is more suitable to model real-world complex problems
than all existing fractional operators.
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