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Abstract
In this paper, the Hyers-Ulam stability for a class of first order stochastic differential
equations is studied by using the Ito formula. Furthermore, the research results are
applied to a class of second order stochastic differential equations with constant
coefficients by the substitution method. In the end, the Hyers-Ulam stability of
general second order stochastic differential equations is considered by the solutions
of two deterministic second order differential equation boundary value problems.
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1 Introduction
The Hyers-Ulam stability of functional equations was introduced with the motivation of
studying the stability of approximate solutions [, ]. Since then, much attention was given
to the stability studies of functional equations; see [–] and the references therein. In
, Obloza introduced the notion of Hyers-Ulam stability for the studies of differen-
tial equations [, ]. Furthermore, the stability studies of differential equations have been
considered in the recent decade; see [–] and the references therein. To the best of the
author’s knowledge, after the success of the investigations of the Hyers-Ulam stability for
deterministic differential equations, there are a few arguments about the Hyers-Ulam sta-
bility of stochastic differential equations in the literature. However, uncertainty is involved
in all kinds of natural phenomena, and stochastic differential equations are the suitable
mathematical models for the natural phenomena. Therefore, it is important to generalize
the research results of deterministic differential equations to stochastic differential equa-
tions. In the paper, we will consider the Hyers-Ulam stability of the following stochastic
differential equations in the mean square which are perturbed by the Brownian motion:

dXt = (atXt + ft) dt + ht dBt , (.)

and

dX ′
t =

(
btX ′

t + ctXt + rt
)

dt + kt dBt , (.)
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where t ≥ , a, b, c, f , h, r, k : [, +∞) →R are continuous, Bt is a standard one-dimensional
Brownian motion, Xt is a stochastic process which is adapted to the same filtration as Bt .
If ht ≡ , kt ≡ , equations (.) and (.) are deterministic equations, which had been
considered by the method of integral factors in [–].

2 Preliminary
Now we introduce the fundamental definitions and a lemma, which are used later in the
article. Throughout this paper, we consider a filtered probability space (�,F , P) with filtra-
tion Ft , t ≥  satisfying the usual conditions, that is, it is right continuous and increasing,
while F contains all P-null sets.

Definition . Assume that for any ε ≥  and any stochastic process

Yt ∈L
(
�,F , (Ft), P

)

satisfies

E
(

Yt –
∫ t


(aYs + fs) ds –

∫ t


hs dBs

)

< ε, t ∈ (, T),

where E is the expectation operator, then there exists a solution Xt of equation (.) such
that |Yt – Xt| ≤ Kε, t ∈ (, T) with K is a positive real constant. We say that equation (.)
is Hyers-Ulam stable on (, T) in the mean square.

Definition . Assume that for any ε >  and any stochastic process

Yt ∈L
(
�,F , (Ft), P

)

satisfies the following inequality:

E
(

Y ′
t –

∫ t



(
bsY ′

s + csYs + rs
)

ds –
∫ t


ks dBs

)

< ε, t ∈ (, T),

where E is the expectation operator, then there exists a solution Xt of equation (.) such
that |Yt – Xt| ≤ Kε, t ∈ (, T) with K a positive real constant. We say that equation (.) is
Hyers-Ulam stable on (, T) in the mean square.

To consider the integration of the stochastic process, we use the Ito formula as follows.

Lemma . ([]) Suppose dXt = Ut dt + Vt dBt , where the vector U = (U, . . . , Um) and
the matrix V = (V, . . . , Vm) have L components and B is the vector of m independent
Brownian motions. Let F be a twice continuously differentiable function from R

m into R.
Then Yt = F(Xt) is also an Ito process and

dYt =
m∑

i=

∂F
∂xi

(Xt) dXi,t +



m∑

i,j=

∂F
∂xixj

(Xt) dXi,t · dXj,t ,

where dXi,t · dXj,t is computed by using the rules dt dt = dt dBi,t = dBi,t dt = , dBi,t dBj,t = 
for i 	= j and (dBi,t) = dt.
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Let m = , F(Xt) = X,tX,t , then from Lemma ., we see

dF(Xt) = dX,tX,t = X,t dX,t + X,t dX,t + dX,t dX,t

and

X,tX,t = X,X, +
∫ t


(X,s dX,s + X,s dX,s + dX,s dX,s).

3 Hyers-Ulam stability of (1.1)
In this section, we establish some criteria of the Hyers-Ulam stability of equation (.), by
using the Ito formula.

Theorem . Let Yt be an Ito process, a, f , h ∈L[, T],

dg(t, Yt) = dYt – (atYt + ft) dt – ht dBt , (.)

assume that Yt satisfies E(g(t, Yt)) ≤ ε, for t ∈ (, T), ε ≥ . Then there exists a solution Xt

of equation (.) such that X = Y, E(Xt – Yt) ≤ Mε with

M =  max
≤t≤T

(
 + e

∫ t
 as ds).

That means equation (.) is Hyers-Ulam stable in the mean square on the interval (, T).

Proof Multiplying two sides of (.) by the function e–
∫ t

 as ds, we obtain

e–
∫ t

 as ds(dg(t, Yt) + ft dt + ht dBt
)

= e–
∫ t

 as ds(dYt – aYt dt). (.)

Applying Lemma ., we have

d
(
e–

∫ t
 as dsYt

)
= Yt de–

∫ t
 as ds + e–

∫ t
 as ds dYt + de–

∫ t
 as ds dYt

= e–
∫ t

 as ds(dYt – atYt dt).

From (.), we have

e–
∫ t

 as ds(dg(t, Yt) + ft dt + ht dBt
)

= e–
∫ t

 as ds(dYt – atYt dt) = d
(
e–

∫ t
 as dsYt

)
. (.)

Integrating the two sides of (.) from  to t and multiplying the two sides of (.) by the
function e

∫ t
 as ds, we get

e
∫ t

 as dsY + e
∫ t

 as ds
∫ t


e–

∫ s
 aτ dτ (fs ds + hs dBs) + e

∫ t
 as ds

∫ t


e–

∫ s
 aτ dτ dg(s, Ys) = Yt . (.)

Define

Xt := e
∫ t

 as dsY + e
∫ t

 as ds
∫ t


e–

∫ s
 aτ dτ (fs ds + hs dBs),
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then we have X = Y and

dXt = Yate
∫ t

 as ds dt +
(∫ t


e–

∫ s
 aτ dτ (fs ds + hs dBs)

)
de

∫ t
 as ds

+ e
∫ t

 as ds d
∫ t


e–

∫ s
 aτ dτ (fs ds + hs dBs)

+ de
∫ t

 asdsd
∫ t


e–

∫ s
 aτ dτ (fs ds + hs dBs)

= (atXt + ft) dt + ht dBt .

Hence Xt is a solution of equation (.). We rewrite (.) as

Xt – Yt = –e
∫ t

 as ds
∫ t


e–

∫ s
 aτ dτ dg(s, Ys). (.)

Applying Lemma ., we have

∫ t


e–

∫ s
 aτ dτ dg(s, Ys) = e–

∫ t
 as dsg(t, Yt) – g(, Y) +

∫ t


g(s, Ys) de–

∫ s
 aτ dτ , (.)

where
∫ t

 g(s, Ys) de–
∫ s

 aτ dτ is a Stieltjes integral. Taking expectations on the two sides of
(.), we see

E(Xt – Yt) ≤
(

 + e
∫ t

 as ds +
∣∣
∣∣e

∫ t
 as ds

∫ t


ase–

∫ s
 aτ dτ ds

∣∣
∣∣

)

ε ≤ 
(
 + e

∫ t
 as ds)

ε ≤ Mε

on the interval [, T] by (.). Hence equation (.) is Hyers-Ulam stable in the mean
square on the interval [, T]. The proof is completed. �

4 Hyers-Ulam stability of (1.2)
First of all, we consider the Hyers-Ulam stability of equation (.) by using the substitution
method for a special case. We assume that bt and ct are both constant functions and write
b and c instead of bt and ct .

Theorem . Let Y ′
t be an Ito process,

dG(t, Yt) = dY ′
t –

(
bY ′

t + cYt + rt
)

dt – kt dBt . (.)

Assume that E(G(t, Yt)) ≤ ε for t ∈ (, T), ε ≥ . Then there exists a solution Xt of equation
(.) such that

E(Xt – Yt) ≤ Mε, t ∈ (, T),

with

X = Y, X ′
 = Y ′

,

M =
(
 +

(
 + |b|)θ + |c|( + |b|)Tθ +

(
 + |b|)(b + c + |b|)Tθ),
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θ =
e

T(|b|+
√

b+c)
√

b + c
max

{
, |b| +

√
b + c

}
when b + c > ;

θ =
e

T |b|
√

b + c
max{,

√
–c} when b + c < ;

θ = e
T |b|

 max

{ |b|


,
∣
∣∣
∣ –

b



∣
∣∣
∣

}
when b + c = .

That means equation (.) is Hyers-Ulam stable in the mean square on the interval [, T].

Proof Let

Zt =

(
Xt

Ẋt

)

, Ut =

(
Yt

Ẏt

)

, A =

(
 
c b

)

, B =

(



)

,

then (.) can be rewritten as

dZt = (AZt + Brt) dt + Bkt dBt . (.)

We write

B dG(t, Yt) = dUt – (AUt + Brt) dt – Bkt dBt (.)

instead of (.). Multiplying two sides of (.) by the matrix function e–At , we get

e–AtB dG(t, Yt) = e–At(dUt – AUt) – e–At(Brt dt + Bkt dBt). (.)

Since Y ′
t is an Ito process, without loss of generality, we can define

dY ′
t := Uẏ

t dt + V ẏ
t dBt .

By computing, we have

dYt =
(∫ t


Uẏ

s ds
)

dt +
(∫ t


V ẏ

s dBs

)
dt.

By Lemma ., we see dt dUt = dt(dY ′
t , dYt) = . Hence

de–AtUt =
(
de–At)Ut + e–At(dUt) + de–At dUt

= e–At(dUt – AUt dt).

From (.), we have

e–AtB dG(t, Yt) = de–AtUt – e–At(Brt dt + Bkt dBt). (.)

Integrating two sides of (.) from  to t and multiplying (.) by the matrix function eAt ,
we see

eAtU + eAt
∫ t


e–As(Brs ds + Bks dBs) = Ut – eAt

∫ t


e–AsB dG(s, Ys). (.)
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Define

Zt := eAtU + eAt
∫ t


e–As(Brs ds + Bks dBs).

Then we have

dZt = AeAtU dt + Brt dt + Bkt dBt + AeAt dt
∫ t


e–As(Brs ds + Bks dBs)

+ deAt d
∫ t


e–As(Brs ds + Bks dBs)

= (AZt + Brt) dt + Bkt dBt .

Therefore Zt = (Xt , X ′
t)T is a solution of (.), that is, Xt is a solution of (.) with X = Y,

X ′
 = Y ′

. We rewrite (.) as

Zt – Ut = –eAt
∫ t


e–AsB dG(s, Ys). (.)

Similar to Theorem ., by Lemma ., we have

∫ t


e–AsB dG(s, Ys) = e–AtBG(t, Yt) – BG(, Y) +

∫ t


Ae–AsBG(s, Ys) ds. (.)

By (.) and (.), we have

Zt – Ut = –BG(t, Ut) + eAtBG(, Y) – eAt
∫ t


Ae–AsBG(s, Ys) ds. (.)

Assume

eAt = α(t)A + β(t)E (.)

with E the identity matrix. Hence

eAt = α(t)A + β(t)E =

(
β(t) α(t)
α(t)c α(t)b + β(t)

)

, (.)

eAtB =
(
α(t)A + β(t)E

)
B =

(
α(t)

α(t)b + β(t)

)

, (.)

∫ t


Ae–AsBG(s, Ys) ds =

( ∫ t
 (α(–s)b + β(–s))G(s, Ys) ds

∫ t
 (α(–s)(b + c) + β(–s)b)G(s, Ys) ds

)

. (.)

By (.), (.), (.), (.), (.), (.), we have

(Xt – Yt) =
(

–G(t, Yt) +
(
α(t)b + β(t)

)
G(, Y) + α(t)c

∫ t



(
α(–s)b + β(–s)

)
G(s, Ys) ds

+
(
α(t)b + β(t)

)∫ t



(
α(–s)

(
b + c

)
+ β(–s)b

)
G(s, Ys) ds

)

. (.)
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We consider three possibilities for computing α(t), β(t).
(i) If b + c > , we see that

λ =
b +

√
b + c


, λ =
b –

√
b + c


are different real eigenvalues of the matrix A. By (.), we have

{
eλt = α(t)λ + β(t),
eλt = α(t)λ + β(t).

Hence

α(t) =
e b

 t(e t
√

b+c
 – e– t

√
b+c
 )√

b + c
,

β(t) =
( b+

√
b+c
 )e( b–

√
b+c
 )t – ( b–

√
b+c
 )e( b+

√
b+c
 )t

√
b + c

.

(ii) If b + c < , we see that

λ =
b + i

√|b + c|


, λ =
b – i

√|b + c|


,

are two different complex eigenvalues. By (.), we have

⎧
⎨

⎩
eλt = e b

 t(cos t
√

|b+c|
 + i sin t

√
|b+c|

 ) = α(t)λ + β(t),

eλt = e b
 t(cos t

√
|b+c|

 – i sin t
√

|b+c|
 ) = α(t)λ + β(t).

Hence

α(t) =
e b

 t sin( t
√

|b+c|
 )

√|b + c| ,

β(t) =
e b

 t(
√

|b+c|
 cos t

√
|b+c|

 – b
 sin t

√
|b+c|

 )
√|b + c| .

(iii) If b + c = , we see that λ = λ = b
 . By (.), we have

{
eλt = α(t)λ + β(t),
λeλt = α(t).

Hence

α(t) =
b


e
b
 t , β(t) =

(
 –

b



)
e

b
 t .

Taking expectations on the two sides of (.), we have

E(Xt – Yt) ≤ (
 +

(
 + |b|)θ + |c|( + |b|)Tθ +

(
 + |b|)(b + c + |b|)Tθ)

ε = Mε
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with

θ =
e

T(|b|+
√

b+c)
√

b + c
max

{
, |b| +

√
b + c

}
when b + c > ;

θ =
e

T |b|
√

b + c
max{,

√
–c} when b + c > ;

θ = e
T |b|

 max

{ |b|


,
∣∣
∣∣ –

b



∣∣
∣∣

}
when b + c = .

Hence equation (.) is Hyers-Ulam stable in the mean square on the interval [, T]. The
proof is completed. �

Since matrix multiplication is, in general, not commutative, Theorem . is not suitable
for equation (.), when bt is not a constant function or ct is not a constant function. Now,
we consider equation (.) by the solutions of two deterministic boundary value problems.

Let u and v be the solutions of the boundary value problems

{
x′′

t – btx′
t – ctxt = , t ∈ (, T),

u = , uT = ,
(.)

and

{
x′′

t – btx′
t – ctxt = , t ∈ (, T),

u = , uT = ,
(.)

respectively. Define

p := e–
∫ t

 bs ds, ρ := u′
,

�t,s =

{
u′

svt ,  ≤ s ≤ t ≤ T ,
utv′

s,  ≤ t ≤ s ≤ T .
(.)

Lemma . Let X ′
t be an Ito process, Bt is a standard one-dimensional Brownian motion.

Assume that p, b, c ∈ L[, T], then

Xt =

ρ

∫ t



(
�t,s

∫ s


pτ

(
dX ′

τ –
(
bτ X ′

τ + cτ Xτ

)
dτ

))
ds + vtX + utXT .

Proof Let

Ys =
∫ s


pτ

(
dX ′

τ –
(
bτ X ′

τ + cτ Xτ

)
dτ

)
.

By Lemma ., we have

Ys =
∫ s



(
pτ dX ′

τ +X ′
τ dpτ +dX ′

τ dpτ

)
–

∫ s


pτ cτ Xτ dτ = psX ′

s –X ′
 –

∫ s


pτ cτ Xτ dτ . (.)
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Multiplying by the function u′
s, integrating two sides of (.) from  to t, we see

∫ t


u′

sYs ds = u′
tptXt – u′

X ′
 –

∫ t


ps

(
u′′

s – bsu′
s
)
Xs ds –

∫ t


d
(
u′

sps
)

dX ′
s – utX ′



– ut

∫ t


pscsXs ds +

∫ t


uspscsXs ds +

∫ t


du′

s d
∫ s


pτ cτ Xτ dτ

= u′
tptXt – u′

X – utX ′
 – ut

∫ t


pscsXs ds.

Similarly, multiplying by the function v′
s, integrating two sides of (.) from t to T , we see

∫ T

t
v′

sYs ds = –v′
tptXt + v′

T pT XT + vtX ′
 + vt

∫ t


pscsYs ds.

Therefore, by Abel’s differential equation identity, we have


ρ

∫ T


�t,sYs ds =


u′



(
u′

tvt – utv′
t
)
ptXt –


u′



(
vtu′

X – utv′
T pT XT

)

= –


u′


∣∣
∣∣
∣
ut vt

u′
t v′

t

∣∣
∣∣
∣
ptXt – vtX – utXT = –


u′



∣∣
∣∣
∣
u v

u′
 v′



∣∣
∣∣
∣
Xt – vtX – utXT

= Xt – vtX – utXT .

That is,

Xt =

ρ

∫ T



(
�t,s

∫ s


pτ

(
dX ′

τ –
(
bτ X ′

τ + cτ Xτ

)
dτ

)
)

ds + vtX + utXT .

The proof is completed. �

Lemma . Let Bt is a standard one-dimensional Brownian motion. C, D are two stochas-
tic variables. Assume that p, r, k ∈ L[, T], then the stochastic process

Xt =

ρ

∫ T



(
�t,s

∫ t


ps(rs dt + ks dBs)

)
ds + vtC + utD,  < t < T (.)

is a solution of equation (.) such that X = C, X(T) = D.

Proof By Lemma ., we obtain

d
∫ t



(
�t,s

∫ t


ps(rs dt + ks dBs)

)
ds

= v′
t dt

∫ t



(
u′

s

∫ s


pτ (gτ dτ + kτ dBτ )

)
ds + u′

tvt

(∫ t


ps(rs dτ + ks dBs)

)
dt

+ dvt d
∫ t



(
u′

s

∫ s


pτ (gτ dτ + kτ dBτ ) ds

)

= v′
t dt

∫ t



(
u′

s

∫ s


pτ (gτ dτ + kτ dBτ )

)
ds + u′

tvt

(∫ t


ps(rs ds + ks dBs)

)
dt,
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d
∫ t


�t,s

(∫ t


ps(rs dt + ks dBs) ds

)′

= v′′
t dt

∫ t



(
u′

s

∫ s


pτ (gτ dτ + kτ dBτ )

)
ds + u′

tv
′
t

(∫ t


ps(rs dτ + ks dBs)

)
dt

+ dv′
t d

∫ t



(
u′

s

∫ s


pτ (rτ dτ + kτ dBτ )

)
ds +

(
u′

tv
′
t + u′′

t vt
)

dt
∫ t


ps(rsds + ksdBs)

+ u′
tvtpt

(
α(t) dt + kt dBt

)
+ d

(
u′

tvt
)

d
(∫ t


ps(rs ds + ks dBs)

)

= v′′
t dt

∫ t



(
u′

s

∫ s


pτ (rτ dτ + kτ dBτ )

)
ds + u′

tv
′
t

(∫ t


ps(rs dτ + ks dBs)

)
dt

+
(
u′

tv
′
t + u′′

t vt
)

dt
∫ t


ps(rs ds + ks dBs) + u′

tvtpt
(
α(t) dt + ht dBt

)
.

Similarly, we have

d
∫ T

t

(
�t,s

∫ t


ps(rs dt + ks dBs)

)
ds

= u′
t dt

∫ T

t

(
v′

s

∫ s


pτ (rτ dτ + kτ dBτ )

)
ds – utv′

t

(∫ t


ps(rs ds + ks dBs)

)
dt,

d
∫ T

t
�t,s

(∫ t


ps(rs dt + ks dBs) ds

)′

= u′′
t dt

∫ T

t

(
v′

s

∫ s


pτ (rτ dτ + kτ dBτ )

)
ds – u′

tv
′
t

(∫ t


ps(rs dτ + ks dBs)

)
dt

–
(
u′

tv
′
t + utv′′

t
)

dt
∫ t


ps(rτ dτ + kτ dBτ ) – utv′

tpt
(
α(t) dt + kt dBt

)
.

Hence, by Abel’s differential equation identity, we have

dX ′
t –

(
btX ′

t + ctXt
)

dt =

ρ

(
u′

tvt – utv′
t
)
pt(rt dt + kt dBt)

+

ρ

(
vt

(
u′′

t – btu′
t
)

– ut
(
v′′

t – btv′
t
))

dt
∫ t


ps(rτ dτ + kτ dBτ )

+ C
(
u′′

t – btu′
t – ctu′

t
)

dt

+ D
(
v′′

t – btv′
t – ctv′

t
)

dt

= –

ρ

∣
∣∣
∣∣
ut vt

u′
t v′

t

∣
∣∣
∣∣
pt(rt dt + kt dBt)

+

ρ

(ctutvt – ctutvt) dt
∫ t


ps(rτ dτ + kτ dBτ )

= –

ρ

∣∣∣
∣∣
u v

u′
 v′



∣∣∣
∣∣
e
∫ t

 bs dspt(rt dt + kt dBt)

= rt dt + kt dBt .

Therefore (.) is a solution of equation (.). �
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Theorem . Let Y ′
t be an Ito process,

dG(t, Yt) = dY ′
t –

(
btY ′

t + ctYt + rt
)

dt – kt dBt . (.)

Assume that E(G(t, Yt)) ≤ ε for t ∈ (, T), ε ≥ , b, c, r, k ∈ L(, T). Then there exists a
solution Xt of equation (.) such that

E(Xt – Yt) ≤ Mε, t ∈ (, T),

with

X = Y, XT = YT ,

M =

ρ max

t∈[,T]

{(∫ T


|�t,s|(ps + ) ds

)}
.

That means equation (.) is Hyers-Ulam stable in the mean square on the interval (, T).

Proof By Lemma ., we have

Yt =

ρ

∫ T



(
�t,s

∫ s


pτ

(
dY ′

t –
(
btY ′

t dt + ctYt dt
)))

ds – vtY – utYT . (.)

Let

Xt =

ρ

∫ T



(
�t,s

∫ s


pτ (rτ dτ + kτ dBτ )

)
ds + vtY + utYT , (.)

by Lemma ., we obtain Xt as a solution of equation (.) such that X = Y, XT = YT . By
(.), (.), (.), we get


ρ

∫ T



(
�t,s

∫ s


pτ dG(τ , Yτ )

)
ds = Yt – Xt . (.)

By computing, we have
∫ s


pτ dG(τ , Yτ ) = psG(s, Ys) – G(, Y) –

∫ s


pτ bτ G(τ , Yτ ) dτ . (.)

Taking expectations on the two sides of (.), we have

E(Yt – Yt) = E
(


ρ

∫ T



(
�t,s

(
psG(s, Ys) – G(, Y) –

∫ s


pτ bτ G(τ , Yτ ) dτ

))
ds

)

≤ 
ρ

(∫ T


|�t,s|

(
ps +  +

∣∣
∣∣

∫ s


pτ bτ dτ

∣∣
∣∣

)
ds

)

ε

≤ 
ρ

(∫ T


|�t,s|(ps + ) ds

)

ε

≤ Mε

by (.). Hence equation (.) is Hyers-Ulam stable in the mean square on the interval
[, T]. The proof is completed. �
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