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1 Introduction and main results
The discrete nonlinear Schrödinger equation is one of the most important discrete mod-
els, which plays an important role in many fields; for example, in biomolecular chains [],
nonlinear optics [], Bose-Einstein condensates [], and so on. In recent decades, a lot
of results have been achieved in the study of homoclinic solutions for periodic discrete
nonlinear Schrödinger equations; see [–], and so on. But we notice that there are only
a few results of non-periodic discrete nonlinear Schrödinger equations, such as [–].
The authors of [, , , ] studied the case in infinite one dimensional lattices (i.e.,
n ∈ Z), but the authors of [, , , , ] studied the case in infinite m dimensional
lattices (i.e., n ∈ Zm).

Inspired by the above results, we will study homoclinic solutions of the following non-
periodic discrete nonlinear equation in infinite m dimensional lattices by more general
conditions than some existing results:

–�un + vnun – ωun = fn(un), n ∈ Zm, (.)

where

�un = u(n+,n,...,nm) + u(n,n+,...,nm) + · · · + u(n,n,...,nm+) – mu(n,n,...,nm)

+ u(n–,n,...,nm) + u(n,n–,...,nm) + u(n,n,...,nm–)

is the discrete Laplace operator in m dimensional space, ω ∈ R, V = {vn}n∈Zm , and {un}n∈Zm

are sequences of real numbers, and the nonlinearities fn satisfy the condition:

fn
(
eiωs

)
= eiωfn(s), ∀ω ∈ R,∀(n, s) ∈ Zm × R.
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As usual, homoclinic solutions of equation (.) satisfy the following boundary condition:

lim|n|=|n|+|n|+···+|nm|→∞ un = . (.)

Here we are interested in the existence of infinitely many nontrivial homoclinic solutions
for (.) (‘u is nontrivial’ means un �≡ ). The problem (.) comes from the study of stand-
ing waves for the discrete nonlinear Schrödinger equation

iψ̇n = –�ψn + vnψn – fn(ψn), n ∈ Zm. (.)

By the definition of standing waves (ψn = une–iωt with (.)), we see that (.) becomes
(.). Therefore, the problem of the existence of standing waves of (.) has been reduced
to that on the existence of homoclinic solutions of (.).

In order to overcome the difficulties caused by the unboundedness of Zm and the lack
of periodic conditions, we make some suitable assumptions and get the following result.

Theorem . The problem (.) has infinitely many nontrivial homoclinic solutions if
fn(–s) = –fn(s) for all (n, s) ∈ Zm × R and the following conditions hold:

(V) V = {vn}n∈Zm is bounded from below and satisfies

lim|n|→+∞ vn = +∞. (.)

(F) fn ∈ C(R, R), fn(s) = o(s) as s → , and there exist a >  and ν >  such that

∣
∣fn(s)

∣
∣ ≤ a

(
 + |s|ν–), ∀(n, s) ∈ Zm × R.

(F) lim|s|→+∞ Fn(s)
|s| = +∞, ∀n ∈ Zm, where Fn(s) :=

∫ s
 fn(t) dt, (n, s) ∈ Zm × R.

(F) There exist two positive constants b and � > max{,ν – } such that

lim inf|s|→+∞
fn(s)s – Fn(s)

|s|� ≥ b, ∀n ∈ Zm.

(F) 
 fn(s)s > Fn(s) if s �= , Fn(s) ≥ , ∀(n, s) ∈ Zm × R, and

lim inf|s|→

fn(s)s – Fn(s)
|s|ι ≥ a for some a >  and ι ∈ [,ν],∀n ∈ Zm.

To explain the rationality of the assumptions for the nonlinear terms fn, we give the
following example. It is easy to check that the functions given in the following example
satisfy our assumptions.

Example . Let

Fn(s) = an
(|s|p + (p – )|s|p–ε sin(|s|ε/ε

))
, s ∈ R,

where an ≥ C >  for all n ∈ Zm, p > , and  < ε < p – . Note that

fn(s)s – Fn(s) = (p – )an
[
(p –  – ε)|s|p–ε sin(|s|ε/ε

)
+

(
 + sin

(
|s|ε/ε

))|s|p].
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Remark . Our result extends some results [, , , , ] in infinite m dimensional
lattices.

() The results [, , , ] are all about the positive definite case
(ω < infσ (–� + V )), but the temporal frequency ω ∈ R in our paper.

() The authors of [, , , ] all used the conditions (V), (F), and (F). Besides, the
authors of [, ] also used the following monotony condition:

fn(s)
s

is increasing for s >  and decreasing for s < . (.)

The authors [, ] also used the following Ambrosetti-Rabinowitz superlinear
condition: there exists ν >  such that

 < νFn(s) ≤ fn(s)s, ∀s ∈ R\{}. (.)

But we use local conditions (F) and (F) to replace the conditions (.) and (.).
The functions of Example . satisfy our conditions (F)-(F), but they do not satisfy
(.) and (.), which shows that our conditions are weaker than the above
conditions.

() The results in [] also rely on the monotony condition (.).

In Section , we establish the variational framework of (.) and give some preliminary
lemmas. In Section , we give the detailed proof of our main result.

2 Preliminary lemmas
Let

lp ≡ lp(Zm)
:=

{
u = {un} : n ∈ Zm, un ∈ R,‖u‖lp =

( ∑

n∈Zm

|un|p
)/p

< ∞
}

,

p ∈ [, +∞),

be real sequence spaces. Clearly, the following elementary embedding relations hold:

lp ⊂ lq, ‖u‖lq ≤ ‖u‖lp ,  ≤ p ≤ q ≤ ∞, where ‖u‖l∞ := max
n∈Zm

|un|.

Let L := –� + V be defined by Lun := –�un + vnun for u ∈ l. Let E be the form domain
of L, i.e., E := D(L/) (the domain of L/). Under our assumptions, the operator L is an
unbounded self-adjoint operator in l. Since the operator –� is bounded in l, it is easy to
see that E = {u ∈ l : V /u ∈ l}, where V /u is defined by V /un := v/

n un for u ∈ l. We
define, respectively, on E the inner product and norm by

(u, v)E := (u, v)l +
(
L/u, L/v

)
l and ‖u‖E = (u, u)/

E ,

where (u, v)l is the inner product in l. Then E is a Hilbert space.

Lemma . ([]) If (.) holds, then we have:
() The embedding maps from E into lp are compact, ∀p ∈ [,∞].
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() The spectrum σ (L) is discrete and consists of simple eigenvalues accumulating to
+∞.

By Lemma .(), we can assume that

λ – ω < λ – ω < · · · < λk – ω < · · · → +∞

are all eigenvalues of L – ω and ek is the associated normalized eigenfunction with the
eigenvalue λk –ω for each k, i.e., (L–ω)ek = (λk –ω)ek and ‖ek‖l = , k = , , . . . . Moreover,
{ek : k = , , . . .} is an orthonormal basis of l. Let �(D) denote the number i with i ∈ D. Let

k := �
({i : λi – ω < }), k := �

({i : λi – ω = }), k := k + k, (.)

and

E– := span{e, . . . , ek}, E := span{ek+, . . . , ek}, E+ := span{ek+, . . .},

where the closure is taken with respect to the norm ‖ · ‖E . Then one has the orthogonal
decomposition

E = E– ⊕ E ⊕ E+

with respect to the inner product (·, ·)E . Now, we introduce, respectively, on E the following
inner product and norm:

(u, v) :=
(
u, v)

l +
(
L


 u, L


 v

)
l , ‖u‖ = (u, u)


 ,

where u, v ∈ E = E– ⊕ E ⊕ E+ with u = u– + u + u+ and v = v– + v + v+. Clearly, the norms
‖ · ‖ and ‖ · ‖E are equivalent, and the decomposition E = E– ⊕ E ⊕ E+ is also orthogonal
with respect to both inner products (·, ·) and (·, ·)l .

From the above arguments, we consider the functional � on E defined by

�(u) =


(
(L – ω)u, u

)
l –

∑

n∈Zm

Fn(un)

=


∥
∥u+∥

∥ –


∥
∥u–∥

∥ – I(u),

where I(u) :=
∑

n∈Zm Fn(un). Under our assumptions, I,� ∈ C(E, R), and the derivatives
are given by

〈
�′(u), v

〉
=

(
u+, v+)

–
(
u–, v–)

–
〈
I ′(u), v

〉
,

〈
I ′(u), v

〉
=

∑

n∈Zm

fn(un)vn,

where u, v ∈ E = E– ⊕ E ⊕ E+ with u = u– + u + u+ and v = v– + v + v+. The standard
argument shows that nonzero critical points of � are nontrivial solutions of (.). We shall
use the following critical point theorem to prove our main result.
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Lemma . ([]) Let E =
⊕∞

j= Xj (dim Xj < ∞,∀j ∈ N) be a Banach space with the norm
‖ · ‖, Yk =

⊕k
j= Xj, and Zk =

⊕∞
j=k Xj. Let the functional �λ = A(u) – λB(u) ∈ C : E → R,

λ ∈ [, ]. Assume that �λ satisfies

(F) �λ maps bounded sets to bounded sets for λ ∈ [, ], and �λ(–u) = �λ(u), ∀(λ, u) ∈
[, ] × E.

(F) B(u) ≥ , ∀u ∈ E, A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞.
(F) There exist rk > ρk >  such that

αk(λ) := inf
u∈Zk ,‖u‖=ρk

�λ(u) > βk(λ) := max
u∈Yk ,‖u‖=rk

�λ(u), ∀λ ∈ [, ].

Then

αk(λ) ≤ ζk(λ) := inf
γ∈�k

max
u∈Bk

�λ

(
γ (u)

)
, ∀λ ∈ [, ],

where Bk := {u ∈ Yk : ‖u‖ ≤ rk} and �k := {γ ∈ C(Bk , E)|γ is odd,γ |∂Bk = id}. Moreover, for
a.e. λ ∈ [, ], there exists a sequence {ukm(λ)}∞m= such that

sup
m

∥∥ukm(λ)
∥∥ < ∞, �′

λ

(
ukm(λ)

)
=  and �λ

(
ukm(λ)

) → ζk(λ) as m → ∞.

Note that dim E and dim E– are finite, we choose an orthonormal basis {ej}k
j= of E–,

an orthonormal basis {ej}k
j=k+ of E, and an orthonormal basis {ej}∞j=k+ of E+, where k

and k are defined in (.). Then {ej}∞j= is an orthonormal basis of E. Let Xj := Rej, then
Yk =

⊕k
m= Xm = span{e, . . . , ek} and Zk =

⊕∞
m=k Xm = span{ek , . . .} for all k ∈ N . In order to

apply Lemma . to prove our main result, we define the functionals A, B, and �λ on E by

A(u) =


∥
∥u+∥

∥, B(u) =


∥
∥u–∥

∥ +
∑

n∈Zm

Fn(un)

and

�λ(u) = A(u) – λB(u) =


∥
∥u+∥

∥ – λ

(


∥
∥u–∥

∥ +
∑

n∈Zm

Fn(un)
)

, ∀u ∈ E,∀λ ∈ [, ].

Clearly, �λ ∈ C(E, R), ∀λ ∈ [, ].

Lemma . If (F) holds, then (F) in Lemma . holds.

Proof Obviously, B(u) ≥  for all u ∈ E by (F) and the definition of B(u). From the Fact 
in the Appendix, we see that there is a constant ε >  such that

�
({

n ∈ Zm : |un| ≥ ε‖u‖}) ≥ , ∀u ∈ H\{}, (.)

for any finite-dimensional subspace H ⊂ E. Let �u := {n ∈ Zm : |un| ≥ ε‖u‖}, ∀u ∈ H\{}.
Then by (.),

�(�u) ≥ , ∀u ∈ H\{}. (.)
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(F) implies that there are R, R >  such that

Fn(s) ≥ R|s|, ∀(n, s) ∈ Zm × R with |s| ≥ R. (.)

For any u ∈ H with ‖u‖ ≥ R/ε, we have

|un| ≥ R, ∀n ∈ �u. (.)

Note that Fn(s) ≥  for all (n, s) ∈ Zm × R, it follows from (.)-(.) and the definitions of
B(u) and �u that, for any u ∈ H with ‖u‖ ≥ R/ε,

B(u) =


∥∥u–∥∥ +

∑

n∈Zm

Fn(un)

≥
∑

n∈�u

Fn(un)

≥
∑

n∈�u

R|un|

≥ Rε
‖u‖ · �(�u) ≥ Rε

‖u‖.

It implies

B(u) → ∞ as ‖u‖ → ∞ on E– ⊕ E,

which is due to E– ⊕E being of finite dimension. It follows from the fact E = E– ⊕E ⊕E+

and the definitions of A and B that we have

A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞,∀u ∈ E.

The proof is completed. �

Lemma . If the assumptions in Theorem . are satisfied, then (F) in Lemma . holds.

Proof (a) Note that (F) implies that for any ε >  there exists Cε such that

∣
∣Fn(s)

∣
∣ ≤ ε|s| + Cε|s|ν , ∀(n, s) ∈ Zm × R.

It follows from the definition of �λ that

�λ(u) ≥ 

‖u‖ – 

∑

n∈Zm

Fn(un)

≥ 

‖u‖ – 

∑

n∈Zm

(
ε
∣∣un

∣∣+Cε

∣∣un
∣∣ν), ∀(λ, u) ∈ [, ] × E+. (.)

Let

l(k) := sup
u∈Zk\{}

‖u‖l

‖u‖ , lν(k) := sup
u∈Zk\{}

‖u‖lν

‖u‖ , ∀k ∈ N . (.)
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Note that

l(k) → , lν(k) →  as k → ∞, (.)

which will be proved in the appendix. Obviously, Zk ⊂ E+ for all k ≥ k +  (k +  is defined
above Lemma .), thus it follows from (.)-(.) that for any k ≥ k +  we have

�λ(u) ≥ 

‖u‖ – εl

(k)‖u‖ – Cεlνν (k)‖u‖ν , ∀(λ, u) ∈ [, ] × Zk . (.)

Let

ρk :=
(
 – εl

(k)
)(

Cεlνν (k)
) 

–ν . (.)

By (.), there exists a large enough k > k +  such that

 < εl
(k) < , ∀k > k. (.)

By (.), (.), (.), and ν > , we have

ρk → ∞ as k → ∞. (.)

By (.)-(.), we have

αk(λ) := inf
u∈Zk ,‖u‖=ρk

�λ(u) ≥ ρ
k / > , ∀k ≥ k.

(b) Note that Yk is of finite dimension, thus (.) implies that for any k ∈ N there exists
a constant εk >  such that

�
({

n ∈ Zm : |un| ≥ εk‖u‖}) ≥ , ∀u ∈ Yk\{}. (.)

By (F), for any k ∈ N , there exists a constant Sk >  such that

Fn(s) ≥ |s|
ε

k
, ∀(n, s) ∈ Zm × R with |s| ≥ Sk . (.)

For any k ∈ N and u ∈ Yk with ‖u‖ ≥ Sk/εk , by (.), (.), and the fact Fn(s) ≥ , we have

�λ(u) ≤ 

∥∥u+∥∥ –

∑

n∈Zm

Fn(un)

≤ 

‖u‖ –

∑

n∈{n∈Zm :|un|≥εk‖u‖}

|un|
ε

k

≤ 

‖u‖ –

ε
k ‖u‖

ε
k

· �({n ∈ Zm : |un| ≥ ε‖u‖})

≤ 

‖u‖ – ‖u‖ = –



‖u‖, ∀λ ∈ [, ]. (.)
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Now for any k ∈ N , if we choose

rk > max{ρk , Sk/εk},

then (.) implies that

βk(λ) := max
u∈Yk ,‖u‖=rk

�λ(u) ≤ –r
k / < , ∀k ∈ N .

Therefore, the proof is finished. �

3 Proof of the main result

Proof of Theorem . It is easy to check that (F) of Lemma . holds. Besides, (F) and (F)
hold for all k ≥ k by Lemmas . and .. Thus Lemma . implies that for any k ≥ k and
a.e. λ ∈ [, ] there exists a sequence {uk

i (λ)}∞i= ⊂ E such that

sup
i

∥
∥uk

i (λ)
∥
∥ < ∞, �′

λ

(
uk

i (λ)
)

=  and �λ

(
uk

i (λ)
) → ζk(λ) as i → ∞, (.)

where

ζk(λ) := inf
γ∈�k

max
u∈Bk

�λ

(
γ (u)

)
, ∀λ ∈ [, ],

with Bk := {u ∈ Yk : ‖u‖ ≤ rk} and �k := {γ ∈ C(Bk , E)|γ is odd,γ |∂Bk = id}. Furthermore, it
follows from the proof of Lemma . that

ζk(λ) ∈ [αk , ζ k], ∀k ≥ k, (.)

where ζ k := maxu∈Bk �(u) and αk := ρ
k / → ∞ as k → ∞ by (.). By (.), for each

k ≥ k, there exist λj →  as j → ∞ and {uk
i (λj)}∞i= ⊂ E such that

sup
i

∥
∥uk

i (λj)
∥
∥ < ∞, �′

λj

(
uk

i (λj)
)

=  and �λj

(
uk

i (λj)
) → ζk(λj)

as i → ∞. (.)

Claim  {uk
i (λj)}∞i= in (.) has a strong convergent subsequence.

Proof Note that supi ‖uk
i (λj)‖ < ∞ for each k ≥ k, without loss of generality, we may as-

sume

(
uk

i (λj)
)– → (

uk
j
)–,

(
uk

i (λj)
) → (

uk
j
) and

(
uk

i (λj)
)+

⇀
(
uk

j
)+

as i → ∞,∀j ∈ N ,
(.)

for some uk
j = (uk

j )– + (uk
j ) + (uk

j )+ ∈ E = E– + E + E+ since dim(E– ⊕ E) < ∞. By virtue
of the Riesz representation theorem, �′

λj
: E → E∗ and I ′ : E → E∗ can be viewed as �′

λj
:



Jia and Chen Advances in Difference Equations  (2016) 2016:275 Page 9 of 14

E → E and I ′ : E → E, respectively, where E∗ is the dual space of E. Note that (.) implies
that for each k ≥ k

 = �′
λj

(
uk

i (λj)
)

=
(
uk

i (λj)
)+ – λj

[(
uk

i (λj)
)– + I ′(uk

i (λj)
)]

, ∀i, j ∈ N ,

that is,

(
uk

i (λj)
)+ = λj

[(
uk

i (λj)
)– + I ′(uk

i (λj)
)]

, ∀i, j ∈ N . (.)

By the standard argument (see [, ]), we know I ′ : E → E∗ is compact. Therefore, I ′ :
E → E is also compact. It follows from (.) and (.) that the right-hand side of (.)
converges strongly in E. Combining this with (.), we have

lim
i→∞ uk

i (λj) = uk
j ∈ E, ∀j ∈ N and k ≥ k. (.)

So Claim  is true. �

By (.), (.), and (.), we have

�′
λj

(
uk

j
)

=  and �λj

(
uk

j
) ∈ [αk , ζ k], ∀j ∈ N and k ≥ k. (.)

In fact, we can see {uk
j }∞j= is bounded in E, which will be proved in the appendix. Besides,

by a similar proof to Claim , we can also see that {uk
j }∞j= possesses a strong convergent

subsequence in E for all k ≥ k. Without loss of generality, we may assume

uk
j → uk as j → ∞,∀k ≥ k.

For each k ≥ k, by (.), the limit uk is just a critical point of � = � with �(uk) ∈ [αk , ζ k].
Since αk → ∞ as k → ∞ in (.), we get infinitely many nontrivial critical points of �.
Therefore, we see that problem (.) possesses infinitely many nontrivial homoclinic so-
lutions. The proof of Theorem . is completed. �

Appendix
Fact  The result (.) holds.

Proof If not, for any j ∈ N , there exists uj ∈ H\{} such that

�
({

n ∈ Zm :
∣
∣uj

n
∣
∣ ≥ ∥

∥uj∥∥/j
})

= .

Let vj := uj

‖uj‖ ∈ H , then ‖vj‖ =  and

�
({

n ∈ Zm :
∣
∣vj

n
∣
∣ ≥ /j

})
= , ∀j ∈ N . (A.)

Note that since H is finite dimensional, passing to a subsequence if necessary, we may
assume vj → v in E for some v ∈ H . Evidently, ‖v‖ = . Note that any two norms on H are
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equivalent, thus by Lemma .(), we have

∥
∥vj – v

∥
∥

l =
∑

n∈Zm

∣
∣vj

n – vn
∣
∣ →  as j → ∞. (A.)

The fact that ‖v‖ =  implies ‖v‖l∞ = maxn∈Zm |vn| > . By the definition of the norm ‖·‖l∞ ,
there exists a constant δ >  such that

�
({

n ∈ Zm : |vn| ≥ δ
}) ≥ . (A.)

For any j ∈ N , let

�j :=
{

n ∈ Zm :
∣∣vj

n
∣∣ < /j

}
and �c

j := Zm\�j =
{

n ∈ Zm :
∣∣vj

n
∣∣ ≥ /j

}
.

Set � := {n ∈ Zm : |vn| ≥ δ}. Then for j large enough, by (A.) and (A.), we have

�(�j ∩ �) ≥ �(�) – �
(
�c

j
) ≥  –  = .

It follows from the definitions of �j and � that for j large enough we have

∑

n∈Zm

∣
∣vj

n – vn
∣
∣ ≥

∑

n∈�j∩�

∣
∣vj

n – vn
∣
∣

≥
∑

n∈�j∩�

|vn|
(|vn| – 

∣∣vj
n
∣∣)

≥ δ(δ – /j) · �(�j ∩ �)

≥ δ
/ > .

This is in contradiction to (A.). Therefore, (.) holds. �

Fact  The result (.) holds.

Proof It is clear that  < lν(k + ) ≤ lν(k), so that lν(k) → l ≥  as k → ∞. For every k ≥ ,
there exists uk ∈ Zk such that ‖uk‖ =  and ‖uk‖lν > lν(k)/. By the definition of Zk , uk ⇀ 
in E, then uk →  in lν dues to Lemma .(). Therefore, we have l = , that is, lν(k) → .
Similarly, l(k) → . Therefore, (.) holds. �

Fact  {uk
j }∞j= is bounded in E.

Proof Note that (F) implies that there exists a constant L >  such that




fn(s)s – Fn(s) ≥ b


|s|�, ∀(n, s) ∈ Zm × R with |s| ≥ L. (A.)

For notational simplicity, we will set

uj := uk
j , ∀j ∈ N and k ≥ k
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throughout this paragraph. Note that (F) implies 
 fn(s)s – Fn(s) ≥  for all (n, s) ∈ Zm × R,

it follows from (.), (A.), and the definition of �λ that

�λj (uj) = �λj (uj) –


〈
�′

λj
(uj), uj

〉

= λj
∑

n∈Zm

[



fn(uj,n)uj,n – Fn(uj,n)
]

≥
∑

n∈�j

[



fn(uj,n)uj,n – Fn(uj,n)
]

≥ b


∑

n∈�j

|uj,n|�, ∀j ∈ N , (A.)

where �j := {n ∈ Zm : |uj,n| ≥ L}. It follows from (.) that

∑

n∈�j

|uj,n|� ≤ D, ∀j ∈ N , (A.)

for some D > . Note that (F) implies that there exists a constant L ∈ (, L) such that




fn(s)s – Fn(s) ≥ a


|s|ι, ∀(n, s) ∈ Zm × R with |s| ≤ L. (A.)

Similar to (A.), by (A.), (F), and the fact 
 fn(s)s – Fn(s) >  if s �=  (see (F)), we get

�λj (uj) = λj
∑

n∈Zm

[



fn(uj,n)uj,n – Fn(uj,n)
]

≥
∑

n∈Zm\�j

[



fn(uj,n)uj,n – Fn(uj,n)
]

=
∑

{n∈Zm :|uj,n|≤L}

[



fn(uj,n)uj,n – Fn(uj,n)
]

+
∑

{n∈Zm :L≤|uj,n|<L}

[



fn(uj,n)uj,n – Fn(uj,n)
]

≥
∑

{n∈Zm :|uj,n|≤L}

a


|uj,n|ι +

∑

{n∈Zm :L≤|uj,n|<L}
D|uj,n|ι

≥
∑

{n∈Zm :|uj,n|<L}
D|uj,n|ι =

∑

n∈Zm\�j

D|uj,n|ι, ∀j ∈ N ,

for some D, D > . It follows from (.) that

∑

n∈Zm\�j

|uj,n|ι ≤ D, ∀j ∈ N , (A.)

for some D > . For any j ∈ N , let χj : Zm → R be the indicator of �j, that is,

χj,n :=

{
, dn ∈ �j,
, n /∈ �j,

∀j ∈ N .
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Then by (A.) and the definitions of �j and χj, we have

∥∥( – χj)uj
∥∥

l∞ ≤ L and ‖χjuj‖�

l� =
∑

n∈�j

|uj,n|� ≤ D, ∀j ∈ N .

It follows from the equivalence of any two norms on the finite-dimensional space E ⊕ E–

and Hölder’s inequality that

∥∥u–
j + u

j
∥∥

l =
(
u–

j + u
j , uj

)
l

=
(
u–

j + u
j , ( – χj)uj

)
l +

(
u–

j + u
j ,χjuj

)
l

≤ ∥∥( – χj)uj
∥∥

l∞ · ∥∥u–
j + u

j ‖l + ‖χjuj‖l� · ‖u–
j + u

j
∥∥

l�′

≤ Lc
∥
∥u–

j + u
j
∥
∥

l + D/�
 c

∥
∥u–

j + u
j
∥
∥

l

=
(
Lc + D/�

 c
)∥∥u–

j + u
j
∥∥

l , ∀j ∈ N ,

for some c, c > , where �′ := �

�– . Consequently, we get

∥∥u–
j + u

j
∥∥

l ≤ Lc + D/�
 c, ∀j ∈ N .

By the equivalence of norms ‖ · ‖l and ‖ · ‖ on E ⊕ E–, we know there exists c >  such
that

∥∥u–
j + u

j
∥∥ ≤ c, ∀j ∈ N . (A.)

Therefore,

∥∥u–
j
∥∥ ≤ c, ∀j ∈ N . (A.)

By the definition of �λj , we have

∥
∥u+

j
∥
∥ = �λj (uj) + λj

∥
∥u–

j
∥
∥ + λj

∑

n∈Zm

Fn(uj,n), ∀j ∈ N . (A.)

Note that (F) implies that for any ε >  there exists Cε such that

∣∣Fn(s)
∣∣ ≤ ε|s| + Cε|s|ν , ∀(n, s) ∈ Zm × R. (A.)

Therefore, by (.), (A.)-(A.), and the Sobolev embedding theorem we have

‖uj‖ =
∥∥u–

j + u
j
∥∥ +

∥∥u+
j
∥∥

=
∥∥u–

j + u
j
∥∥ + �λj (uj) + λj

∥∥u–
j
∥∥ + λj

∑

n∈Zm

Fn(uj,n)

≤ c + λj
∑

n∈Zm

(
ε
∣
∣uj,n

∣
∣+Cε

∣
∣uj,n

∣
∣ν)

= c + λjε‖uj‖
l + λjCε

( ∑

n∈Zm\�j

|uj,n|ν +
∑

n∈�j

|uj,n|ν
)
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≤ c + cε‖uj‖ + cLν–ι


∑

n∈Zm\�j

|uj,n|ι + c
∑

n∈�j

|uj,n|ν

≤ c + cε‖uj‖ + cLν–ι
 D + c

∑

n∈�j

|uj,n|ν , ∀j ∈ N , (A.)

for some c, c, c > , where ι ≤ ν is defined in (F). If ν –� ≥ , by (A.) and Lemma .(),
we have

∑

n∈�j

|uj,n|ν ≤ ‖uj‖ν–�

l∞
∑

n∈�j

|uj,n|� ≤ Dc‖uj‖ν–�, ∀j ∈ N , (A.)

for some c > . If ν – � < , by (A.) and the definition of �j, we have

∑

n∈�j

|uj,n|ν =
∑

n∈�j

|uj,n|�
|uj,n|�–ν

≤ 
L�–ν



∑

n∈�j

|uj,n|� ≤ D

L�–ν


, ∀j ∈ N . (A.)

Note that ν – � <  (see (F)) and ε >  is arbitrary, thus it follows from (A.)-(A.) that
{uj} is bounded in E. �
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