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1 Introduction
The theory of impulsive differential equations has lately years been an object of increasing
interest because of its vast applicability in several fields including mechanics, electrical
engineering, biology, medicine, and so on. Therefore, it has drawn wide attention of the
researchers in the recent years, among them we find JinRong Wang, Michal Feckan, Yong
Zhou, and others [–].

For a wide bibliography and exposition on differential equations with impulses, see for
instance [–], and there are many papers discussing the impulsive differential equations
and impulsive optimal controls with the classic initial condition: x() = x (see [–]).

In this paper, we consider the following problems for nonlinear impulsive evolution
equations with periodic boundary value:

(IEE)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′(t) = Au(t) + f (t, u(t), u(ρ(t))) + B(t)c(t),
t ∈ (si, ti+], i = , , , . . . , m, c ∈ Uad,

u(t) = T(t – ti)gi(t, u(t)), t ∈ (ti, si], i = , , . . . , m,
u() = u(a) ∈ X.

The operator A : D(A) : X −→ X is the generator of a strongly continuous semigroup
{T(t), t ≥ } on a Banach space X with a norm ‖ · ‖, and the fixed points si and ti satis-
fying

 = s < t ≤ s ≤ t < · · · < tm ≤ sm ≤ tm+ = a
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are pre-fixed numbers, f : [, a] × X × X −→ X is continuous, ρ : [, a] −→ [, a] is con-
tinuous, and gi : [ti, si] × X −→ X is continuous for all i = , , . . . , m.

2 Preliminaries
Next, we review some basic concepts, notations, and technical results that are necessary
in our study.

Throughout this paper, I = [, a], C(I, X) is the Banach space of all continuous functions
from I into X with the norm ‖u‖C = supt∈I{‖u(t)‖ : t ∈ I} for u ∈ C(I, X), and we consider
the space

PC(I, X) =
{

u : I −→ X : u ∈ C
(
(ti, ti+], X

)
, i = , , . . . , m

and there exist u
(
t–
i
)

and u
(
t+
i
)
, i = , . . . , m with u

(
t–
i
)

= u(ti)
}

,

endowed with the Chebyshev PC-norm ‖u‖PC = supt∈I{‖u(t)‖ : t ∈ I} for u ∈ PC(I, X).
Denote M = supt∈I ‖T(t)‖.

Let Y be another separable reflexive Banach space where the controls c take values. De-
note by Pf (Y ) a class of nonempty closed and convex subsets of Y . We suppose that the
multivalued map w : [, T] −→ Pf (Y ) is measurable, w(·) ⊂ E,where E is a bounded set of
Y , and the admissible control set

Uad =
{

c ∈ Lp(E) : c(t) ∈ w(t), a.e.
}

, p > .

Then Uad 	= ∅, which can be found in []. Some of our results are proved using the next
well-known results.

Theorem  (Krasnoselskii’s fixed point theorem) Assume that K is a closed bounded con-
vex subset of a Banach space X. Furthermore assume that � and � are mappings from K
into X such that:

. �(u) + �(v) ∈ K for all u, v ∈ K ,
. � is a contraction,
. � is continuous and compact.

Then � + � has a fixed point in K .

To begin our discussion, we need to introduce the concept of a mild solution for (IEE).
Assume that u : [, a] −→ X is a solution of

u′(t) = Au(t) + f
(
t, u(t), u

(
ρ(t)

))
+ B(t)c(t),  ≤ t ≤ a.

From the theory of strongly continuous semigroups, we get

u(t) = T(t)u() +
∫ t


T(t – s)

(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

= T(t)u(a) +
∫ t


T(t – s)

(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

= T(t)
[

T(a – tm)gm
(
sm, u(sm)

)
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+
∫ a

sm

T(a – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

]

+
∫ t


T(t – s)

(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds for all t ∈ [, t]

and

u(t) = T(t – si)u(si) +
∫ t

si

T(t – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

= T(t – si)T(si – ti)gi
(
si, u(si)

)
+

∫ t

si

T(t – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

= T(t – ti)gi
(
si, u(si)

)
+

∫ t

si

T(t – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

for all t ∈ (si, ti+], i = , , . . . , m.
This expression motivates the following definition.

Definition  We say that a function u ∈PC(I, X) is called a mild solution of the problem
(IEE), if u satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(t) = T(t)[T(a – tm)gm(sm, u(sm)) +
∫ a

sm
T(a – s)(f (s, u(s), u(ρ(s))) + B(s)c(s)) ds]

+
∫ t

 T(t – s)(f (s, u(s), u(ρ(s))) + B(s)c(s)) ds, t ∈ [, t],
u(t) = T(t – ti)gi(t, u(t)), t ∈ (ti, si], i = , , . . . , m,
u(t) = T(t – ti)gi(si, u(si)) +

∫ t
si

T(t – s)(f (s, u(s), u(ρ(s))) + B(s)c(s)) ds,
t ∈ (si, ti+], i = , , . . . , m.

3 Existence and uniqueness of mild solutions
To establish our results, we introduce the following assumptions:

(H) . A : D(A) ⊆ X −→ X is the generator of a strongly continuous semigroup
{T(t), t ≥ } on X with a norm ‖ · ‖.

. B : [, a] −→L(Y , X) is essentially bounded, i.e., B ∈ L∞([, a],L(Y , X)).
(H) We have the functions f ∈ C(I × X × X, X), gi ∈ C([ti, si] × X, X), i = , , . . . , m, and

ρ : I −→ I is continuous.
(H) There is a constant Cf , Lf >  such that

∥
∥f (t, u, v) – f (t, u, v)

∥
∥ ≤ Cf ‖u – u‖ + Lf ‖v – v‖

for each t ∈ [si, ti+], u, u, v, v ∈ X and i = , , . . . , m.
(H) There is a constant L >  such that

∥
∥f (t, u, v)

∥
∥ ≤ L

(
 + ‖u‖μ + ‖v‖ν

)

for all t ∈ [si, ti+] and all u, v ∈ X , i = , , . . . , m, and μ,ν ∈ [, ].
(H) There is a constant Cgi > , i = , , . . . , m, such that

∥
∥gi(t, u) – gi(t, v)

∥
∥ ≤ Cgi‖u – v‖

for each t ∈ [ti, si], and all u, v ∈ En, i = , , . . . , m.
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(H) There is a function t −→ ψi(t), i = , , . . . , m, such that

∥
∥gi(t, u)

∥
∥ ≤ ψi(t)

for each t ∈ [ti, si] and all u ∈ X .

We put C = max≤i≤m Cgi and Ni = supt∈[ti ,si] ψi(t) < +∞.

Remark  From the assumptions (H)-(H) and the definition of Uad, it is also easy to
verify that Bc ∈ Lp([, a]; X) with p >  for all c ∈ Uad.

Therefore, Bc ∈ L([, a]; X) and ‖Bc‖L < ∞.

Now, we can establish our first existence result.

Theorem  Let assumptions (H), (H), (H), and (H) be satisfied. Suppose, in addition,
that the following property is verified:

λ := M max
{

max
≤i≤m

{
Cgi + (Cf + Lf )(ti+ – si)

}
,

C, MCgm + (Cf + Lf )M(a – sm) + (Cf + Lf )t

}
< .

Then the problem (IEE) has a unique mild solution.

Proof Define a mapping � : PC(I, X) −→PC(I, X) by

(�u)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

T(t)[T(a – tm)gm(sm, u(sm))
+

∫ a
sm

T(a – s)(f (s, u(s), u(ρ(s))) + B(s)c(s)) ds]
+

∫ t
 T(t – s)(f (s, u(s), u(ρ(s))) + B(s)c(s)) ds, t ∈ [, t],

T(t – ti)gi(t, u(t)), t ∈ (ti, si], i = , , . . . , m,
T(t – ti)gi(si, u(si))

+
∫ t

si
T(t – s)(f (s, u(s), u(ρ(s))) + B(s)c(s)) ds, t ∈ (si, ti+], i = , , . . . , m.

Let h >  be very small and u ∈PC(I, X), we have the following.
Case : For t ∈ [, t], we have

∥
∥(�u)(t + h) – (�u)(t)

∥
∥

=
∥
∥
∥
∥T(t + h)

[

T(a – tm)gm
(
sm, u(sm)

)
+

∫ a

sm

T(a – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

]

+
∫ t+h


T(t + h – s)

(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

– T(t)
[

T(a – tm)gm
(
sm, u(sm)

)
+

∫ a

sm

T(a – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

]

–
∫ t


T(t – s)

(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

∥
∥
∥
∥

≤ M
∥
∥
∥
∥T(h)

[

T(a – tm)gm
(
sm, u(sm)

)
+

∫ a

sm

T(a – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

]

–
[

T(a – tm)gm
(
sm, u(sm)

)
+

∫ a

sm

T(a – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

]∥
∥
∥
∥
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+ M
∫ h



∥
∥f

(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

∥
∥ds + M

∫ t



∥
∥B(s + h)c(s + h) – B(s)c(s)

∥
∥ds

+ M
∫ t



∥
∥f

(
s + h, u(s + h), u

(
ρ(s + h)

))
– f

(
s, u(s), u

(
ρ(s)

))∥
∥ds →  as h → .

Case : For t ∈ (ti, si], i = , . . . , m, we have

∥
∥(�u)(t + h) – (�u)(t)

∥
∥ =

∥
∥T(t + h – ti)gi

(
t + h, u(t + h)

)
– T(t – ti)gi

(
t, u(t)

)∥
∥

≤ M
∥
∥T(h)gi

(
t + h, u(t + h)

)
– gi

(
t, u(t)

)∥
∥ →  as h → .

Case : For t ∈ (si, ti+], i = , . . . , m, we have

∥
∥(�u)(t + h) – (�u)(t)

∥
∥

=
∥
∥
∥
∥T(t + h – ti)gi

(
si, u(si)

)
+

∫ t+h

si

T(t + h – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

– T(t – ti)gi
(
si, u(si)

)
–

∫ t

si

T(t – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

∥
∥
∥
∥

≤ M
∥
∥T(h)gi

(
si, u(si)

)
– gi

(
si, u(si)

)∥
∥ + M

∫ si+h

si

∥
∥f

(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

∥
∥ds

+ M
∫ t

si

∥
∥B(s + h)c(s + h) – B(s)c(s)

∥
∥ds

+ M
∫ t

si

∥
∥f

(
s + h, u(s + h), u

(
ρ(s + h)

))
– f

(
s, u(s), u

(
ρ(s)

))∥
∥ds →  as h → .

Then � is well defined and �u ∈PC(I, X) for all u ∈PC(I, X).
Now we only need to show that � is a contraction mapping.
Case : For u, v ∈PC(I, X) and t ∈ [, t], we have

∥
∥(�u)(t) – (�v)(t)

∥
∥

=
∥
∥
∥
∥T(t)

[

T(a – tm)gm
(
sm, u(sm)

)
+

∫ a

sm

T(a – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

]

+
∫ t


T(t – s)

(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

– T(t)
[

T(a – tm)gm
(
sm, v(sm)

)
+

∫ a

sm

T(a – s)
(
f
(
s, v(s), v

(
ρ(s)

))
+ B(s)c(s)

)
ds

]

–
∫ t


T(t – s)

(
f
(
s, v(s), v

(
ρ(s)

))
+ B(s)c(s)

)
ds

∥
∥
∥
∥

≤ M
[

MCgm

∥
∥u(sm) – v(sm)

∥
∥ + M

∫ a

sm

(
Cf

∥
∥u(s) – v(s)

∥
∥ + Lf

∥
∥u

(
ρ(s)

)
– v

(
ρ(s)

)∥
∥
)

ds
]

+ M
∫ t



(
Cf

∥
∥u(s) – v(s)

∥
∥ + Lf

∥
∥u

(
ρ(s)

)
– v

(
ρ(s)

)∥
∥
)

ds

≤ M
[
MCgm + (Cf + Lf )M(a – sm) + (Cf + Lf )t

]‖u – v‖PC

≤ λ‖u – v‖PC .
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Case : For u, v ∈PC(I, X) and t ∈ (ti, si], i = , . . . , m, we have

∥
∥(�u)(t) – (�v)(t)

∥
∥ =

∥
∥T(t – ti)gi

(
t, u(t)

)
– T(t – ti)gi

(
t, v(t)

)∥
∥

≤ MCgi‖u – v‖PC

≤ MC‖u – v‖PC

≤ λ‖u – v‖PC .

Case : For u, v ∈PC(I, X) and t ∈ (si, ti+], i = , . . . , m, we have

∥
∥(�u)(t) – (�v)(t)

∥
∥

=
∥
∥
∥
∥T(t – ti)gi

(
si, u(si)

)
+

∫ t

si

T(t – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

– T(t – ti)gi
(
si, v(si)

)
–

∫ t

si

T(t – s)
(
f
(
s, v(s), v

(
ρ(s)

))
+ B(s)c(s)

)
ds

∥
∥
∥
∥

≤ M
[
Cgi + (Cf + Lf )(ti+ – si)

]‖u – v‖PC

≤ M max
≤i≤m

{
Cgi + (Cf + Lf )(ti+ – si)

}‖u – v‖PC

≤ λ‖u – v‖PC .

Therefore, we obtain

‖�u – �v‖PC ≤ λ‖u – v‖PC , ∀u, v ∈PC(I, X).

Finally, we find that � is a contraction mapping on PC(I, X), and there exists a unique
u ∈PC(I, X) such that �u = u.

So we conclude that u is the unique mild solution of (IEE). �

By using Krasnoselskii’s fixed point theorem, we also obtain the existence of a mild so-
lution.

Theorem  Let assumptions (H), (H), (H), and (H) be satisfied. Suppose, in addition,
that the semigroup {T(t), t ≥ } is compact and

α := max
{

LM
(
M(a – sm) + t

)
, LM(ti+ – si)

}
<




, i = , . . . , m,

β := max
{

MCgm , MCgi

}
< .

Then the problem (IEE) has at least one mild solution.

Proof Let N = max(N, N, . . . , Nm) and Br = {u ∈PC(I, X) : ‖u‖PC < r} the ball with radius
r > .

Here

r ≥ max{γ,γ, MN},
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with

γ =
MNm + (M + M)‖Bc‖L + LM(M(a – sm) + t)

 – α

and

γ =
MNi + M‖Bc‖L + ML(ti+ – si)

 – α
.

We introduce the decomposition � = � + �, where

(�u)(t) =

⎧
⎪⎨

⎪⎩

T(t)T(a – tm)gm(sm, u(sm)), t ∈ [, t],
T(t – ti)gi(t, u(t)), t ∈ (ti, si], i = , , . . . , m,
T(t – ti)gi(si, u(si)), t ∈ (si, ti+], i = , , . . . , m,

and

(�u)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

T(t)
∫ a

sm
T(a – s)(f (s, u(s), u(ρ(s))) + B(s)c(s)) ds

+
∫ t

 T(t – s)(f (s, u(s), u(ρ(s))) + B(s)c(s)) ds, t ∈ [, t],
, t ∈ (ti, si], i = , , . . . , m,
∫ t

si
T(t – s)(f (s, u(s), u(ρ(s))) + B(s)c(s)) ds, t ∈ (si, ti+], i = , , . . . , m.

We distinguish in the proof several steps.
Step . We prove that �u = �u + �u ∈ Br for all u ∈ Br . Indeed:
Case . For t ∈ [, t], we have

∥
∥(�u + �u)(t)

∥
∥

≤ ∥
∥T(t)

∥
∥
∥
∥T(a – tm)gm

(
sm, u(sm)

)∥
∥

+
∥
∥T(t)

∥
∥

∫ a

sm

∥
∥T(a – s)

∥
∥
(∥
∥f

(
s, u(s), u

(
ρ(s)

))∥
∥ +

∥
∥B(s)c(s)

∥
∥
)

ds

+
∫ t



∥
∥T(t – s)

∥
∥
(∥
∥f

(
s, u(s), u

(
ρ(s)

))∥
∥ +

∥
∥B(s)c(s)

∥
∥
)

ds

≤ MNm + LM
∫ a

sm

(
 +

∥
∥u(s)

∥
∥μ +

∥
∥u

(
ρ(s)

)∥
∥ν)ds +

(
M + M

)‖Bc‖L

+ LM
∫ t



(
 +

∥
∥u(s)

∥
∥μ +

∥
∥u

(
ρ(s)

)∥
∥ν)ds

≤ MNm +
(
M + M

)‖Bc‖L + LM( + r)(a – sm) + LM( + r)t

= MNm +
(
M + M

)‖Bc‖L + LM
(
M(a – sm) + t

)
+ rLM

(
M(a – sm) + t

)

≤ r( – α) + rα = r.

Case . For t ∈ (ti, si], i = , . . . , m, we have

∥
∥(�u + �u)(t)

∥
∥ ≤ ∥

∥T(t – ti)
∥
∥
∥
∥gi

(
t, u(t)

)∥
∥

≤ MNi ≤ MN ≤ r.
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Case . For t ∈ (si, ti+], i = , . . . , m, we have

∥
∥(�u + �u)(t)

∥
∥ ≤ ∥

∥T(t – ti)
∥
∥
∥
∥gi

(
si, u(si)

)∥
∥

+
∫ t

si

∥
∥T(t – s)

∥
∥
(∥
∥f

(
s, u(s), u

(
ρ(s)

))∥
∥ +

∥
∥B(s)c(s)

∥
∥
)

ds

≤ MNi + LM( + r)(ti+ – si) + M‖Bc‖L

= MNi + M‖Bc‖L + LM(ti+ – si) + rLM(ti+ – si)

≤ r( – α) + rα = r.

Then we deduce that �u + �u ∈ Br .
Step . � is contraction on Br . Let u, v ∈ Br .
Case . For t ∈ [, t], we have

∥
∥(�u)(t) – (�v)(t)

∥
∥ ≤ ∥

∥T(t)
∥
∥
∥
∥T(a – tm)

∥
∥
∥
∥gm

(
sm, u(sm)

)
– gm

(
sm, v(sm)

)∥
∥

≤ MCgm

∥
∥u(sm) – v(sm)

∥
∥

≤ MCgm‖u – v‖PC

≤ β‖u – v‖PC .

Case . For t ∈ (ti, si], i = , . . . , m, we have

∥
∥(�u)(t) – (�v)(t)

∥
∥ ≤ ∥

∥T(t – ti)
∥
∥
∥
∥gi

(
t, u(t)

)
– gi

(
t, v(t)

)∥
∥

≤ MCgm‖u – v‖PC

≤ β‖u – v‖PC .

Case . For t ∈ (si, ti+], i = , . . . , m, we have

∥
∥(�u)(t) – (�v)(t)

∥
∥ ≤ ∥

∥T(t – ti)
∥
∥
∥
∥gi

(
si, u(si)

)
– gi

(
si, v(si)

)∥
∥

≤ MCgm‖u – v‖PC

≤ β‖u – v‖PC .

This implies that � is a contraction.
Step . � is continuous.
Let (un)n≥ be a sequence such that limn→+∞ ‖un – u‖PC = .
Case . For t ∈ [, t], we have

∥
∥(�un)(t) – (�u)(t)

∥
∥

≤ ∥
∥T(t)

∥
∥

∫ a

sm

∥
∥T(a – s)

∥
∥
∥
∥f

(
s, un(s), un

(
ρ(s)

))
– f

(
s, u(s), u

(
ρ(s)

))∥
∥ds

+
∫ t



∥
∥T(t – s)

∥
∥
∥
∥f

(
s, un(s), un

(
ρ(s)

))
– f

(
s, u(s), u

(
ρ(s)

))∥
∥ds

≤ M(a – sm)
∥
∥f

(·, un(·), un
(
ρ(·))) – f

(·, u(·), u
(
ρ(·)))∥∥PC
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+ Mt
∥
∥f

(·, un(·), un
(
ρ(·))) – f

(·, u(·), u
(
ρ(·)))∥∥PC

= M
[
M(a – sm) + t

]∥
∥f

(·, un(·), un
(
ρ(·))) – f

(·, u(·), u
(
ρ(·)))∥∥PC .

Case . For t ∈ (ti, si], i = , . . . , m, we have

∥
∥(�un)(t) – (�u)(t)

∥
∥ = .

Case . For t ∈ (si, ti+], i = , . . . , m, we have

∥
∥(�un)(t) – (�u)(t)

∥
∥ ≤

∫ t

si

∥
∥T(t – s)

∥
∥
∥
∥f

(
s, un(s), un

(
ρ(s)

))
– f

(
s, u(s), u

(
ρ(s)

))∥
∥ds

= M(ti+ – si)
∥
∥f

(·, un(·), un
(
ρ(·))) – f

(·, u(·), u
(
ρ(·)))∥∥PC .

This implies that limn→+∞ ‖�un – �u‖PC = , then we deduce that � is continuous.
Step . � is compact.
. We have �Br ⊆ Br , then � is uniformly bounded on Br .
. For u ∈ Br , we have the following.
Case . For  ≤ l < l ≤ t, we have

∥
∥(�u)(l) – (�u)(l)

∥
∥

≤ ∥
∥T(l) – T(l)

∥
∥

∫ a

sm

∥
∥T(a – s)

∥
∥
(∥
∥f

(
s, u(s), u

(
ρ(s)

))∥
∥ +

∥
∥B(s)c(s)

∥
∥
)

ds

+
∫ l



∥
∥T(l – s) – T(l – s)

∥
∥
(∥
∥f

(
s, u(s), u

(
ρ(s)

))∥
∥ +

∥
∥B(s)c(s)

∥
∥
)

ds

+
∫ l

l

∥
∥T(l – s)

∥
∥
(∥
∥f

(
s, u(s), u

(
ρ(s)

))∥
∥ +

∥
∥B(s)c(s)

∥
∥
)

ds

≤ M(L( + r)(a – sm) + ‖Bc‖L
)∥
∥T(l – l) – I

∥
∥

+ M
(
L( + r)t + ‖Bc‖L

)∥
∥T(l – l) – I

∥
∥

+ LM( + r)(l – l) + M
∫ l

l

∥
∥B(s)c(s)

∥
∥ds

=
(
LM( + r)

[
M(a – sm) + t

]
+

(
M + M

)‖Bc‖L
)∥
∥T(l – l) – I

∥
∥

+ LM( + r)(l – l) + M
∫ l

l

∥
∥B(s)c(s)

∥
∥ds →  as l → l.

Since {T(t), t ≥ } is compact, ‖T(l – l) – I‖ →  as l → l.
Case . For ti ≤ l < l ≤ si, i = , . . . , m, we have

∥
∥(�u)(l) – (�u)(l)

∥
∥ = .

Case . For si ≤ l < l ≤ ti+, i = , . . . , m, we have

∥
∥(�u)(l) – (�u)(l)

∥
∥

=
∥
∥
∥
∥

∫ l

si

T(l – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds
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–
∫ l

si

T(l – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

∥
∥
∥
∥

≤
∫ l

l

∥
∥T(l – s)

∥
∥
(∥
∥f

(
s, u(s), u

(
ρ(s)

))∥
∥ +

∥
∥B(s)c(s)

∥
∥
)

ds

+
∫ l

si

∥
∥T(l – s)

∥
∥
∥
∥T(l – l) – I

∥
∥
(∥
∥f

(
s, u(s), u

(
ρ(s)

))∥
∥ +

∥
∥B(s)c(s)

∥
∥
)

ds

≤ LM( + r)(l – l) + M
∫ l

l

∥
∥B(s)c(s)

∥
∥ds

+ M
(
L( + r)(ti+ – si) + ‖Bc‖L

)∥
∥T(l – l) – I

∥
∥ →  as l → l.

This permits us to conclude that � is equicontinuous.
We have �Br ⊆ Br , let 
 := �Br , 
(t) := �Br(t) = {(�u)(t) : u ∈ Br} for t ∈ [, a].
. 
(t) is relatively compact. Indeed:
T(t) is compact, hence


() =
{∫ a

sm

T(a – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

}

,

is relatively compact. For  < ε < t ≤ a, define


ε(t) := �ε
Br(t) =

{
T(ε)(�u)(t – ε) : u ∈ Br

}
.

Clearly, 
ε(t) is relatively compact for t ∈ (ε, a], since T(t) is compact.
Case . For t ∈ (, t], we have


ε(t) :=
(
�ε

u
)
(t) = T(ε)(�u)(t – ε)

=
{

T(ε)T(t – ε)
[∫ a

sm

T(a – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

]

+ T(ε)
∫ t–ε


T(t – ε – s)

(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds : u ∈ Br

}

=
{

T(t)
[∫ a

sm

T(a – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

]

+
∫ t–ε


T(t – s)

(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds : u ∈ Br

}

,

and we get

∥
∥(�u)(t) –

(
�ε

u
)
(t)

∥
∥

=
∥
∥
∥
∥

∫ t


T(t – s)

(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

–
∫ t–ε


T(t – s)

(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

∥
∥
∥
∥

≤
∫ t

t–ε

∥
∥T(t – s)

∥
∥
(∥
∥f

(
s, u(s), u

(
ρ(s)

))∥
∥ +

∥
∥B(s)c(s)

∥
∥
)

ds

≤ LM( + r)ε + M
∫ t

t–ε

∥
∥B(s)c(s)

∥
∥ds →  as ε → .
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Case . For t ∈ (ti, si], i = , . . . , m, we have


ε(t) := {, u ∈ Br},

in this case ‖(�u)(t) – (�ε
u)(t)‖ = .

Case . For t ∈ (si, ti+], i = , . . . , m, we have


ε(t) :=
(
�ε

u
)
(t)

=
{

T(ε)
∫ t–ε

si

T(t – ε – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds : u ∈ Br

}

=
{∫ t–ε

si

T(t – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds : u ∈ Br

}

,

and we get

∥
∥(�u)(t) –

(
�ε

u
)
(t)

∥
∥

=
∥
∥
∥
∥

∫ t

si

T(t – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

–
∫ t–ε

si

T(t – s)
(
f
(
s, u(s), u

(
ρ(s)

))
+ B(s)c(s)

)
ds

∥
∥
∥
∥

≤
∫ t

t–ε

∥
∥T(t – s)

∥
∥
(∥
∥f

(
s, u(s), u

(
ρ(s)

))∥
∥ +

∥
∥B(s)c(s)

∥
∥
)

ds

≤ LM( + r)ε + M
∫ t

t–ε

∥
∥B(s)c(s)

∥
∥ds →  as ε → .

Now, from the Arzela-Ascoli theorem we can conclude that � : Br −→ Br is completely
continuous. The existence of a mild solution for (IEE) is now a consequence of Krasnosel-
skii’s fixed point theorem. �

4 Examples
In this section, we give examples to illustrate our abstract results in the previous section.

Let X = L(, ), I = [, ],  = t = s, t = , s = , and a = . Define Av = ∂

∂x v for

v ∈ D(A) =
{

v ∈ X :
∂v
∂x

,
∂v
∂x

∈ X, v() = v() = 
}

.

Then A is the infinitesimal generator of a strongly continuous semigroup {T(t), t ≥ }
on X. In addition T(t) is compact and ‖T(t)‖ ≤ , for all t ≥ .

Example  Consider

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂t u(t, x) = ∂

∂x u(t, x) + 
 cos(u(t, x) + u(t, x)) + c(t, x), x ∈ (, ), t ∈ [, ) ∪ (, ],

∂
∂x u(t, ) = ∂

∂x u(t, ) = , t ∈ [, ) ∪ (, ],
u(, x) = u(, x), x ∈ (, ),
u(t, x) = T(t – ) 

 sin(u(t, x)), x ∈ (, ), t ∈ (, ].
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Denote v(t)(x) = u(t, x) and B(t)c(t)(x) = c(t, x), this problem can be abstracted into

⎧
⎪⎨

⎪⎩

v′(t) = Av(t) + f (t, v(t), v(ρ(t))) + B(t)c(t), t ∈ [s, t) ∪ (s, a],
v(t) = T(t – ti)g(t, v(t)), t ∈ (t, s],
v() = v(a) ∈ X,

()

where ρ(t) = t, f (t, v(t), v(ρ(t)))(x) = 
 cos(v(t)(x) + v(t)(x)) and

g
(
t, v(t)

)
(x) =




sin
(
v(t)(x)

)
.

In this case, we have M = , Cf = Lf = 
 , Cg = 

 , and

λ = M
[
MCg + (Cf + Lf )(a – s) + (Cf + Lf )t

]
=




< .

This implies that all assumptions in Theorem  are satisfied. Then there exists a unique
mild solution for this problem.

Example  Consider

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂
∂t u(t, x) = ∂

∂x u(t, x) + 
et

|u(t,x)+u(t,x)|
+|u(t,x)+u(t,x)| + c(t, x), x ∈ (, ), t ∈ [, ) ∪ (, ],

∂
∂x u(t, ) = ∂

∂x u(t, ) = , t ∈ [, ) ∪ (, ],
u(, x) = u(, x), x ∈ (, ),
u(t, x) = T(t – ) 

et–
|u(t,x)|

+|u(t,x)| , x ∈ (, ), t ∈ (, ].

This problem can be abstracted into (), with ρ(t) = t,

f
(
t, v(t), v

(
ρ(t)

))
(x) =


et

|v(t)(x) + v(t)(x)|
 + |v(t)(x) + v(t)(x)| ,

g
(
t, v(t)

)
(x) =


et–

|v(t)(x)|
 + |v(t)(x)| ,

and B(t)c(t)(x) = c(t, x).
In this case, we have L = 

 , Cg = 
 , α = 

 < 
 , and β = 

 < .
This implies that all assumptions in Theorem  are satisfied. Then this problem has at

least one mild solution.

5 Conclusion
In order to describe the evolution of the temperature using a control, we consider peri-
odic boundary value problems for controlled nonlinear impulsive evolution equations. By
using operator semigroup theory, impulsive conditions, and fixed point methods, we over-
come some difficulties from the proof of equicontinuity and compactness and obtain new
existence results. In addition, future work includes expanding the idea signalized in this
work and introducing observability. This is a fertile field with vast research projects, which
can lead to numerous theories and applications. We plan to devote significant attention
to this field of research.



Melliani et al. Advances in Difference Equations  (2016) 2016:290 Page 13 of 13

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements
The authors express their sincere thanks to the anonymous referees for numerous helpful and constructive suggestions
which have improved the manuscript.

Received: 8 February 2016 Accepted: 18 October 2016

References
1. Feckan, M, Wang, JR: A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 46, 915-934

(2015)
2. Liu, S, Wang, JR, Wei, W: A study on iterative learning control for impulsive differential equations. Commun. Nonlinear

Sci. Numer. Simul. 24, 4-10 (2015)
3. Yu, X, Wang, JR: Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces.

Commun. Nonlinear Sci. Numer. Simul. 22, 980-989 (2015)
4. Wang, JR, Feckan, M, Zhou, Y: Noninstantaneous impulsive models for studying periodic evolution processes in

pharmacotherapy. In: Luo, A, Merdan, H (eds.) Mathematical Modeling and Applications in Nonlinear Dynamics.
Nonlinear Systems and Complexity, vol. 14, pp. 87-107. Springer, Cham (2016)

5. Wang, JR, Zhang, Y: On the concept and existence of solutions for fractional impulsive systems with Hadamard
derivatives. Appl. Math. Lett. 39, 85-90 (2015)

6. Wang, JR, Ibrahim, AG, Feckan, M: Nonlocal impulsive fractional differential inclusions with fractional sectorial
operators on Banach spaces. Appl. Math. Comput. 257, 103-118 (2015)

7. Wang, JR, Feckan, M, Zhou, Y: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl.
395, 258-264 (2012)

8. Wang, JR, Feckan, M, Zhou, Y: On the new concept of solutions and existence results for impulsive fractional
evolution equations. Dyn. Partial Differ. Equ. 8(4), 345-361 (2011)

9. Wang, JR, Zhou, Y, Lin, Z: On a new class of impulsive fractional differential equations. Appl. Math. Comput. 242,
649-657 (2014)

10. Wang, JR, Feckan, M, Zhou, Y: Relaxed controls for nonlinear fractional impulsive evolution equations. J. Optim.
Theory Appl. 156, 13-32 (2013)

11. Wang, JR, Zhou, Y, Medved, M: Picard and weakly Picard operators technique for nonlinear differential equations in
Banach spaces. J. Math. Anal. Appl. 389, 261-274 (2012)

12. Bainov, DD, Simeonov, PS: Impulsive Differential Equations: Periodic Solutions and Applications. Longman, New York
(1993)

13. Samoilenko, AM, Perestyuk, NA: Impulsive Differential Equations. World Scientific, Singapore (1995)
14. Liu, JH: Nonlinear impulsive evolution equations. Dyn. Contin. Discrete Impuls. Syst. 6, 77-85 (1999)
15. Bainov, D, Kamont, Z, Minchev, E: Periodic boundary value problem for impulsive hyperbolic partial differential

equations of first order. Appl. Math. Comput. 68(2-3), 95-104 (1995)
16. Hernandez, E, O’Regan, D: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141(5),

1641-1649 (2013)
17. Hernandez, ME, Tanaka Aki, SM, Henriquez, H: Global solutions for impulsive abstract partial differential equations.

Comput. Math. Appl. 56, 1206-1215 (2008)
18. Pierri, M, O’Regan, D, Rolnik, V: Existence of solutions for semi-linear abstract differential equations with not

instantaneous impulses. Appl. Math. Comput. 219, 6743-6749 (2013)
19. Ahmed, NU, Teo, KL, Hou, SH: Nonlinear impulsive systems on infinite dimensional spaces. Nonlinear Anal. 54,

907-925 (2003)
20. Ahmed, NU, Xiang, X: Nonlinear uncertain systems and necessary conditions of optimality. SIAM J. Control Optim. 35,

1755-1772 (1997)
21. Li, X, Yong, J: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Basel (1995)
22. Wei, W, Xiang, X, Peng, Y: Nonlinear impulsive integro-differential equations of mixed type and optimal controls.

Optimization 55, 141-156 (2006)
23. Pongchalee, P, Sattayatham, P, Xiang, X: Relaxation of nonlinear impulsive controlled systems on Banach spaces.

Nonlinear Anal. 68, 1570-1580 (2008)
24. Zhu, L, Huang, Q: Nonlinear impulsive evolution equations with nonlocal conditions and optimal controls. Adv. Differ.

Equ. 2015, 378 (2015)
25. Lakshmikantham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations. World Scientific, Singapore

(1989)


	A general class of periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence and uniqueness of mild solutions
	Examples
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References


