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Abstract
In this paper, Ren-He’s method for nonlinear oscillators is adopted to give
approximate solutions for the dropping shock response of cubic and cubic-quintic
nonlinear equations arising from packaging system. In order to improve the accuracy
of the solutions, a novel technique combining Ren-He’s method with the energy
method is proposed, the maximum values of the displacement response and
acceleration response of the system are obtained by the energy method, and the
approximate solution is corrected. An analytical expression of the important
parameters including the maximum displacement, the maximum acceleration of
dropping shock response and the dropping shock duration is obtained. The
illustrative examples show that the dropping shock response obtained by this
method is very similar to the one by the fourth order Runge-Kutta method. The result
provides a new simple and effective method for the dropping shock response of a
nonlinear packaging system.

Keywords: Ren-He’s method; energy method; displacement maximum value;
acceleration maximum value; dropping shock duration

1 Introduction
It is a well known fact that the dynamic model of some engineering problems can be de-
scribed by nonlinear differential equations. In the field of packaging engineering, due to
the nonlinear characteristics of cushion packaging materials, the dynamics model of a
packaging system usually have strong nonlinear characteristics for the theoretical analysis
process of packaged product damage evaluation. Therefore, it is general difficult to ob-
tain the theoretical analytical solution for this kind of problems. The numerical analysis
method such as Runge-Kutta method is often adopted to analyze the dynamics perfor-
mance and dropping shock damage evaluation of the packaging systems [–]. Despite
the effectiveness of numerical method, the explicit expression of approximate solutions is
still expected to be obtained to conveniently discuss the influence of initial conditions and
parameters on the solution.

Finding approximate, and if possible in closed-form, solutions of nonlinear differential
equations is the subject of many researchers. Recently, various analytical approaches for
solving nonlinear differential equations have been widely applied to analyze engineer-
ing problems, such as the variational iteration method (VIM) [–], the energy bal-
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ance method (EBM) [–], the homotopy perturbation method (HPM) [, ], He’s
frequency-amplitude formulation (FAF) [, –], the Hamiltonian approach [], and
many others. Although these methods have been applied to obtain approximate solutions
of nonlinear equation with large amplitude of oscillations, the solving process of these
methods involve sophisticated derivations and computations, and they are difficult to im-
plement. A simple approximate method to nonlinear oscillators is proposed by Ren and
He [] (Ren-He’s method) and the analysis process of this method is very simple, anyone
with basic knowledge of advanced calculus can apply the method to finding the approxi-
mate solution of a nonlinear oscillator.

In this paper, for getting analytical results of the cubic and cubic-quintic nonlinear equa-
tion arising from packaging system, Ren-He’s method is used to solve the dropping shock
dynamic equations of the system, and the approximate solutions including the displace-
ment response, acceleration response and the dropping shock duration are obtained. In
order to improve the accuracy of the solution, the correction method combining the Ren-
He’s method with the energy method (EM) is developed. The research provides an effec-
tive method for solving dropping shock problems of the nonlinear packaging systems.

2 Basic idea of approximate analysis
2.1 Analysis process of Ren-He’s method
For a generalized un-damped conservative nonlinear oscillator, the dynamic equation of
system can be expressed as

ẍ + v(x) =  ()

with initial conditions

x() = A, ẋ() = , ()

where a dot denotes differentiation with respect to t, v(x) is a nonlinear function of x. In
order to satisfy the initial conditions, the trial function can be expressed as

x = A cos(ωt), ()

where ω is the angular frequency of the nonlinear oscillator. Substituting equation () into
equation () results in

ẍ + v
(
A cos(ωt)

)
= . ()

Integrating equation () twice continuously with respect to t, we have the following two
equations:

ẋ = –
∫ t


v(x) dt = –

∫ t


v
(
A cos(ωt)

)
dt, ()

x =
∫ t


ẋ dt =

∫ t



(
–

∫ t


v
(
A cos(ωt)

)
dt

)
dt. ()



Chen Advances in Difference Equations  (2016) 2016:279 Page 3 of 14

For the trial function, the following expression is obtained by equation ():

x(t)|ωt=π/ = . ()

By equation () or through other special points, we can obtain amplitude-frequency rela-
tionship, and can also get the approximate analytic solution of the equation (). The anal-
ysis process of this method is very simple, and for a more detailed analysis of the process
one may refer to [].

2.2 Basic idea of EM
For the dropping impact problem of a nonlinear packaging system, the energy method is
usually used to solve the maximum displacement and maximum acceleration of the sys-
tem, but it is not convenient to obtain the dropping shock duration and the time course
of the system response. In order to illustrate the basic idea of the energy method, system
damping is not considered in the process of dropping impact, the gravitational poten-
tial energy of the system translates into the elastic potential energy of system completely,
while the deformation of the cushion material reaches the maximum. Assume the drop-
ping height of the packaging system is h, the weight of the product is W . When the system
is in the position of height h, the gravitational potential energy of the system can be ex-
pressed as

U = Wh. ()

For the nonlinear cushion packaging system, f (x) denotes the corresponding restoring
force of the cushion materials. According to the ideas of the EM, we have

Wh =
∫ xm


f (x) dx, ()

where f (x) is a nonlinear function of x, depends upon only the function of x. The maximum
deformation xm can be obtained by solving equation ().

Due to the dynamics, the equation of the system can be expressed in the form

mẍ + f (x) = . ()

The maximum acceleration ẍm can be obtained by solving the dynamics equation.
In view of the un-damped conservative systems, when the maximum deformation of the

buffer occurs, the restoring force of system will be the maximum, the velocity of system is
equal to zero and the acceleration response of the system obtains the maximum value, this
is the real physical process. In the following discussion, combining Ren-He’s method with
EM according to the physical process, a correction method of the approximate analytic
solution of Ren-He’s method is put forward for the drop impact problems in packaging
engineering.

3 Approximate solution of the dropping shock response
In order to illustrate the advantages and the accuracy of Ren-He’s method, we take the
cubic and cubic-quintic nonlinear equations arising from packaging system as examples.
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The approximate solution of the dropping shock response is obtained by using Ren-He’s
method, and the correction method of approximate solutions is proposed.

3.1 Cubic nonlinear system
First of all, we consider the cubic nonlinear cushion packaging system [, , ]; the drop-
ping shock dynamics equation can be expressed as

mẍ + kx + rx = ; ()

equation () can also be expressed as

ẍ + ω
x + kx =  ()

with initial conditions

x() = , ẋ() =
√

gh, ()

where ω =
√

k/m is the frequency parameter, m is the mass of the packaged product, h is
the dropping height of the packaging system, r is the nonlinear constants of cushion pack-
aging material, k is the initial elastic constants of the buffer material, g is the acceleration
of gravity, k = εω

, and ε = r/k, respectively.
Different from equation (), the initial condition equation () describes the dropping

shock. In order to satisfy the initial conditions, the following trial function is chosen:

x = A sin(ωt), ()

where A and ω denote the amplitude and angular frequency of the nonlinear oscillator to
be further determined. Notice the following expression:

sin(ωt) =



sin(ωt) –



sin(ωt). ()

By the equation (), we have

ẋ = –
∫ t


v(x) dt = –

∫ t


v
(
A sin(ωt)

)
dt,

where v(x) = ω
x + kx, the above equation can be expressed as

ẋ =

ω

(
Aω

 +



kA
)

cos(ωt) –
kA

ω
cos(ωt) + C. ()

To satisfy the initial condition ẋ() =
√

gh, from the equation (), we have

C =
√

gh +
kA

ω
–


ω

(
Aω

 +



kA
)

. ()

Integrating equation () with respect to t, we have the following equation:

x =

ω

(
Aω

 +



kA
)

sin(ωt) –
kA

ω sin(ωt) + Ct + C. ()
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To satisfy the initial condition x() = , we have C = . In order to obtain the amplitude-
frequency relation, setting x(t)|ωt=π =  in equation () yields

C =
√

gh +
kA

ω
–


ω

(
Aω

 +



kA
)

= . ()

Solving the above equation leads to

ω = ω
√

 + εA/. ()

The displacement, velocity and acceleration approximate solution of dropping shock
dynamics equation () can be obtained as follows, respectively:

x =

ω

(
Aω

 +



kA
)

sin(ωt) –
kA

ω sin(ωt), ()

ẋ =

ω

(
Aω

 +



kA
)

cos(ωt) –
kA

ω
cos(ωt), ()

ẍ = –
(

Aω
 +




kA
)

sin(ωt) +
kA


sin(ωt). ()

The dropping shock duration can be expressed as

τ = π/ω. ()

Let ωt = π/, from equation () and equation (), the maximum values of displacement
and acceleration of the dropping shock response can be written as follows, respectively:

xm =

ω

(
Aω

 +



kA
)

, ()

ẍm =
(
Aω

 + kA). ()

In order to evaluate the accuracy of the approximate solution, the numerical exam-
ple in [] is chosen. The parameter values of the example are m =  kg, h = . m,
k =  Ncm–, r =  Ncm–, ε = . cm–, and ω = . s–. Using the dropping
shock initial conditions ẋ() =

√
gh, the two key parameters A and ω can be obtained

by solving equation () and equation () simultaneously. The displacement and accel-
eration response curves of dropping shock process by Ren-He’s method (denoted RHM)
are compared with those by the Runge-Kutta method (denoted R-K) as shown in Figures 
and , respectively. Comparison of the important parameters including the maximum dis-
placement, the maximum acceleration of the system response and the dropping shock du-
ration by RHM with those by the R-K method are shown in Table , the relative errors of
the maximum values of displacement and acceleration and the dropping shock duration
are .%, .% and .%, respectively. These results show that the approximate solution
needs further discussion as regards the demands of engineering.

For the cubic nonlinear cushion packaging system, the corresponding restoring force of
the cushion materials can be expressed as

f (x) = kx + rx. ()
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Figure 1 Comparison of the displacement response by RHM and CRHM with R-K method for the cubic
nonlinear packaging system.

Figure 2 Comparison of the acceleration response by RHM and CRHM with R-K method for the cubic
nonlinear packaging system.

Table 1 Comparison of the important parameters by RHM with R-K method for the cubic
nonlinear packaging system

xm (cm) ẍm (g) τ (s)

R-K 3.4 49.74 0.02854
RHM 3.51 45.35 0.02984
Relative error (%) 3.2 8.8 4.6
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According to the ideas of the EM, we have the following expression:

Wh =
∫ xm



(
kx + rx)dx. ()

The maximum value of displacement can be obtained by above equation and can be ex-
pressed as

xm =
√

(√
k

 + Wrh – k
)
/r. ()

Under the condition of no system damping, the displacement and the acceleration achieve
the maximum value at the same time in the dropping shock process. Through the equa-
tion (), the maximum value of acceleration can be obtained:

ẍm = ω

(
xm + εx

m
)
. ()

Substituting equation () and equation () into equation () and equation (), respec-
tively, we get the following two equations:

xm =

ω

(
Aω

 +



kA
)

=
√

(√
k

 + Wrh – k
)
/r, ()

ẍm = Aω
 + kA = ω


(
xm + εx

m
)
. ()

Combining equation () with equation (), the parameters A and ω are obtained as fol-
lows, respectively:

A = xm =
√

(√
k

 + Wrh – k
)
/r, ()

ω = ω

√
 +

(
εA

)
/. ()

The parameter A and ω denote Ar and ωr , respectively. Substituting Ar and ωr into the
equation (), equation (), and equation (), then the correction solutions of the ap-
proximate solutions by RHM (denoted CRHM) are obtained:

x =

ω

r

(
Arω


 +




kA
r

)
sin(ωrt) –

kA
r

ω
r

sin(ωrt), ()

ẋ =

ωr

(
Arω


 +




kA
r

)
cos(ωrt) –

kA
r

ωr
cos(ωrt), ()

ẍ = –
(

Arω

 +




kA
r

)
sin(ωrt) +

kA
r


sin(ωrt). ()

Substituting ωr into the equation (), then the correction solutions of the dropping shock
duration can be expressed as

τ = π/ωr . ()
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Table 2 Comparison of the important parameters by CRHM with R-K method for the cubic
nonlinear packaging system

xm (cm) ẍm (g) τ (s)

R-K 3.40 49.74 0.02854
CRHM 3.40 49.79 0.02811
Relative error (%) 0.0 0.1 1.5

Substituting Ar and ωr into the equation () and equation (), the correction solutions of
the maximum displacement and the maximum acceleration of the system can be obtained,
respectively.

The dropping shock displacement response and acceleration response of the CRHM
are compared with those by the R-K method as shown in Figures  and , respectively, the
response curve is very close to ones by the R-K method. Comparisons of the important
parameters by CRHM with those by the R-K method are shown in Table , the relative
errors of the maximum displacement, the maximum acceleration, and the dropping shock
duration are .%, .% and .%, respectively. These results show the good accuracy.

3.2 Cubic-quintic nonlinear system
We consider the cubic-quintic nonlinear cushion packaging system [, , ] as the sec-
ond example, the dropping shock dynamics equation and initial conditions can be written
as

mẍ + kx + rx + qx = , ()

x() = , ẋ() =
√

gh, ()

where q is the coefficient of nonlinear term, the physical meaning of other parameters is
the same as in the previous example. The restoring force of the system can be represented
as

f (x) = kx + rx + qx. ()

Introducing the new parameters a = σω
 and σ = q/k, the dropping shock dynamics

equation and the initial conditions can also be rewritten as

ẍ + ω
x + kx + ax = , ()

x() = , ẋ() =
√

gh. ()

In order to satisfy the initial conditions, we chose the trial function

x = A sin(ωt). ()

Notice the following expressions:

sin(ωt) =



sin(ωt) –



sin(ωt), ()

sin(ωt) =



sin(ωt) –



sin(ωt) +



sin(ωt). ()
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By equation (), we have

ẋ =

ω

(
Aω

 +



kA +



aA
)

cos(ωt)

–

ω

(
kA


+

aA



)
cos(ωt) +


ω

aA


cos(ωt) + C. ()

To satisfy the initial condition ẋ() =
√

gh, by equation (), we have

C =
√

gh +

ω

(
kA


+

aA



)
–


ω

(
Aω

 +



kA +



aA
)

–
aA

ω
. ()

Integrating equation () with respect to t, we have the following equation:

x =

ω

(
Aω

 +



kA +



aA
)

sin(ωt)

–

ω

(
kA


+

aA



)
sin(ωt) +


ω

aA


sin(ωt) + Ct + C. ()

To satisfy the initial condition x() = , we have C = . In order to obtain the amplitude-
frequency relations, setting x(t)|ωt=π =  in equation () yields

C =
√

gh +

ω

(
kA


+

aA



)
–


ω

(
Aω

 +



kA +



aA
)

–
aA

ω
= . ()

Notice parameters a = σω
 and k = εω

, we have

ω = ω
√

 + εA/ + σA/. ()

The displacement, velocity, and acceleration approximate solutions of dropping shock dy-
namics equation () can be obtained as follows, respectively:

x =

ω

(
Aω

 +



kA +



aA
)

sin(ωt)

–

ω

(
kA


+

aA



)
sin(ωt) +


ω

aA


sin(ωt), ()

ẋ =

ω

(
Aω

 +



kA +



aA
)

cos(ωt)

–

ω

(
kA


+

aA



)
cos(ωt) +


ω

aA


cos(ωt), ()

ẍ = –
(

Aω
 +




kA +



aA
)

sin(ωt)

+
(

kA


+

aA



)
sin(ωt) –




aA sin(ωt). ()
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Let ωt = π/, from equation () and equation (), the maximum displacement and the
maximum acceleration of the system can be written as, respectively,

xm =

ω

(
Aω

 +



kA +



aA
)

, ()

ẍm =
(
Aω

 + kA + aA). ()

In order to facilitate comparison, the related parameter values of the example are set
equal to m =  kg, h = . m, k =  Ncm–, r =  Ncm–, σ = . cm–, ε =
. cm–, and ω = . s–, respectively. Using the dropping shock initial condition
ẋ() =

√
gh, the two key parameters A and ω can be obtained by solving equation () and

equation () simultaneously. The displacement and acceleration response of dropping
shock process by RHM are compared with those by the R-K method as shown in Figures 
and , respectively. The comparison of the important parameters including the maximum
displacement, the maximum acceleration of the system response and the dropping shock
duration by RHM with those by the R-K method are shown in Table , the relative errors
of maximum displacement, maximum acceleration and the dropping shock duration are
.%, .% and .%, respectively. The results shows that the errors still cannot meet the
requirement of engineering application, the results need to be further discussed.

For the dropping shock problem of the un-damped cubic-quintic nonlinear packaging
system, the correction method of analytical solutions is the same as the above example.
According to the ideas of the EM, we have the following expression:

Wh =
∫ xm



(
kx + rx + qx)dx. ()

Substituting the related parameter values of example into equation (), the maximum

Figure 3 Comparison of the displacement response by RHM and CRHM with R-K method for the
cubic-quintic nonlinear packaging system.
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Figure 4 Comparison of the acceleration response by RHM and CRHM with R-K method for the
cubic-quintic nonlinear packaging system.

Table 3 Comparison of the important parameters by RHM with R-K method for the
cubic-quintic nonlinear packaging system

xm (cm) ẍm (g) τ (s)

R-K 3.52 50.35 0.02920
RHM 3.65 45.13 0.03074
Relative error (%) 3.7 10.4 5.2

displacement can be solved by the above equation,

xm = . cm. ()

By equation (), the maximum acceleration can be obtained:

ẍm = ω

(
xm + εx

m + σx
m
)
. ()

Substituting equation () and equation () into equation () and equation (), respec-
tively, the following two relations are obtained:

xm =

ω

(
Aω

 +



kA +



aA
)

, ()

ẍm = Aω
 + kA + aA = ω


(
xm + εx

m + σx
m
)
. ()

Combining equation () with equation (), the parameter A and the parameter ω are
obtained as follows, respectively:

A = xm = . cm, ()

ω = ω

√
 +

(
εA

)
/ + σA/ = . s–. ()
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The parameters A and ω denote Ar and ωr , respectively. Substituting Ar and ωr into equa-
tion (), equation (), and equation (), then the correction solutions of the approxi-
mate solutions by using RHM (denoted CRHM) are obtained:

x =

ω

r

(
Arω


 +




kA
r +




aA
r

)
sin(ωrt)

–

ω

r

(
kA

r


+
aA

r


)
sin(ωrt) +


ω

r

aA
r


sin(ωrt), ()

ẋ =

ωr

(
Arω


 +




kA
r +




aA
r

)
cos(ωrt)

–

ωr

(
kA

r


+
aA

r


)
cos(ωrt) +


ωr

aA
r


cos(ωrt), ()

ẍ = –
(

Arω

 +




kA
r +




aA
r

)
sin(ωrt)

+
(

kA
r


+

aA
r



)
sin(ωrt) –




aA
r sin(ωrt). ()

The correction solutions of the dropping shock duration can be expressed as

τ = π/ωr . ()

Substituting Ar and ωr into the equation () and equation (), then the correction so-
lutions of the maximum displacement and the maximum acceleration of system can be
written as, respectively,

xm =

ω

r

(
Arω


 +




kA
r +




aA
r

)
, ()

ẍm =
(
Arω


 + kA

r + aA
r
)
. ()

The dropping shock displacement response and acceleration response of the correction
solutions by CRHM compared with those by R-K method are given in Figures  and ,
respectively, the response curve is very close to the ones by R-K method. Comparison of
the important parameters by CRHM with those by R-K method are shown in Table , the
relative errors of the maximum displacement, the maximum acceleration, and the drop-
ping shock duration are .%, .% and .%, respectively. These results show that the
approximate solution by CRHM has accuracy enough for engineering application.

4 Conclusions
The evaluation of the dropping impact dynamics, the maximum displacement, the maxi-
mum acceleration of the system response, and the dropping shock duration is in focus as

Table 4 Comparison of the important parameters by the CRHM with the R-K method for the
cubic-quintic nonlinear packaging system

xm (cm) ẍm (g) τ (s)

R-K 3.52 50.35 0.02920
CRHM 3.52 50.32 0.02869
Relative error (%) 0.00 0.06 1.7
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regards the important parameters. Ren-He’s method has been successfully used for the cu-
bic and cubic-quintic nonlinear equations arising from a packaging system; the analytical
solutions of the system are obtained, the analytic expression of the above three important
parameters is obtained at the same time. In order to further improve the accuracy of the
solution, a new method combining the RHM with the energy method, which is defined as
a correction method of the RHM (denoted CRHM), is proposed and successfully used to
study the cubic and the cubic-quintic nonlinear packaging system. The numerical exam-
ples indicate that the lowest order analytical solution obtained by the CRHM has higher
accuracy, which outperforms a similar analytical method. The CRHM is obviously advan-
tageous in that it is simple and it can avoid solving the complicated nonlinear algebraic
equation. The results show that the CRHM is effective and easy for solving the dropping
shock problem of a nonlinear packaging system.
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