
Zhao and Yuan Advances in Difference Equations  (2016) 2016:280 
DOI 10.1186/s13662-016-1010-4

R E S E A R C H Open Access

Persistence and stability of the
disease-free equilibrium in a stochastic
epidemic model with imperfect vaccine
Dianli Zhao* and Sanling Yuan*

*Correspondence:
Tc_zhaodianli@139.com;
math-ysling@163.com
College of Science, University of
Shanghai for Science and
Technology, Shanghai, 200093,
China

Abstract
This paper concerns the dynamics of a stochastic SIVR epidemic model with
imperfect vaccine where, differently from the epidemic model with perfect vaccine,
the vaccinated is perturbed by the noise. This difference is the main difficulty to be
conquered to give the threshold RS0. Firstly, R

S
0 > 1 is proved to be sufficient for

persistence in mean of the system. Then, three conditions for the disease to die out
are given, which improve the previously known results on extinction of the disease. In
case that the disease goes extinct, we show that the disease-free equilibrium is
almost surely stable by using the nonnegative semimartingale convergence theorem.
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1 Introduction
Up to now, there are a lot of literatures on studying the disease showing that the deter-
ministic and stochastic differential equations are often effective tools in describing the
spread of a disease in real world; for more information, we refer to [–] and the refer-
ences therein. The related known results also show us that finding the threshold value
for the stochastic epidemic systems is extremely difficult and exciting; see, for example,
[–].

Recently, inspired by works [, ], Tornatore et al. [] formulated and studied a stochas-
tic SIVR epidemic model by assuming that the average number of contacts per infective
per unit time β is perturbed by environmental noise with β → β + σ Ḃ(t), where B(t) is a
standard Brownian motion on complete probability space (�,F , (Ft)t≥,P) with intensity
σ  > . This stochastic SIVR model reads as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS = [μ – (μ + φ)S – βSI] dt – σSI dB(t),
dI = [β(S + ηV )I – (μ + γ )I] dt + σ (S + ηV )I dB(t),
dV = (φS – ηβVI – μV ) dt – σηVI dB(t),
dR = (γ I – μR) dt,

()

where the population is divided into four classes: susceptible, infective, vaccinated, and
removed, denoted by S, I , V , and R, respectively; μ means the natural death rate of S,
I , V , and R compartments; the birth occurs in the system with the same rate of death;
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and γ shows the rate of the infective going back in the susceptible class. It is assumed
that, in the unit time, a fraction φ of the susceptible class is vaccinated. Considering that
the vaccination may reduce, but not completely eliminate, susceptibility to infection, a
factor η ( ≤ η ≤ ) is introduced, where η =  means that the vaccine is perfectly effective,
and η =  means that the vaccine has no effect. Throughout the paper, we assume that all
parameter values are nonnegative and μ > . In [], the authors have shown that the
model permits solutions that are almost surely positive, and a theorem on exponential
stability in mean square is proved under the condition

β

μ + γ
+

( + η)σ 


≤ 

 + η
. ()

Subsequently to the work of [], Witbooi et al. [] verified that the disease-free equilib-
rium point is almost surely exponentially stable if β

μ+γ
< , which improves condition ().

However, for model (), there are two basic and interesting questions yet to be answered:

Question A Under what conditions, will the disease be persistent?

Question B Does there exist a threshold under suitable condition, which is above one or
below one, completely determining the persistence and extinction of the disease?

Considering these factors, in this paper, we focus our attention on model () to (I): ob-
taining explicit conditions that can ensure the disease to be persistent; (II): further devel-
oping the conditions for the infectious class to be extinct. Then, by comparison we give
a threshold whose value below one or above one can determine the extinction and per-
sistence of the epidemic under a mild extra condition. Finally, the obtained results are
extended to the model studied by Tornatore et al. [].

Comparing with models studied in [, ], the main difference is that the vaccination
number considered in this paper is perturbed by the Brownian noise. This difference is
the main difficulty to be conquered in establishing the threshold for model (), which, to
the best of our knowledge, has never been discussed in the previously known literature.

Remark  Tornatore et al. [] have proved that system () has a unique positive solu-
tion (S(t), I(t), V (t), R(t)) on t ≥ , with probability , for any initial value (S(), I(), V (),
R()) ∈ R

+.

From Remark  it is clear that a positive invariant set of system () can be given by

� =
{

(S, I, V , R) : S > , I > , V > , R > , S + I + V + R ≤  a.s.
}

.

Without loss of generality, we set S + I + V + R = . In the sequel, we denote 〈x(t)〉 =

t
∫ t

 x(s) ds. Define the important parameter

RS
 =


μ + γ

[

β
μ + ηφ

μ + φ
–

σ 



(
μ + ηφ

μ + φ

)]

.

The rest of the paper is organized as follows. In Section , we prove that the disease will
persist if RS

 > . For RS
 below , in Section , we show that the disease goes extinct ex-
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ponentially when the noise is small. Then, by using the nonnegative semimartingale con-
vergence theorem, we prove the stability of the disease-free equilibrium. In Section , the
obtained results are extended to study the threshold value of a stochastic SIVS epidemic
model. Finally, numerical simulations are introduced to support the obtained results.

2 Persistence in mean
Theorem . Let (S(t), I(t), V (t), R(t)) be a solution of system () with initial value
(S(), I(), V (), R()) ∈ �. If RS

 > , then the disease will be persistent in mean, that is,

lim inf
t→∞

〈
I(t)

〉 ≥ μ + γ

D
(
RS

 – 
)

>  a.s., ()

where D = σ

 ( φ(–η)η(μ+γ )
μ + σ

μ
+ βφ(–η)

μ(μ+φ) + β
φ(–η)+μφ(–η)

μ(μ+φ) ) +β(η + ηγ

μ
+ (–η)β

μ+φ
). Moreover,

lim inf
t→∞


t

∫ t


S(s) ds ≥ μ

μ + γ + β
a.s.,

lim inf
t→∞


t

∫ t


V (s) ds ≥ φμ

(μ + ηβ)(μ + γ + β)
a.s.,

and

lim inf
t→∞


t

∫ t


R(s) ds ≥ γ (μ + γ )

Dμ

(
RS

 – 
)

a.s.

To prove Theorem ., we firstly prepare some lemmas.

Lemma . (See, e.g., [], Lemma .) Let M(t), t ≥ , be a continuous local martingale
with M() =  . Let θ > , and let υk and γk be two sequences of positive numbers with
υk → ∞. Then, for almost all ω ∈ �, there exists a random integer k = k(ω) such that, for
all k ≥ k,

M(t) ≤ 

γk〈M, M〉(t) +

θ

γk
ln k,  ≤ t ≤ υk ,

where 〈M, M〉(t) is the quadratic variation of M(t).

Lemma . Let g(t) be a continuous bounded function on [,∞). Then

lim sup
t→∞

√
t ln t

∣
∣
∣
∣

∫ t


g(s) dB(s)

∣
∣
∣
∣ ≤  a.s., ()

and, for any constant ξ > ,

lim sup
t→∞

√
t ln t

∣
∣
∣
∣

∫ t


g(s)e–ξ (t–s) dB(s)

∣
∣
∣
∣ ≤  a.s. ()

Proof By choosing γk = √
k

, υk = k, and θ =  in Lemma ., for sufficiently large k and
k –  < t ≤ k, we have

∫ t


g(s) dB(s) ≤ 


√

k

∫ t


g(s) ds +

√
k ln k ≤ t


√

k
sup
s≥

{
g(s)

}
+

√
k ln k a.s.
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By applying Lemma . to –
∫ t

 g(s) dB(s) we have

–
∫ t


g(s) dB(s) ≤ t


√

k
sup
s≥

{
g(s)

}
+

√
k ln k a.s.

Then, it follows that

∣
∣
∣
∣

∫ t


g(s) dB(s)

∣
∣
∣
∣ ≤ t


√

k
sup
s≥

{
g(s)

}
+

√
k ln k a.s.

Noting that k –  < t ≤ k, this yields that

sup
k–<t≤k

{∣
∣
∣
∣

∫ t


g(s) dB(s)

∣
∣
∣
∣

}

≤
√

t


sup
s≥

{
g(s)

}
+

√
t +  ln(t + ) a.s.

This leads to

lim sup
t→∞

|∫ t
 g(s) dB(s)|√

t ln t
≤ lim sup

t→∞

√
t

 sups≥{g(s)} +
√

t +  ln(t + )√
t ln t

=  a.s.

To prove (), we choose γk = e–ξ (k–)√
k

, υk = k, and θ =  in Lemma .. Then, for k –  <
t ≤ k,

∣
∣
∣
∣

∫ t


g(s)e–ξ (t–s) dB(s)

∣
∣
∣
∣

= e–ξ t
∣
∣
∣
∣

∫ t


g(s)eξ s dB(s)

∣
∣
∣
∣ ≤ e–ξ t

(



e–ξ (k–)
√

k

∫ t


g(s)eξ s ds + eξ (k–)

√
k ln k

)

≤ e–ξ t
(

e–ξ (k–)eξ t

ξ
√

k
sup
s≥

{
g(s)

}
+ eξ (k–)

√
k ln k

)

≤ eξ

ξ
√

t
sup
s≥

{
g(s)

}
+

√
t +  ln(t + ) a.s.

It follows that

lim sup
t→∞

|∫ t
 g(s)e–ξ (t–s) dB(s)|√

t ln t
≤ lim sup

t→∞

eξ

ξ
√

t sups≥{g(s)} +
√

t +  ln(t + )
√

t ln t
=  a.s.

The proof is complete. �

Lemma . Let (S(t), I(t), V (t), R(t)) be a solution of system () with initial value (S(), I(),
V (), R()) ∈ �. Then

S(t) + ηV (t) =
μ + ηφ

μ + φ
– H

(
t, I(t)

)
+ ϕ(t) – ( – η)σ

∫ t


S(s)I(s)e–(μ+φ)(t–s) dB(s), ()

where

H
(
t, I(t)

)
=

(

ηI + ηγ

∫ t


I(s)e–μ(t–s) ds + ( – η)β

∫ t


S(s)I(s)e–(μ+φ)(t–s) ds

)
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and

ϕ(t) = –( – η)
(

μ

μ + φ
– S()

)

e–(μ+φ)t .

Proof From () we get

R(t) = R()e–μt + γ

∫ t


I(s)e–μ(t–s) ds ()

and

S(t) =
μ

μ + φ
–

(
μ

μ + φ
– S()

)

e–(μ+φ)t – β

∫ t


S(s)I(s)e–(μ+φ)(t–s) ds

– σ

∫ t


S(s)I(s)e–(μ+φ)(t–s) dB(s). ()

Then we can compute that

S(t) + ηV (t)

= η
(
S(t) + V (t)

)
+ ( – η)S(t)

= η

(

 –
[
S() + I() + V () + R() – 

]
e–μt – I(t) – R()e–μt – γ

∫ t


I(s)e–μ(t–s) ds

)

+ ( – η)
[

μ

μ + φ
–

(
μ

μ + φ
– S()

)

e–(μ+φ)t
]

– ( – η)
[

β

∫ t


S(s)I(s)e–(μ+φ)(t–s) ds + σ

∫ t


S(s)I(s)e–(μ+φ)(t–s) dB(s)

]

. ()

The proof is complete. �

Proof of Theorem . Applying Itô’s formula to system () and then integrating lead to


t

ln
I(t)
I()

= β
〈
S(t) + ηV (t)

〉
– (μ + γ ) –

σ 


〈(

S(t) + ηV (t)
)〉 +

σM(t)
t

, ()

where M(t) =
∫ t

 (S(s) + ηV (s)) dB(s) is a martingale. By Lemma . we have

〈
S(t) + ηV (t)

〉
=

μ + ηφ

μ + φ
–

〈
H

(
t, I(t)

)〉
–

〈
ϕ(t)

〉
– ( – η)σ

K(t)
t

, ()

where

〈
H

(
t, I(t)

)〉
=

〈

ηI(t) + ηγ

∫ t


I(s)e–μ(t–s) ds + ( – η)β

∫ t


S(s)I(s)e–(μ+φ)(t–s) ds

〉

≤
(

η +
ηγ

μ
+

( – η)β
μ + φ

)
〈
I(t)

〉
()

and

K(t) =
∫ t



∫ v


S(s)I(s)e–(μ+φ)(v–s) dB(s) dv.
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Next, we compute 〈(S(t) + ηV (t))〉. From () we have

dS =
[
μ – (μ + φ)S – βSI

]
dt – σSI dB(t),

dS =
[
μS – (μ + φ)S – βSI + σ SI]dt – σSI dB(t),

d(S + ηV ) =
[
μ – μ(S + ηV ) – φ( – η)S – βSI – ηβVI

]
dt – σ

(
S + ηV

)
I dB(t),

d(S + ηV ) =
[
μ(S + ηV ) – μ(S + ηV ) – φ( – η)S – φ( – η)ηS

+ φ( – η)ηS(I + R) – (S + ηV )
(
βS + ηβV

)
I

+ σ (S + ηV
)I]dt – σ (S + ηV )

(
S + ηV

)
I dB(t).

The last equality is obtained by using S(t) + I(t) + V (t) + R(t) = . Denoting

�(t) =
(S(t) + ηV (t))

μ
+

S(t) + ηV (t)
μ

–
φ( – η)

μ

S(t)
(μ + φ)

–
(

φ( – η) + μφ( – η)
μ(μ + φ)

)
S(t)

μ + φ
,

it follows that

〈(
S(t) + ηV (t)

)〉 =
(

μ + φη

μ + φ

)

+
〈
H

(
t, I(t)

)〉
+

M(t)
t

–
�(t) – �()

t
, ()

where

M(t) =
∫ t



[

–
σ

μ

(
S(s) + ηV (s)

)(
S(s) + ηV (s)

)
–

σ

μ

(
S(s) + ηV (s)

)
+

φ( – η)σ

μ(μ + φ)
S(s)

+
(

φ( – η) + μφ( – η)
μ(μ + φ)

)

σS(s)
]

I(s) dB(s)

and

H
(
t, I(t)

)
=

φ( – η)η
μ

S(t)
(
I(t) + R(t)

)
–


μ

(
S(t) + ηV (t)

)(
βS(t) + ηβV (t)

)
I(t)

+
σ 

μ

(
S(t) + ηV (t)

)I(t) –
β

μ
S(t)I(t) –

ηβ

μ
V (t)I(t)

+
βφ( – η)

μ(μ + φ)
S(t)I(t) –

φ( – η)σ 

μ(μ + φ)
S(t)I(t)

+
(

φ( – η) + μφ( – η)
μ(μ + φ)

)

βS(t)I(t),

so that

〈
H

(
t, I(t)

)〉 ≤
[

φ( – η)η
μ

+
σ 

μ
+

βφ( – η)

μ(μ + φ)
+ β

φ( – η) + μφ( – η)
μ(μ + φ)

]
〈
I(t)

〉

+
φ( – η)η

μ

〈
R(t)

〉
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≤
[

φ( – η)η(μ + γ )
μ +

σ 

μ
+

βφ( – η)

μ(μ + φ)
+ β

φ( – η) + μφ( – η)
μ(μ + φ)

]

× 〈
I(t)

〉

–
φ( – η)η

μ

R(t) – R()
t

. ()

Combing () and ()-(), we obtain


t

ln
I(t)
I()

= β
μ + ηφ

μ + φ
– (μ + γ ) –

σ 



(
μ + φη

μ + φ

)

– β
〈
H

(
t, I(t)

)〉
–

σ 


〈
H

(
t, I(t)

)〉

– β
〈
ϕ(t)

〉
+

σ 


�(t) – �()

t
– ( – η)σβ

K(t)
t

–
σ 


M(t)

t
+

σM(t)
t

≥ (μ + γ )
(
RS

 – 
)

– D
〈
I(t)

〉
– β

〈
ϕ(t)

〉
+

σ 


�(t) – �()

t

–
σ 


φ( – η)η

μ

R(t) – R()
t

– ( – η)σβ
K(t)

t

–
σ 


M(t)

t
+

σM(t)
t

. ()

Integration by parts yields

K(t) =


μ + φ

(∫ t


S(s)I(s) dB(s) –

∫ t


S(s)I(s)e–(μ+φ)(t–s) dB(s)

)

.

Noting that (S(t), I(t), V (t), R(t)) ∈ � and using Lemma ., we have that

lim
t→∞

〈
ϕ(t)

〉
= , lim

t→∞
�(t) – �()

t
= , lim

t→∞
R(t) – R()

t
= ; ()

lim
t→∞

K(t)
t

= , lim
t→∞

M(t)
t

= , lim
t→∞

M(t)
t

= ; and

lim sup
t→∞


t

ln
I(t)
I()

≤ lim sup
t→∞


t

ln


I()
≤ .

()

These, together with (), show us that

lim inf
t→∞

〈
I(t)

〉 ≥ μ + γ

D
(
RS

 – 
)

> .

Next, to prove that system () is persistent in mean, it remains to prove that S, V , and R
are persistent. From () we have

S(t) – S()
t

+
σ

t

∫ t


S(s)I(s) dB(s) = μ – (μ + φ)

〈
S(t)

〉
– β

〈
S(t)I(t)

〉

≥ μ – (μ + φ + β)
〈
S(t)

〉
,

V (t) – V ()
t

+
ση

t

∫ t


V (s)I(s) dB(s) = φ

〈
S(t)

〉
– ηβV

〈
V (t)I(t)

〉
– μ

〈
V (t)

〉

≥ φ
〈
S(t)

〉
– (ηβ + μ)

〈
V (t)

〉
,
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and

R(t) – R()
t

= γ
〈
I(t)

〉
– μ

〈
R(t)

〉
.

By Lemma . these yield

lim inf
t→∞

〈
S(t)

〉 ≥ μ

μ + φ + β
a.s., ()

lim inf
t→∞

〈
V (t)

〉 ≥ φμ

(ηβ + μ)(μ + φ + β)
a.s.,

and

lim inf
t→∞

〈
R(t)

〉 ≥ γ

μ
lim inf

t→∞
〈
I(t)

〉
a.s.

The proof is complete. �

Remark  In Theorem ., if φ > , then the population in any one of four states will be
persistent, and system () is persistent in mean. If φ = , then the vaccination is perfectly
effective, and the number of the vaccinated class tends to zero due to the effect of the
environmental noise, and the obtained result is consistent with that in [].

3 Stability of the disease-free equilibrium
Theorem . Let (S(t), I(t), V (t), R(t)) be a solution of system () with initial value
(S(), I(), V (), R()) ∈ �. Suppose that one of the following three assumptions holds:

(A)
β

σ  < μ + γ ;

(B) β
μ + ηφ

μ + φ
– (μ + γ ) –

μσ 

(μ + φ + β) < ;

(C) σ  μ + ηφ

μ + φ
≤ β and RS

 < .

Then the disease almost surely exponentially dies out, that is,

lim sup
t→∞


t

ln
I(t)
I()

≤ β

σ  – (μ + γ ) <  a.s. if (A) holds; ()

lim sup
t→∞


t

ln
I(t)
I()

≤ β
μ + ηφ

μ + φ
– (μ + γ ) –

μσ 

(μ + φ + β) <  a.s. if (B) holds; ()

lim sup
t→∞


t

ln
I(t)
I()

≤ (μ + γ )
(
RS

 – 
)

<  a.s. if (C) holds. ()
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Proof If (A) holds, then by () we have


t

ln
I(t)
I()

≤ β
〈
S(t) + ηV (t)

〉
– (μ + γ ) –

σ 


〈(

S(t) + ηV (t)
)〉 +

σM(t)
t

≤ β

σ  – (μ + γ ) –
σ 



[
〈
S(t) + ηV (t)

〉
–

β

σ 

]

+
σM(t)

t

≤ β

σ  – (μ + γ ) +
σM(t)

t
.

The desired result can be derived by using ().
If (B) holds, then by ()


t

ln
I(t)
I()

= β
〈
S(t) + ηV (t)

〉
– (μ + γ ) –

σ 


〈(

S(t) + ηV (t)
)〉 +

σM(t)
t

≤ β
μ + ηφ

μ + φ
– (μ + γ ) –

σ 


〈
S(t)

〉 +
σM(t)

t
– β

〈
ϕ(t)

〉
– ( – η)σβ

K(t)
t

. ()

By applying (), (), and () we get

lim sup
t→∞


t

ln
I(t)
I()

≤ β
μ + ηφ

μ + φ
– (μ + γ ) –

μσ 

(μ + φ + β) < .

If (C) holds, then by ()


t

ln
I(t)
I()

≤ β
〈
S(t) + ηV (t)

〉
– (μ + γ ) –

σ 


〈
S(t) + ηV (t)

〉 +
σM(t)

t

≤ β
μ + ηφ

μ + φ
– (μ + γ ) –

σ 



(
μ + ηφ

μ + φ

)

+
(

σ  μ + ηφ

μ + φ
– β

)
〈
H

(
t, I(t)

)〉

+ �(t),

where

�(t) = 
(

μ + ηφ

μ + φ
–

〈
H

(
t, I(t)

)〉
)[

〈
ϕ(t)

〉
– ( – η)σ

K(t)
t

]

+
[
〈
ϕ(t)

〉
– ( – η)σ

K(t)
t

]

.

Noting that () and () imply limt→∞ �(t) = , we have

lim sup
t→∞


t

ln
I(t)
I()

≤ (μ + γ )
(
RS

 – 
)

<  a.s.

In summary, if one of the three assumptions holds, then the disease will die out exponen-
tially. The proof is complete. �

Theorem . Suppose that the conditions in Theorem . hold. Then the disease-free equi-
librium point (S, I, V, R) = ( μ

μ+φ
, , φ

μ+φ
, ) is almost surely stable, namely,

(
S(t), I(t), V (t), R(t)

) → (S, I, V, R) a.s. as t → ∞.

The following results are needed for the proof of Theorem ..
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Lemma . (See, e.g., [], Thm. .) Let A(t) and U(t) be two continuous adapted in-
creasing process on t ≥  with A() = U() =  a.s. Let M(t) be a real-valued continu-
ous local martingale with M() =  a.s. Let X be a nonnegative F-measurable random
variable such that EX < ∞. Define X(t) = X + A(t) – U(t) + M(t) for all t ≥ . If X(t) is
nonnegative, then limt→∞ A(t) < ∞ implies that limt→∞ U(t) < ∞, limt→∞ X(t) < ∞, and
–∞ < limt→∞ M(t) < ∞ a.s.

Consider the equation

x(t) = x(t) +
∫ t

t

f
(
s, x(s)

)
ds +

∫ t

t

g
(
s, x(s)

)
dB̃(s), x ∈ Rn, t ∈ R. ()

Here, B̃(s) is an m-dimensional Brownian motion.

Lemma . (See, e.g., [], Lemma .) Suppose that:
(C) The functions f and g satisfy the local Lipschitz and linear growth conditions;
(C) supt≥{E|x(t)|p} < ∞, where | · | is the Euclidean norm in Rn.
Then almost every sample path of

∫ t
 g(s, x(s)) dB̃(s) is uniformly continuous on t ≥ .

Lemma . (See, e.g., [], Lemma .) Let h be a nonnegative function defined on [,∞)
that is integrable on [,∞) and uniformly continuous on [,∞). Then limt→∞ h(t) = .

Proof By applying Itô’s formula to the first equation in (),

d
(

μ

μ + φ
– S

)

=
[

–(μ + φ)
(

μ

μ + φ
– S

)

+ βSI
(

μ

μ + φ
– S

)

+ σ SI
]

dt

+ σSI
(

μ

μ + φ
– S

)

dB(t).

Then integrating this formula and rearranging the expression, we have

∫ t



(
μ

μ + φ
– S(s)

)

ds

=


(μ + φ)

[

S(t) – S() + β

∫ t


S(s)I(s)

(
μ

μ + φ
– S(s)

)

ds
]

+


(μ + φ)

∫ t


σ S(s)I(s) ds +

σ

μ + φ

∫ t


βS(s)I(s)

(
μ

μ + φ
– S(s)

)

dB(s)

≤ 
(μ + φ)

[

 + β
μ

μ + φ

∫ t


I(s) ds + σ 

∫ t


I(s) ds

]

+ M̃(t),

where M̃(t) = βσ

μ+φ

∫ t
 S(s)I(s)( μ

μ+φ
– S(s)) dB(s) is a continuous local martingale. Let

X(t) =


(μ + φ)

[

 + β
μ

μ + φ

∫ t


I(s) ds + σ 

∫ t


I(s) ds

]

+ M̃(t)
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with X() = 
(μ+φ) . Clearly, X(t) ≥ ∫ t

 ( μ

μ+φ
– S(s)) ds ≥ . By Theorem ., I(t) exponen-

tially tends to , which implies that


(μ + φ)

[

β
μ

μ + φ

∫ t


I(s) ds + σ 

∫ t


I(s) ds

]

< ∞ a.s.

Then, by Lemma . we have

lim
t→∞ X(t) < ∞ a.s.

By the stochastic comparison theorem we get

∫ t



(
μ

μ + φ
– S(s)

)

ds < ∞ a.s. ()

Next, we prove that S(t) is uniformly continuous. Denote x = (S, I, V , R) in (). Noting
that (S(t), I(t), V (t), R(t)) ∈ �, we can easily check that the coefficients of () satisfy the
local Lipschitz and linear growth conditions. In addition,

sup
t≥

{
E
√

S(t) + I(t) + V (t) + R(t)
p} ≤ .

Then, by Lemma .,
∫ t

 g(s, x(s)) dB̃(s) is almost uniformly continuous along every sample
path. At the same time,

∫ t
 f (s, x(s)) ds is almost uniformly continuous along every sam-

ple path due to the boundedness of x. So x(t) is uniformly continuous, and hence S(t) is
uniformly continuous. Then by applying Lemma . to () we get

lim
t→∞ S(t) =

μ

μ + φ
a.s.

By the L’Hospital rule,

lim
t→∞ R(t) = lim

t→∞ R()e–μt + lim
t→∞γ

∫ t


I(s)e–μ(t–s) ds =

γ

μ
lim

t→∞ I(t) =  a.s.

Then

lim
t→∞ V (t) =

φ

μ + φ
a.s.

To this end, we show that the disease-free equilibrium point (S, I, V, R) = ( μ

μ+φ
, ,

φ

μ+φ
, ) is almost surely stable. �

Remark  Theorem . implies that the disease will go extinct with probability one. More
specifically,

• () and () show us that large noise will exponentially suppress the epidemic from
prevailing.

• By (), when the noise is small, RS
 <  is sufficient for ensuring the infectious class to

go extinct. This, together with Theorem ., leads to the conclusion that RS
 can be

considered as the threshold whose value above one or below one completely
determines the persistence and extinction of the disease in case that the noise is small.



Zhao and Yuan Advances in Difference Equations  (2016) 2016:280 Page 12 of 14

Remark  Note that β

μ+γ
+ (+η)σ

 ≤ 
+η

implies β

μ+γ
< 

+η
≤ . Then, it follows that

β
μ + ηφ

μ + φ
– (μ + γ ) –

μσ 

(μ + φ + β)

= (μ + γ )
[

β

μ + γ

μ + ηφ

μ + φ
–  –

μσ 

(μ + γ )(μ + φ + β)

]

≤ (μ + γ )
[

β

μ + γ
– 

]

< .

Therefore, Theorem . gives the weakened conditions for extinction of the infective class
than those in [, ].

4 Extended results: threshold of the stochastic SIVS epidemic model
To model the disease dynamic, when we suppose that the vaccination loses its effect at a
proportional rate θ , and a fraction λ of infective goes back in the susceptible class, then
model () will be rewritten as the model considered by Tornatore et al. []. This model
has the form

⎧
⎪⎨

⎪⎩

dS = [μ – (μ + φ)S – βSI + λI + θV ] dt – σSI dB(t),
dI = [β(S + ηV )I – (μ + λ)I] dt + σ (S + ηV )I dB(t),
dV = (φS – ηβVI – (μ + θ )V ) dt – σηVI dB(t).

()

The existence of the solution and stability of disease-free equilibrium have been studied
by Tornatore et al. []. However, the questions A and B are still left to be studied for
this model. In the following, we will mainly establish the threshold result for model ().
Without loss of generality, we study the model on the positive invariant set

�̃ =
{

(S, I, V ) : S > , I > , V > , S + I + V =  a.s.
}

.

From () we compute that

S(t) + ηV (t)

=
μ + θ + ηφ

μ + φ + θ
– ηI(t) + ( – η)

[

S() –
μ + θ

μ + φ + θ

]

e–(μ+φ+θ )t

– β( – η)
∫ t


e–(μ+φ+θ )(t–s)S(s)I(s) ds + (λ – θ )( – η)

∫ t


e–(μ+φ+θ )(t–s)I(s) ds

– σ ( – η)
∫ t


e–(μ+φ+θ )(t–s)S(s)I(s) dB(s).

By defining

R̃ =


μ + λ

[

β
μ + θ + ηφ

μ + φ + θ
–

σ 



(
μ + θ + ηφ

μ + φ + θ

)]

we get the following theorem.

Theorem . Let (S(t), I(t), V (t)) be a solution of system () with initial value (S(), I(),
V ()) ∈ �̃.
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Figure 1 Simulations for the SDE model (1) with the parameters in Example 1.

Figure 2 Simulations for the SDE model (1) with the parameters in Example 2.

(I) If R̃ > , then the disease will be persistent in mean.
(II) If σ  μ+θ+ηφ

μ+φ+θ
≤ μ + λ and R̃ < , then the disease almost surely exponentially dies out.

The proof of Theorem . is omitted for similarity. Clearly, under the mild extra condi-
tion σ  μ+θ+ηφ

μ+φ+θ
≤ μ + λ, the disease will die out exponentially if R̃ < , and the disease will

be persistent in mean if R̃ > . So we consider R̃ as a threshold of model ().

5 Computer simulations
In this section, we will deal with two examples with simulation by the method proposed
in [] to show the results obtained in this paper.

Example  In model (), we set β = ., μ = ., γ = ., η = ., φ = ., and σ = .. The
initial value is (S(), I(), V (), R()) = (., ., ., .).

We compute that

RS
 =


μ + γ

[

β
μ + ηφ

μ + φ
–

σ 



(
μ + ηφ

μ + φ

)]

= . > .

Then Theorem . implies that the system will persist in time average, as shown by the
following four pictures in Figure .



Zhao and Yuan Advances in Difference Equations  (2016) 2016:280 Page 14 of 14

Example  Let the noise intensity σ = ., and all the other parameters be the same as in
Example .

We can compute that 
μ+γ

[β μ+ηφ

μ+φ
] = . > . By the results given in [, ], we cannot

be sure that the disease will go extinct or not. However, note that RS
 = . < , Theo-

rem . shows that the disease will almost surely go extinct, which means that large noise
may greatly change the properties of the epidemic models. Furthermore, by Theorem .
the disease-free equilibrium (., , ., ) is stable with probability one. The computer
simulations of Figure  support this.
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