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Abstract
In this paper, we propose a stochastic ratio-dependent one-predator and
two-mutualistic-preys model perturbed by white and telegraph noise. By the
M-matrix analysis and Lyapunov functions, sufficient conditions of stochastic
permanence and extinction are established. These conditions are all dependent on
the parameters of subsystems and the stationary probability distribution of the
Markov chain. We also obtain the boundary of limit superior and inferior of the
average in time of the solution under stochastic permanence. Finally, we give two
examples and numerical simulations to illustrate main results.
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1 Introduction
Mutualism plays a key part in ecology, and many researchers have proposed different
mathematical models to describe the mutualistic interaction [–]. For example, moti-
vated by Holling type II functional response [], Wright [] established the Holling type II
mutualistic model:{

ẋ(t) = x(t)(a + by(t)
k+y(t) – cx(t)),

ẏ(t) = y(t)(a + bx(t)
k+x(t) – cy(t)).

(.)

For the biological meaning of parameters in the above model, please refer to [, , ].
Besides, many researchers have paid attention to the predator-prey model due to the

universality of predator-prey interaction in the natural world. For the predator-prey
model, the functional response is critical. Predator-prey models with Holling types I, II and
III functional responses were investigated in [–]. The functional responses mentioned
above are prey-dependent. But some mathematical analysis, laboratory experiments and
observations [–] showed that in some circumstances, especially when predators had
to search for food (and therefore had to share or strive for food), the ratio-dependent
form of the functional response was more realistic and suitable. Based on Holling type
II functional response αx

β+x , the predator-prey model with a typical ratio-dependent-type
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functional response αx
x+βy has been further studied, such as [, ]. However, the Holling

type III form αx

β+x is more successful in describing the feeding by vertebral predators com-
pared to the Holling type II form, which is more suitable for the feeding by insects [].
And researchers have considered the ratio-dependent predator-prey model with Holling
type III functional response [, ].

Moreover, by considering the coexistence of antagonism, mutualism and competition,
Mougi and Kondoh [] showed that interaction-type diversity generally enhanced stabil-
ity of complex communities. But limited work is available on predator-prey model with
mutualism. Motivated by the above ideas, we consider the following ratio-dependent one-
predator and two-mutualistic-preys model with Holling type III functional response:⎧⎪⎪⎨

⎪⎪⎩
ẋ(t) = x(a + by

k+y – cx – exz
x+fz ),

ẏ(t) = y(a + bx
k+x – cy – eyz

y+fz ),
ż(t) = z(–a + ex

x+fz + ey

y+fz – cz),
(.)

where species x, y are two mutualistic preys and z is the predator. Please notice that we
drop t from x(t), y(t) and z(t) in model (.) and do that throughout this paper.

However, it is not enough to only consider certain factors. The biological system is more
or less affected by stochastic fluctuations. One of these general fluctuations is white noise.
Recently, many authors have studied stochastic models with white noise, such as [, ,
]. This literature showed that taking white noise into account, the system would change
significantly. In this paper, we assume that white noise affects the intrinsic birth rate and
death rate, that is,

a → a + σḂ(t), a → a + σḂ(t), –a → –a + σḂ(t),

where B(t), denoting white noise, is the standard Brownian motion, and σ 
j (j = , , )

denotes the intensity of white noise.
In addition to white noise, the biological system is inevitably affected by another envi-

ronment noise, that is, telegraph noise. This noise, which is distinguished by factors such
as rain falls and nutrition, can be represented by a switching among two or more regimes of
environment [, ]. Let {r(t), t ≥ } be a Markov chain controlling the switching among
regimes and taking values in a finite state space S = {, , . . . , N}. Then taking white and
telegraph noise into consideration, on the basis of model (.), we finally develop the fol-
lowing stochastic ratio-dependent one-predator and two-mutualistic-preys model with
Markovian switching and Holling type III functional response:⎧⎪⎪⎨

⎪⎪⎩
dx(t) = x(a(r(t)) + b(r(t))y

k(r(t))+y – c(r(t))x – e(r(t))xz
x+f(r(t))z ) dt + σ(r(t))x dB(t),

dy(t) = y(a(r(t)) + b(r(t))x
k(r(t))+x – c(r(t))y – e(r(t))yz

y+f(r(t))z ) dt + σ(r(t))y dB(t),

dz(t) = z(–a(r(t)) + e(r(t))x

x+f(r(t))z + e(r(t))y

y+f(r(t))z – c(r(t))z) dt + σ(r(t))z dB(t),
(.)

with the initial data x() > , y() > , z() > , r() = r ∈ S, where all parameters are
nonnegative. In regime i (i ∈ S), system (.) obeys⎧⎪⎪⎨

⎪⎪⎩
dx(t) = x(a(i) + b(i)y

k(i)+y – c(i)x – e(i)xz
x+f(i)z ) dt + σ(i)x dB(t),

dy(t) = y(a(i) + b(i)x
k(i)+x – c(i)y – e(i)yz

y+f(i)z ) dt + σ(i)y dB(t),

dz(t) = z(–a(i) + e(i)x

x+f(i)z + e(i)y

y+f(i)z – c(i)z) dt + σ(i)z dB(t).
(.)
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Therefore, equation (.) is regarded as a subsystem of system (.). In this paper, our main
aim is to reveal how two kinds of environment noise, that is, white and telegraph noise,
affect permanence and extinction of system (.).

The stochastic differential equations controlled by a continuous Markov chain have
been applied to the population models with telegraph noise. Li et al. [] investigated
the logistic population system without intra-specific competition incorporating white and
telegraph noise, and mainly researched stochastic permanence and extinction. A two-
dimensional stochastic predator-prey model with Markovian switching was developed by
Ouyang and Li [], and they explored permanence and asymptotical behavior. Neverthe-
less, for the stochastic predator-prey model with Markovian switching, most of the work
focused on two-dimensional systems. To the best of our knowledge, there is no work on -
dimensional stochastic ratio-dependent predator-prey models with Markovian switching,
two mutualistic preys and Holling type III functional responses till now.

We arrange the rest of this paper as follows. In Section , we prepare some notations
and consider the existence and uniqueness of the solution of system (.). By means of
the M-matrix analysis and Lyapunov functions, we study stochastically ultimate bound-
edness and stochastic permanence, and the sufficient condition of stochastic permanence
is given in Section . Section  gives the sample Lyapunov exponent and hence shows the
sufficient condition of extinction. We obtain the boundary of limit superior and inferior
of the average in time of the solution under stochastic permanence in Section . In Sec-
tion , we give two examples and make numerical simulations to illustrate main results.
In Section , we give conclusions.

2 Preliminaries
Throughout this paper, let (�,F ,P) be a complete probability space with the filtration
{Ft}t≥ satisfying the usual conditions (i.e. it is increasing and right continuous while F

contains all P-null sets). Denote by R̃
n
+ the nonnegative cone in R

n, and denote by R
n
+ the

positive cone in R
n. Denote by X(t) = (x(t), y(t), z(t)) a solution of system (.) and its norm

is defined by |X(t)| =
√

x(t) + y(t) + z(t).
Assume that r(t) is a right-continuous Markov chain taking values in the finite state

space S with the generator � = (γmn)N×N defined by

P
{

r(t + δ) = n|r(t) = m
}

=

{
γmnδ + o(δ), if n �= m,
 + γmnδ + o(δ), if n = m,

where δ > . Here γmn is the transition rate from regime m to regime n and γmn ≥  if
n �= m, while

γmm = –
N∑

n=,n�=m

γmn, ∀m ∈ S. (.)

We also assume that the Markov chain r(t) is independent of the Brownian motion B(t) and
irreducible (e.g., see []). Under this assumption, r(t) has a unique stationary probability
distribution π = (π,π, . . . ,πN ) ∈ R

×N , depending on the equation

π� =  (.)
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subject to

N∑
i=

πi =  and πi > , ∀i ∈ S.

Let L
Ft

(�;Rn) denote the family of Rn-valued Ft-measurable random variables ξ with
E|ξ | < ∞ and LFt (�;S) denote the family of S-valued Ft-measurable random variables.
Now consider an n-dimensional stochastic differential equation with Markovian switch-
ing,

dx(t) = f
(
x(t), r(t)

)
dt + g

(
x(t), r(t)

)
dB(t),

on t ≥  with initial data x() ∈ L
F

(�;Rn), r() ∈ LF (�;S) and

f : Rn × R̃+ × S →R
n, g : Rn × R̃+ × S →R

n.

Moreover, let C,(Rn × R̃+ × S;R) denote the family of all real-valued functions V (x, t, i)
on R

n × R̃+ × S which are continuously twice differentiable in x and once in t. If V ∈
C,(Rn × R̃+ × S;R), define an operator LV from R

n × R̃+ × S to R by

LV (x, t, i) = Vt(x, t, i) + Vx(x, t, i)f (x, i)

+



trace
[
gT (x, i)Vxx(x, t, i)g(x, i)

]
+

N∑
j=

γijV (x, t, j), (.)

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(
∂V (x, t, i)

∂x
,
∂V (x, t, i)

∂x
, . . . ,

∂V (x, t, i)
∂xn

)

and

Vxx(x, t, i) =
(

∂V (x, t, i)
∂xi ∂xj

)
n×n

.

For convenience and simplicity, we give the following notations:

ĝ = min
i∈S

g(i), ǧ = max
i∈S

g(i),

F
(
x, y, z, r(t)

)
= a

(
r(t)

)
+

b(r(t))y
k(r(t)) + y

– c
(
r(t)

)
x –

e(r(t))xz
x + f(r(t))z ,

F
(
x, y, z, r(t)

)
= a

(
r(t)

)
+

b(r(t))x
k(r(t)) + x

– c
(
r(t)

)
y –

e(r(t))yz
y + f(r(t))z ,

F
(
x, y, z, r(t)

)
= –a

(
r(t)

)
+

e(r(t))x

x + f(r(t))z +
e(r(t))y

y + f(r(t))z – c
(
r(t)

)
z.

Assumption A c(i) > , c(i) > , c(i) > , ∀i ∈ S.
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In order to study the dynamic behavior, we must first guarantee that there exists a
unique, positive, and global solution.

Theorem . Under Assumption A, there is a unique positive solution of system (.) on
t ≥ , which remains in R


+ with probability .

Proof Define a function V : R
+ × R̃+ × S →R+ by

V
(
X(t), t, i

)
= (x –  – log x) + (y –  – log y) + (z –  – log z).

This proof is standard, please refer to [, ] as we omit it. �

3 Stochastic permanence
In this section, we consider stochastic permanence and first study stochastically ultimate
boundedness.

Lemma . Let the three constants α,α,α > . Under Assumption A, there is a constant
H = H(α,α,α) >  such that the solution X(t) of system (.) satisfies

lim sup
t→∞

E
(
xα (t) + yα (t) + zα (t)

)≤ H.

Proof Define a function

V (x, y, z, t, i) = xα + yα + zα .

By means of the generalized Itô formula (e.g., see []), we get

LV (x, y, z, t, i)

=


α(α – )σ 

 (i)xα +


α(α – )σ 

 (i)yα +


α(α – )σ 

 (i)zα

+ αxα F(x, y, z, i) + αyα F(x, y, z, i) + αzα F(x, y, z, i).

Note that the coefficients of the higher order terms xα+, yα+, zα+ in the above equality
are all negative under Assumption A, there is a positive constant H := H(α,α,α) such
that

V (x, y, z, t, i) + LV (x, y, z, t, i) ≤ H.

Then applying the generalized Itô formula to etV (x, y, z, i), we get

L
(
etV (x, y, z, t, i)

)
= et[V (x, y, z, t, i) + LV (x, y, z, t, i)

]≤ Het .

Integrating both sides of d(etV (x, y, z, t, i)) from  to t, taking the expectation and taking
the limit superior, we finally obtain the desired conclusion. �

Theorem . Under Assumption A, system (.) is stochastically ultimately bounded.
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Proof By the definition of stochastically ultimate boundedness (e.g., see []), the conclu-
sion follows from Lemma . and Chebyshev’s inequality. �

Next we investigate stochastic permanence. Based on the above conclusion, we only
need to prove another inequality about stochastic permanence (e.g., see []). And one of
main methods in this section is the M-matrix analysis which was introduced by [] and
used in [, ].

Now we give notations, a lemma and some assumptions. Let A be a vector or a matrix.
Denote by A 	  all elements of A that are positive. Set

ZN×N =
{

A = (aij)N×N : aij ≤ , i �= j
}

.

Lemma . (e.g., see []) If A ∈ ZN×N , then the following statements are equivalent:
(i) A is a nonsingular M-matrix.

(ii) A is semi-positive; that is, there exists x 	  in R
N such that Ax 	 .

Assumption A For some n ∈ S, γin > , ∀i �= n.

Assumption A f(i) > , f(i) > , ∀i ∈ S, and
∑

i∈S πiq(i) > , where

q(i) = min

{
a(i) –

e(i)√
f̂

, a(i) –
e(i)√

f̂

, e(i) + e(i) – a(i)
}

–



max
{

σ 
 (i) + σ 

 (i), σ 
 (i) + σ 

 (i) + e(i) + e(i),

σ 
 (i) + σ 

 (i) + e(i) + e(i)
}

– max
{
σ 

 (i),σ 
 (i),σ 

 (i)
}

.

Assumption A For some i ∈ S, cj(i) >  (j = , , ), fk(i) >  (k = , ) and q(i) > , where
q(i) is defined in the above assumption.

The proof of stochastic permanence is rather long and technical. To make it more un-
derstandable, we divide the proof into several lemmas.

Lemma . Assumptions A and A imply that there exists a constant α >  such that the
matrix

G(α) = diag
{
β(α),β(α), . . . ,βN (α)

}
– � (.)

is a nonsingular M-matrix, where

βi(α) = q(i)α –  max
{
σ 

 (i),σ 
 (i),σ 

 (i)
}
α, i ∈ S. (.)

Proof This proof is common, please refer to [] as we omit it. �
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Lemma . Let f̂ >  and f̂ > . If there is a constant α >  such that G(α) is a nonsingular
M-matrix, then the solution X(t) of system (.) satisfies

lim sup
t→∞

E


xα(t)
≤ H(α), lim sup

t→∞
E


yα(t)

≤ H(α),

lim sup
t→∞

E


zα(t)
≤ H(α),

where H(α), H(α), H(α) are positive constants.

Proof Define

u =

x

, v =

y

, w =

z

.

By the generalized Itô formula, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du(t) = u(–a(r(t)) + σ 
 (r(t)) – b(r(t))

k(r(t))v+ + c(r(t))
u + e(r(t))uw

w+f(r(t))u ) dt
– σ(r(t))u dB(t),

dv(t) = v(–a(r(t)) + σ 
 (r(t)) – b(r(t))

k(r(t))u+ + c(r(t))
v + e(r(t))vw

w+f(r(t))v ) dt
– σ(r(t))v dB(t),

dw(t) = w(a(r(t)) + σ 
 (r(t)) – e(r(t))w

w+f(r(t))u – e(r(t))w

w+f(r(t))v + c(r(t))
w ) dt

– σ(r(t))w dB(t).

(.)

For given α > , by Lemma ., there exists a vector 
η = (η, . . . ,ηN )T 	  such that
G(α)
η 	 , that is,

βi(α)ηi –
N∑
j=

γijηj > , i ∈ S. (.)

Define again

V (u, v, w, t, i) = ηi
(
 + f̌u + f̌v + w)α .

By the generalized Itô formula, we have

LV (u, v, w, t, i)

= αηi f̌
(
 + f̌u + f̌v + w)α–

·
(


(
–a(i) + σ 

 (i)
)
u –

b(i)u

k(i)v + 
+ c(i)u +

e(i)uw
w + f(i)u

)

+ αηif̌
(
 + f̌u + f̌v + w)α–

·
(


(
–a(i) + σ 

 (i)
)
v –

b(i)v

k(i)u + 
+ c(i)v +

e(i)vw
w + f(i)v

)

+ αηi
(
 + f̌u + f̌v + w)α–

·
(


(
a(i) + σ 

 (i)
)
w –

e(i)w

w + f(i)u –
e(i)w

w + f(i)v + c(i)w
)
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+ αηi
(
 + f̌u + f̌v + w)α–[(f̌ + (α – )f̌ 

 u + f̌ f̌v + f̌w)σ 
 (i)u

+
(
f̌ + f̌ f̌u + (α – )f̌ 

 v + f̌w)σ 
 (i)v +

(
 + f̌u + f̌v + (α – )w)σ 

 (i)w

+ (α – )f̌ f̌σ(i)σ(i)uv + (α – )f̌σ(i)σ(i)uw

+ (α – )f̌σ(i)σ(i)vw] +
N∑
j=

γijηj
(
 + f̌u + f̌v + w)α

≤ (
 + f̌u + f̌v + w)α–

{
αηi f̌

(
f̌u + f̌v + w)u

(
e(i)√

f̂

– a(i) + σ 
 (i)

)

+ αηif̌
(
f̌u + f̌v + w)v

(
e(i)√

f̂

– a(i) + σ 
 (i)

)

+ αηi
[
w(a(i) + σ 

 (i) – e(i) – e(i)
)

+ f̌uw(a(i) + σ 
 (i)

)
+ f̌vw(a(i) + σ 

 (i)
)]

+ αηi
[
(α – )f 

 (i)σ 
 (i)u + (α – )f 

 (i)σ 
 (i)v + (α – )σ 

 (i)w

+ f̌ f̌uv(σ 
 (i) + σ 

 (i)
)

+ f̌uw(σ 
 (i) + σ 

 (i)
)

+ f̌vw(σ 
 (i) + σ 

 (i)
)

+ (α – )σ(i)σ(i)f̌ f̌uv + (α – )σ(i)σ(i)f̌uw

+ (α – )σ(i)σ(i)f̌vw] +
N∑
j=

γijηj
(
f̌u + f̌v + w) + H(u, v, w, i)

}

≤ (
 + f̌u + f̌v + w)α–

{
αηi

(
σ(i)f̌u + σ(i)f̌v + σ(i)w)

+ αηi
(
σ(i)f̌u – σ(i)f̌v – σ(i)w)

+ αηi
(
f̌u + f̌v + w)[f̌u

(
e(i)√

f̂

– a(i)
)

+ f̌v
(

e(i)√
f̂

– a(i)
)

+ w(a(i) – e(i) – e(i)
)]

+
αηi


max

{
σ 

 (i) + σ 
 (i), σ 

 (i) + σ 
 (i) + e(i) + e(i),

σ 
 (i) + σ 

 (i) + e(i) + e(i)
}(

f̌u + f̌v + w)

+
N∑
j=

γijηj
(
f̌u + f̌v + w) + H(u, v, w, i)

}

≤ (
 + f̌u + f̌v + w)α–

{(
f̌u + f̌v + w)

·
[

–αηi

(
min

{
a(i) –

e(i)√
f̂

, a(i) –
e(i)√

f̂

, e(i) + e(i) – a(i)
}

–



max
{

σ 
 (i) + σ 

 (i), σ 
 (i) + σ 

 (i) + e(i) + e(i),
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σ 
 (i) + σ 

 (i) + e(i) + e(i)
}

– max
{
σ 

 (i),σ 
 (i),σ 

 (i)
})

+ αηi max
{
σ 

 (i),σ 
 (i),σ 

 (i)
}

+
N∑
j=

γijηj

]
+ H(u, v, w, i)

}
,

where H(u, v, w, i) is a cubic polynomial as regards u, v, w. Under (.), there is a suffi-
ciently small constant l >  such that G(α)
η – l
η 	 , that is,

βi(α)ηi –
N∑
j=

γijηj – lηi > , i ∈ S. (.)

Applying the generalized Itô formula to eltV (u, v, w, t, i) and noticing (.), we obtain

L
[
eltV (u, v, w, t, i)

]
= leltV (u, v, w, t, i) + eltLV (u, v, w, t, i)

≤ elt

{
lηi
(
 + f̌u + f̌v + w)α +

(
 + f̌u + f̌v + w)α–

[(
f̌u + f̌v + w)

·
(

–βi(α)ηi +
N∑
j=

γijηj

)
+ H(u, v, w, i)

]}

≤ elt( + f̌u + f̌v + w)α–
{

–

[
βi(α)ηi –

N∑
j=

γijηj – lηi

]

· (f̌u + f̌v + w) + H(u, v, w, i)

}
,

where H(u, v, w, i) is also a cubic polynomial as regards u, v, w. By (.), it is obvious that
L[eltV (u, v, w, t, i)] ≤ Helt , where

H = max
i∈S

{
sup
t≥–τ

(
 + f̌u + f̌v + w)α–

{
–

[
βi(α)ηi –

N∑
j=

γijηj – lηi

]

· (f̌u + f̌v + w) + H(u, v, w, i)

}
, 

}
.

Thus,

lim sup
t→∞

E
(
 + f̌u(t) + f̌v(t) + w(t)

)α ≤ H

lη̂
.

Hence,

lim sup
t→∞

E


xα(t)
≤ H

lη̂f̌
α := H(α), lim sup

t→∞
E


yα(t)

≤ H

lη̂f̌
α := H(α),

lim sup
t→∞

E


zα(t)
≤ H

lη̂
:= H(α). �
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Theorem . Under Assumptions A, A and A, system (.) is stochastically permanent.

Proof The desired conclusion can be directly obtained by Lemma ., Lemma ., Cheby-
shev’s inequality and Theorem .. �

By a similar method to Theorem ., we directly get the following conclusion for sub-
system (.).

Corollary . Under Assumption A, subsystem (.) is stochastically permanent.

4 Extinction
In this section, we discuss the sample Lyapunov exponent of system (.) and hence get
the sufficient condition for three species to be extinct.

Theorem . The solution X(t) of system (.) has the property:

lim sup
t→∞

ln x(t)
t

≤
∑
i∈S

πi

(
a(i) + b(i) –



σ 

 (i)
)

a.s.,

lim sup
t→∞

ln y(t)
t

≤
∑
i∈S

πi

(
a(i) + b(i) –



σ 

 (i)
)

a.s.,

lim sup
t→∞

ln z(t)
t

≤
∑
i∈S

πi

(
e(i) + e(i) – a(i) –



σ 

 (i)
)

a.s.

Particularly, if

max

{∑
i∈S

πi

(
a(i) + b(i) –



σ 

 (i)
)

,
∑
i∈S

πi

(
a(i) + b(i) –



σ 

 (i)
)}

< ,

then

lim
t→∞ x(t) = , lim

t→∞ y(t) = , lim
t→∞ z(t) =  a.s.

Proof By the generalized Itô formula, we have

d ln x(t) =
(

a
(
r(t)

)
+

b(r(t))y
k(r(t)) + y

– c
(
r(t)

)
x –

e(r(t))xz
x + f(r(t))z –



σ 


(
r(t)

))
dt

+ σ
(
r(t)

)
dB(t)

≤
(

a
(
r(t)

)
+ b

(
r(t)

)
–



σ 


(
r(t)

))
dt + σ̌ dB(t).

Integrating from  to t on both sides of the above inequality, taking the limit superior, by
the strong law of large numbers and the ergodic property of Markov chain (e.g., see []),
note that lim t → ∞B(t)/t = , we obtain

lim sup
t→∞

ln x(t)
t

≤
∑
i∈S

πi

(
a(i) + b(i) –



σ 

 (i)
)

a.s.
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By the above same methods and procedures, we have

lim sup
t→∞

ln y(t)
t

≤
∑
i∈S

πi

(
a(i) + b(i) –



σ 

 (i)
)

a.s.,

lim sup
t→∞

ln z(t)
t

≤
∑
i∈S

πi

(
e(i) + e(i) – a(i) –



σ 

 (i)
)

a.s.

Particularly, if

max

{∑
i∈S

πi

(
a(i) + b(i) –



σ 

 (i)
)

,
∑
i∈S

πi

(
a(i) + b(i) –



σ 

 (i)
)}

< ,

then

lim
t→∞ x(t) = , lim

t→∞ y(t) =  a.s. (.)

Noticing that the third equation of system (.), it is clear that if (.) holds, then
limt→∞ z(t) =  a.s. �

On the basis of the above theorem, we directly give the following corollary as regards
the subsystem’s extinction.

Corollary . For subsystem (.), if the solution (x(t), y(t), z(t)) satisfies max{a(i) + b(i) –

σ 

 (i) < , a(i) + b(i) – 
σ 

 (i)} < , then

lim
t→∞ x(t) = , lim

t→∞ y(t) = , lim
t→∞ z(t) =  a.s.

5 Asymptotic properties
In this section, we consider asymptotic properties of system (.) and then obtain the
boundary of limit superior and inferior of the average in time of the solution under
stochastic permanence.

Lemma . Under Assumption A, the solution X(t) of system (.) satisfies

lim sup
t→∞

ln[x(t) + y(t) + z(t)]
ln t

≤  a.s.

Proof By the generalized Itô formula, we have

d
[
x(t) + y(t) + z(t)

]
=
(
F
(
x, y, z, r(t)

)
+ F

(
x, y, z, r(t)

)
+ F

(
x, y, z, r(t)

))
dt

+
(
σ
(
r(t)

)
x + σ

(
r(t)

)
y + σ

(
r(t)

)
z
)

dB(t)

≤ [
(ǎ + b̌)x + (ǎ + b̌)y + (ě + ě)z

]
dt

+
(
σ
(
r(t)

)
x + σ

(
r(t)

)
y + σ

(
r(t)

)
z
)

dB(t).
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Then let g � max{ǎ + b̌, ǎ + b̌, ě + ě}, we get

E
(

sup
t≤u≤t+

[
x(u) + y(u) + z(u)

])

≤ E
(
x(t) + y(t) + z(t)

)
+ g

∫ t+

t
E
(
x(s) + y(s) + z(s)

)
ds

+ E
(

sup
t≤u≤t+

∫ u

t

(
σ
(
r(s)

)
x(s) + σ

(
r(s)

)
y(s) + σ

(
r(s)

)
z(s)

)
dB(s)

)
. (.)

By Lemma ., there is a positive constant H such that

lim
t→∞ E

[
x(t) + y(t) + z(t)

]≤ H . (.)

By the special case of Burkholder-Davis-Gundy inequality (e.g., see [], p.), and let
h � max{σ̌ 

 , σ̌ 
 , σ̌ 

 }, we obtain

E
(

sup
t≤u≤t+

∫ u

t

(
σ
(
r(s)

)
x(s) + σ

(
r(s)

)
y(s) + σ

(
r(s)

)
z(s)

)
dB(s)

)

≤ E
(∫ t+

t
h
(
x(s) + y(s) + z(s)

) ds
)/

= E
(

h
∫ t+

t

(
x(s) + y(s) + z(s)

) ds
)/

≤ E
(

sup
t≤u≤t+

[
x(u) + y(u) + z(u)

]
h

∫ t+

t

(
x(s) + y(s) + z(s)

)
ds
)/

≤ E
(




sup
t≤u≤t+

[
x(u) + y(u) + z(u)

]
+




h
∫ t+

t

(
x(s) + y(s) + z(s)

)
ds
)

≤ 


E
(

sup
t≤u≤t+

[
x(u) + y(u) + z(u)

])
+




h
∫ t+

t
E
(
x(s) + y(s) + z(s)

)
ds.

Substituting the above inequality into (.), we have

E
(

sup
t≤u≤t+

[
x(u) + y(u) + z(u)

])

≤ E
(
x(t) + y(t) + z(t)

)
+ (g + h)

∫ t+

t
E
(
x(s) + y(s) + z(s)

)
ds.

Let t → ∞ and by (.), we get

lim
t→∞ E

(
sup

t≤u≤t+

[
x(u) + y(u) + z(u)

])≤ ( + g + h)H .

Then, for k = , , . . . , there exists a positive constant H̄ such that

E
(

sup
k≤t≤k+

[
x(t) + y(t) + z(t)

])≤ H̄ .

Let ε >  be arbitrary. Then, for k = , , . . . , by Chebyshev inequality, we get

P

{
sup

k≤t≤k+

[
x(t) + y(t) + z(t)

]
> k+ε

}
≤ E(supk≤t≤k+[x(t) + y(t) + z(t)])

k+ε
≤ H̄

k+ε
.
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By Borel-Cantelli lemma (e.g., see []), there exists � ⊂ � with P(�) =  such that for
any w ∈ �, there is an integer k = k(w) such that

x(t) + y(t) + z(t) ≤ k+ε

for all k ≤ t ≤ k +  and k ≥ k(w). Therefore, for any k ≤ t ≤ k +  and k ≥ k(w),

ln[x(t) + y(t) + z(t)]
ln t

≤  + ε.

Thus,

lim sup
t→∞

ln[x(t) + y(t) + z(t)]
ln t

≤  + ε a.s.

Let ε → , we get the desired conclusion. �

Lemma . Let f̂ >  and f̂ > . If there is a constant α >  such that G(α) is a nonsingular
M-matrix, then the solution X(t) of system (.) satisfies

lim inf
t→∞

ln x(t)
ln t

≥ –

α

, lim inf
t→∞

ln y(t)
ln t

≥ –

α

, lim inf
t→∞

ln z(t)
ln t

≥ –

α

a.s.

Proof For the given constant α > , applying the generalized Itô formula to ( + f̌u(t) +
f̌v(t) + w(t))α , it follows from (.) that

d
(
 + f̌u(t) + f̌v(t) + w(t)

)α
= α( + f̌u + f̌v + w)α–

·
[

f̌u
(

–a
(
r(t)

)
+ σ 


(
r(t)

)
–

b(r(t))
k(r(t))v + 

+
c(r(t))

u
+

e(r(t))uw
w + f(r(t))u

)

+ f̌v
(

–a
(
r(t)

)
+ σ 


(
r(t)

)
–

b(r(t))
k(r(t))u + 

+
c(r(t))

v
+

e(r(t))vw
w + f(r(t))v

)

+ w
(

a
(
r(t)

)
+ σ 


(
r(t)

)
–

e(r(t))w

w + f(r(t))u –
e(r(t))w

w + f(r(t))v +
c(r(t))

w

)]
dt

+


α(α – )( + f̌u + f̌v + w)α–(σ

(
r(t)

)
f̌u + σ

(
r(t)

)
f̌v + σ

(
r(t)

)
w
) dt

– α( + f̌u + f̌v + w)α–(σ
(
r(t)

)
f̌u + σ

(
r(t)

)
f̌v + σ

(
r(t)

)
w
)

dB(t)

≤ α( + f̌u + f̌v + w)α–

·
[

f̌u
(

σ̌ 
 +

ě


√

f̂

)
+ f̌v

(
σ̌ 

 +
ě


√

f̂

)
+ w

(
σ̌ 

 + ǎ
)

+ f̌č + f̌č + č

]
dt

+


ασ̌ ( + f̌u + f̌v + w)α–(f̌u + f̌v + w) dt

– α
(
 + f̌u(t) + f̌v(t) + w(t)

)α–

· (σ
(
r(t)

)
f̌u + σ

(
r(t)

)
f̌v + σ

(
r(t)

)
w
)

dB(t)

≤ αλ( + f̌u + f̌v + w)α dt
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– α( + f̌u + f̌v + w)α–

· (σ
(
r(t)

)
f̌u(t) + σ

(
r(t)

)
f̌v(t) + σ

(
r(t)

)
w(t)

)
dB(t), (.)

where σ̌ = maxi∈S,j={,,} σj(i) and λ = σ̌ 
 + ě


√

f̂
+ σ̌ 

 + ě

√

f̂
+ σ̌ 

 + ǎ + f̌č + f̌č + č + 
ασ̌ .

By the conclusion of Lemma . and Hölder inequality, there is a positive constant M :=
M(α) such that

E
[(

 + f̌u(t) + f̌v(t) + w(t)
)α]≤ M


, t ≥ . (.)

Choose a sufficiently small δ >  such that

α
(
λδ + σ̌ δ



)

< . (.)

It follows from (.) that

E
(

sup
kδ≤t≤(k+)δ

(
 + f̌u(t) + f̌v(t) + w(t)

)α)

≤ E
((

 + f̌u(kδ) + f̌v(kδ) + w(kδ)
)α)

+ E
(

sup
kδ≤t≤(k+)δ

∣∣∣∣
∫ t

kδ

αλ
(
 + f̌u(s) + f̌v(s) + w(s)

)α ds
∣∣∣∣
)

+ E
(

sup
kδ≤t≤(k+)δ

∣∣∣∣
∫ t

kδ

α
(
 + f̌u(s) + f̌v(s) + w(s)

)α–

· (σ
(
r(s)

)
f̌u(s) + σ

(
r(s)

)
f̌v(s) + σ

(
r(s)

)
w(s)

)
dB(s)

∣∣∣∣
)

. (.)

It can be computed that

E
(

sup
kδ≤t≤(k+)δ

∣∣∣∣
∫ t

kδ

αλ
(
 + f̌u(s) + f̌v(s) + w(s)

)α ds
∣∣∣∣
)

≤ αλE
(∫ (k+)δ

kδ

∣∣( + f̌u(s) + f̌v(s) + w(s)
)α∣∣ds

)

≤ αλE
(∫ (k+)δ

kδ

sup
kδ≤s≤(k+)δ

(
 + f̌u(s) + f̌v(s) + w(s)

)α ds
)

≤ αλδE
(

sup
kδ≤t≤(k+)δ

(
 + f̌u(t) + f̌v(t) + w(t)

)α). (.)

By the special case of Burkholder-Davis-Gundy inequality, we obtain

E
(

sup
kδ≤t≤(k+)δ

∣∣∣∣
∫ t

kδ

α
(
 + f̌u(s) + f̌v(s) + w(s)

)α–

· (σ
(
r(s)

)
f̌u(s) + σ

(
r(s)

)
f̌v(s) + σ

(
r(s)

)
w(s)

)
dB(s)

∣∣∣∣
)

≤ E
(∫ (k+)δ

kδ

ασ̌ ( + f̌u(s) + f̌v(s) + w(s)
)α–(f̌u(s) + f̌v(s) + w(s)

) ds
) 
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≤ ασ̌E
(∫ (k+)δ

kδ

(
 + f̌u(s) + f̌v(s) + w(s)

)α ds
) 



≤ ασ̌ δ

 E
(

sup
kδ≤t≤(k+)δ

(
 + f̌u(t) + f̌v(s) + w(t)

)α
) 



≤ ασ̌ δ

 E
(

sup
kδ≤t≤(k+)δ

(
 + f̌u(t) + f̌v(s) + w(t)

)α). (.)

Substituting (.) and (.) into (.) and noting that (.) and (.), we have

E
(

sup
kδ≤t≤(k+)δ

(
 + f̌u(t) + f̌v(t) + w(t)

)α)

≤ E
((

 + f̌u(kδ) + f̌v(kδ) + w(kδ)
)α)

+ α
(
λδ + σ̌ δ



)
E
(

sup
kδ≤t≤(k+)δ

(
 + f̌u(t) + f̌v(s) + w(t)

)α)

≤ M.

Let ε >  be arbitrary. Then, for k = , , . . . , by Chebyshev inequality, we get

P

{
sup

kδ≤t≤(k+)δ

(
 + f̌u(t) + f̌v(t) + w(t)

)α > (kδ)+ε
}

≤ M
(kδ)+ε

.

By Borel-Cantelli lemma, there exists � ⊂ � with P(�) =  such that for any w ∈ �,
there is an integer k = k(w) such that

(
 + f̌u(t) + f̌v(t) + w(t)

)α ≤ (kδ)+ε

for all kδ ≤ t ≤ (k + )δ and k ≥ k(w). Therefore, for any kδ ≤ t ≤ (k + )δ and k ≥ k(w),

ln( + f̌u(t) + f̌v(t) + w(t))α

ln t
≤  + ε.

Thus,

lim sup
t→∞

ln( + f̌u(t) + f̌v(t) + w(t))α

ln t
≤  + ε a.s.

Let ε → ; we get the desired conclusion

lim sup
t→∞

ln(f̌u(t))α

ln t
≤  a.s.,

namely,

lim inf
t→∞

ln x(t)
ln t

≥ –

α

a.s.

Similarly, we have

lim inf
t→∞

ln y(t)
ln t

≥ –

α

, lim inf
t→∞

ln z(t)
ln t

≥ –

α

a.s. �
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Theorem . Under Assumptions A, A and A, the solution X(t) of system (.) has the
following property:

lim sup
t→∞


t

∫ t


x(s) ds ≤ 

ĉ

∑
i∈S

πi

(
a(i) + b(i) –



σ 

 (i)
)

,

lim inf
t→∞


t

∫ t


x(s) ds ≥ 

č

∑
i∈S

πi

(
a(i) –

e(i)

√

f(i)
–



σ 

 (i)
)

,

lim sup
t→∞


t

∫ t


y(s) ds ≤ 

ĉ

∑
i∈S

πi

(
a(i) + b(i) –



σ 

 (i)
)

,

lim inf
t→∞


t

∫ t


y(s) ds ≥ 

č

∑
i∈S

πi

(
a(i) –

e(i)

√

f(i)
–



σ 

 (i)
)

,

lim sup
t→∞


t

∫ t


z(s) ds ≤ 

ĉ

∑
i∈S

πi

(
e(i) + e(i) – a(i) –



σ 

 (i)
)

.

Proof By Lemma ., Lemma . and Lemma ., we have

lim
t→∞

ln x(t)
t

= , lim
t→∞

ln y(t)
t

= , lim
t→∞

ln z(t)
t

=  a.s. (.)

By the generalized Itô formula, we get

ln[x(t)/x()]
t

=

t

∫ t



(
a
(
r(s)

)
+

b(r(s))y
k(r(s)) + y

– c
(
r(s)

)
x –

e(r(s))xz
x + f(r(s))z

)
ds

+

t

∫ s


σ
(
r(s)

)
dB(s),

ln[y(t)/y()]
t

=

t

∫ t



(
a
(
r(s)

)
+

b(r(s))x
k(r(s)) + x

– c
(
r(s)

)
y –

e(r(s))yz
y + f(r(s))z

)
ds

+

t

∫ s


σ
(
r(s)

)
dB(s),

ln[z(t)/z()]
t

=

t

∫ t



(
–a

(
r(s)

)
+

e(r(s))x

x + f(r(s))z +
e(r(s))y

y + f(r(s))z – c
(
r(s)

)
z
)

ds

+

t

∫ s


σ
(
r(s)

)
dB(s).

Let t → ∞, by the strong law of large numbers of local martingales and the ergodicity of
the Markov chain, noticing that (.), we finally obtain the desired conclusion. �

6 Examples and numerical simulations
In this section, we give two examples and make some numerical simulations to support
main results. By the method mentioned in [], the discrete form of system (.) can be
given by

xn+ = xn + xn

(
a(rn) +

b(rn)yn

k(rn) + yn
– c(rn)xn –

e(rn)xnzn

x
n + f(rn)z

n

)
t

+ σ(rn)xn
√tζn +

σ 
 (rn)


xn
(
ζ 

n – 
)t,
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yn+ = yn + yn

(
a(rn) +

b(rn)xn

k(rn) + xn
– c(rn)yn –

e(rn)ynzn

y
n + f(rn)z

n

)
t

+ σ(rn)yn
√tζn +

σ 
 (rn)


yn
(
ζ 

n – 
)t,

zn+ = zn + zn

(
–a(rn) +

e(rn)x
n

x
n + f(rn)z

n
+

e(rn)y
n

y
n + f(rn)z

n
– c(rn)zn

)
t

+ σ(rn)zn
√tζn +

σ 
 (rn)


zn
(
ζ 

n – 
)t,

where ζn is a Gaussian random variable that follows N(, ). For the procedure of gener-
ating the discrete Markov chain {rn, n = , , , . . .}, please refer to [].

Throughout this section, we assume that t = . and let the initial data be x() = .,
y() = ., z() = , r() = .

Example . Let r(t) be a right-continuous Markov chain taking values in S = {, }. Sys-
tem (.) may be regarded as the result of the following two subsystems:

⎧⎪⎪⎨
⎪⎪⎩

dx(t) = x( 
 + y

+y – x – xz
x+z ) dt + 

 x dB(t),
dy(t) = y( + x

+x – y – yz
y+z ) dt + 

 y dB(t),

dz(t) = z(– 
 + x

x+z + y

y+z – z) dt + 
 z dB(t),

(.)

⎧⎪⎪⎨
⎪⎪⎩

dx(t) = x( + y
+y – x – xz

x+z ) dt + x dB(t),
dy(t) = y( 

 + x
+x – 

 y – yz
y+z ) dt + y dB(t),

dz(t) = z(– 
 + x

x+z + y

y+z – z) dt + 
 z dB(t),

(.)

switching from one to another according to the movement of the Markov chain r(t).
Then we compute that q() =  > , a()+b()– 

σ 
 () = 

 , a()+b()– 
σ 

 () = 
 .

Therefore, by Corollary ., subsystem (.) is stochastically permanent.
Compute also q() = – ,

 , a() + b() – 
σ 

 () = – 
 < , a() + b() – 

σ 
 () =

– < . Therefore, by Corollary ., subsystem (.) is extinct.

Case .. Assume that the generator of Markov chain r(t) is

� =

[
– 
 –

]
.

By solving equation (.), we get the unique stationary distribution

π =
(




,




)
.

Then compute that
∑N

i= πiq(i) = 
, > . Therefore, by Theorem ., the overall system

(.) is stochastically permanent. By Theorem ., we have

,
,

≤ lim inf
t→∞


t

∫ t


x(s) ds ≤ lim sup

t→∞

t

∫ t


x(s) ds ≤ ,


,

,
,

≤ lim inf
t→∞


t

∫ t


y(s) ds ≤ lim sup

t→∞

t

∫ t


y(s) ds ≤ ,

,
,
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lim sup
t→∞


t

∫ t


z(s) ds ≤ ,


.

Case .. Assume that the generator of the Markov chain r(t) is

� =

[
– 
 –

]
.

By solving equation (.), we get the unique stationary distribution

π =
(




,



)
.

Then we compute that
∑

i∈S πi(a(i) + b(i) – 
σ 

 (i)) = 
 π – 

π = – 
 < ,∑

i∈S πi(a(i) + b(i) – 
σ 

 (i)) = 
 π – π = – 

 < . Therefore, by Theorem ., the
overall system (.) is extinct.

Example . Let r(t) be a right-continuous Markov chain taking values in S = {, , }.
system (.) may be regarded as the result of the following three subsystems:

⎧⎪⎪⎨
⎪⎪⎩

dx(t) = x( 
 + y

+y – 
 x – xz

x+,z ) dt + 
 x dB(t),

dy(t) = y( 
 + x

+x – 
 y – yz

y+z ) dt + 
 y dB(t),

dz(t) = z(– 
 + x

x+,z + y

y+z – 
 z) dt + 

 z dB(t),
(.)

⎧⎪⎪⎨
⎪⎪⎩

dx(t) = x( 
 + y

+y – 
 x – xz

x+z ) dt + 
 x dB(t),

dy(t) = y( 
 + x

+x – 
 y – yz

y+z ) dt + 
 y dB(t),

dz(t) = z(– 
 + x

x+z + y

y+,z – 
 z) dt + 

 z dB(t),
(.)

⎧⎪⎪⎨
⎪⎪⎩

dx(t) = x( 
 + y

+y – 
 x – xz

x+z ) dt + 
 x dB(t),

dy(t) = y( 
 + x

+x – 
 y – yz

y+z ) dt + 
 y dB(t),

dz(t) = z(– 
 + x

x+z + y

y+z – 
 z) dt + 

 z dB(t),
(.)

switching from one to another according to the movement of Markov chain r(t).
We compute that q() = – ,

, , a() + b() – 
σ 

 () = – 
 < , a() + b() – 

σ 
 () =

– 
 < . Therefore, by Corollary ., subsystem (.) is extinct. See Figure .
Compute q() = – ,

 , a() + b() – 
σ 

 () = – 
 < , a() + b() – 

σ 
 () =

– 
 < . Therefore, by Corollary ., subsystem (.) is extinct. See Figure .

Figure 1 Extinction. Trajectories of the solution (x(t),
y(t), z(t)) for subsystem (6.3). (Color online.)
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Figure 2 Extinction. Trajectories of the solution (x(t),
y(t), z(t)) for subsystem (6.4). (Color online.)

Figure 3 Stochastic permanence. Trajectories of the
solution (x(t), y(t), z(t)) for subsystem (6.5). (Color online.)

Compute again q() = 
, > , a() + b() – 

σ 
 () = 

 , a() + b() – 
σ 

 () = 
 .

Therefore, by Corollary ., subsystem (.) is stochastically permanent. See Figure .

Case .. Assume that the generator of the Markov chain r(t) is

� =

⎡
⎢⎣

–  
 – 
  –

⎤
⎥⎦ .

By solving equation (.), we get the unique stationary distribution

π =
(




,



,




)
.

Then compute that
∑N

i= πiq(i) = 
, > . Therefore, by Theorem ., the overall system

(.) is stochastically permanent. See Figures -. By Theorem ., we have




≤ lim inf
t→∞


t

∫ t


x(s) ds ≤ lim sup

t→∞

t

∫ t


x(s) ds ≤ 


,




≤ lim inf
t→∞


t

∫ t


y(s) ds ≤ lim sup

t→∞

t

∫ t


y(s) ds ≤ ,


,

lim sup
t→∞


t

∫ t


z(s) ds ≤ 


.
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Figure 4 Stochastic permanence. Trajectories of the
solution (x(t), y(t), z(t)) for the overall system (1.3) in
Case 6.2.1. (Color online.)

Figure 5 Trajectory and frequency of the discrete
Markov chain. Subgraphs (a) and (b) denote the
trajectory and frequency of the discrete Markov chain
rn taking value in {1, 2, 3}, respectively. rn = 1, rn = 2
and rn = 3 mean that the overall system (1.3) switches
to subsystem (6.3), (6.4) and (6.5) in step n, respectively.
The change of rn in (a) means the process of regime
switching of system (1.3) among subsystems (6.3), (6.4)
and (6.5). The frequency of rn in (b) shows the result of
regime switching-the total number of steps of the
overall system (1.3) switching to (6.3), (6.4) and (6.5).
This graph shows that under the control of the Markov
chain, the overall system (1.3) mostly switches to
subsystem (6.5) in Case 6.2.1.

Figure 6 The discrete point distribution. Subgraphs (a), (b), (c) and (d) denote the discrete point
distribution of three subsystems and the overall system in xy, xz, yz and xyz, respectively. The blue, cyan, red
and green areas represent the overall system (1.3), subsystem (6.3), (6.4) and (6.5), respectively. Most points of
the cyan and red areas lie in the origin and this means extinction. The green area is far away from the origin
and this means stochastic permanence. Under the control of Markov chain, the blue area also keeps away
from the origin and this means stochastic permanence in Case 6.2.1. (Color online.)
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Figure 7 Extinction. Trajectories of the solution (x(t),
y(t), z(t)) for the overall system (1.3) in Case 6.2.2. (Color
online.)

Figure 8 Trajectory and frequency of the discrete
Markov chain. The subgraphs have the same
notations as in Figure 5. This graph means that, under
the control of the Markov chain, the overall system (1.3)
mostly switches to subsystem (6.4) in Case 6.2.2.

Case .. Assume that the generator of the Markov chain r(t) is

� =

⎡
⎢⎣

–  
 – 
  –

⎤
⎥⎦ .

By solving equation (.), we get the unique stationary distribution

π =
(




,



,




)
.

Then we compute that
∑

i∈S πi(a(i) + b(i) – 
σ 

 (i)) = – 
, < ,

∑
i∈S πi(a(i) + b(i) –


σ 

 (i)) = – 
, < . Therefore, by Theorem ., the overall system (.) is extinct. See

Figures -.

7 Conclusions
In this paper, we investigate dynamical behaviors of a stochastic ratio-dependent one-
predator and two-mutualistic-preys model perturbed by white and telegraph noise.

Theorem . and Theorem . give sufficient conditions of stochastic permanence
and extinction for system (.), respectively. These conditions are all dependent on
both parameters of each subsystem (.) and the stationary distribution probability.
This means that if some subsystems are stochastically permanent and others are ex-
tinct, under the control of Markov chain, the overall system (.) is stochastically per-
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Figure 9 The discrete point distribution. The above subgraphs have the same notations as in Figure 6.
Under the control of Markov chain, most points of the blue area lie in the origin and this means extinction in
Case 6.2.2. (Color online.)

manent and extinct, determined by the sign of
∑

i∈S πiq(i) and max{∑i∈S πi(a(i) + b(i) –

σ 

 (i)),
∑

i∈S πi(a(i) + b(i) – 
σ 

 (i))}, respectively. This explanation can be verified by
Cases ..-.. or Cases ..-...

When system (.) is stochastically permanent, we obtain boundaries of limit superior
and inferior of the average in time of the solution in Theorem .. These boundaries also
all depend on both parameters of each subsystem (.) and the stationary distribution
probability.

In addition to the one-predator and two-mutualistic-preys model, there are other three-
species models such as tri-trophic food-chain model [], herbivore-plant-pollinator
model []. At the same time, besides white and telegraph noise, Lévy noise is inevitable
in nature []. Therefore, the above three-species models with Lévy noise deserve further
investigation and we may consider them in the future.
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