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Abstract
This paper is concerned with the three-point integral boundary value problems of
time-delay nonlinear fractional functional differential equations involving Caputo
fractional derivatives of order α ∈ (2, 3). By employing the Schauder fixed point
theorem, the Banach contraction principle, and a nonlinear alternative of
Leray-Schauder type, some sufficient criteria are established to guarantee the
existence of solutions. Our study improves and extends the previous results in the
literature. As applications, some examples are provided to illustrate our main results.
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1 Introduction
This paper is considered with the existence and uniqueness of solutions to the integral
boundary value problems (short for BVP) for the nonlinear fractional differential equa-
tions (.)-(.):

cDα
+u(t) + f

(
t, ut , u′(t), cDβ

+u(t)
)

= , t ∈ J = (, ], (.)

subject to time-delay conditions

u(s) = ϕ(s) ∈ C
(
[–r, ]

)
, s ∈ [–r, ], (.)

and the integral boundary conditions

⎧
⎨

⎩
u() – γu(η) = δ

∫ η

 u(s) ds,

u() – γu(η) = δ
∫ η

 u(s) ds, u′′() = ,
(.)

where  < η <  and γ, γ, δ, δ are nonnegative constants, cDα
+, cDβ

+ are Caputo frac-
tional derivatives of order  < α < ,  < β < , f : J × R × R × R → R is a continuous
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function. Here ut(·) represents the properitoneal state from time –r up to time t, which is
defined by ut � ut(θ ) = u(t + θ ), –r ≤ θ ≤ .

Fractional differential equations have played a significant role in many engineering and
scientific disciplines as the mathematical modeling of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheol-
ogy, Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electron-
analytical chemistry, biology, control theory, fitting of experimental data, and so forth.
Fractional differential equations also serve as an excellent tool for the description of hered-
itary properties of various materials and processes. As a consequence, the subject of frac-
tional differential equations is gaining much importance and attention. Especially, the
boundary value problems of fractional differential equations have been one of the as-
pects drawing closest attention. There have been many papers focused on boundary value
problems of fractional differential equations (see [–]). Recently, the integral boundary
value problems of fractional-order differential equation arise in a variety of different areas
of applied mathematics and physics such as blood flow problems, chemical engineering,
thermo-elasticity, underground water flow, population dynamics, and so on. Therefore,
some scholars begin with studying these problems (see [, , , , , , –]).

In the real world, the time-delay phenomenon exists commonly and is inevitable. Many
changes and processes not only depend on the present status but also on the past status.
Therefore, it is necessary to consider the time-delay effect in the mathematical modeling of
fractional differential equations. However, there are relatively scarce results dealing with
the boundary value problems of fractional functional differential equations with time de-
lays. The aim of this paper is to study the existence of solutions for triple-point boundary
value problems of fractional functional differential equations with time delays and integer
boundary value conditions.

In addition, the inspiration of this paper comes from the following three systems (see [,
, ]). In [], Cabada et al. investigated the existence of positive solutions of the following
nonlinear fractional differential equations with integral boundary-value conditions:

⎧
⎨

⎩

cDα
+u(t) + f (t, u(t)) = ,  < t < ,

u() = u′′() = , u() = λ
∫ 

 u(s) ds,

where  < α < ,  < λ < , cDα
+ is the Caputo fractional derivative, and f : [, ]× [,∞) →

[,∞) is a continuous function.
In [], Rehman et al. studied the existence and uniqueness of solutions to nonlinear

three-point boundary value problems for the following fractional differential equation:

⎧
⎨

⎩

cDδ
+u(t) = f (t, u(t), cDσ

+u(t)),  ≤ t ≤ ,

u() = αu(η), u() = βu(η),

where  < δ < ,  < σ < , α,β ∈ R, αη( – β) + ( – α)( – βη) �=  and cDδ
+ , cDσ

+ denote
Caputo fractional derivatives. By the Banach contraction principle and the Schauder fixed
point theorem, they obtained some new results as regards existence and uniqueness.

By using standard fixed point theorems and Leray-Schauder degree theory, Ahmad et
al. [] investigated the existence and uniqueness of solutions of boundary value problem
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for the following nonlinear fractional differential equations:

⎧
⎨

⎩

cDq
+x(t) = f (t, x(t)),  < t < ,  < q ≤ ,

x() = , x() = α
∫ η

 x(s) ds,  < η < ,

where cDq
+ denotes the Caputo fractional derivative of order q, f : [, ]×X→X is continu-

ous, and α ∈R is such that α �= 
η . Here, (X,‖ ·‖) is a Banach space and C([, ], X) denotes

the Banach space of all continuous functions from [, ]→X endowed with a topology of
uniform convergence with the norm denoted by ‖ · ‖.

To the best of our knowledge, it seems that no one considered BVP (.)-(.). There-
fore, we will investigate the existence and uniqueness of solutions of the nonlinear BVP
(.)-(.) under some further conditions. We consider the effect of time delays, but the au-
thors do not consider it in the literature [, , ]. Taking f (t, ut , u′(t), cDβ

+u(t)) = f (t, u(t)),
γ = γ = δ = , δ = λ, BVP (.)-(.) is changed into the boundary value problem
of literature []. Let f (t, ut , u′(t), cDβ

+u(t)) = f (t, u, cDσ
+u(t)), δ = δ = , γ = α, γ = β ,

BVP (.)-(.) is changed into the boundary value problem of literature []. Taking
f (t, ut , u′(t), cDβ

+u(t)) = f (t, u(t)), γ = γ = δ = , δ = α, BVP (.)-(.) is changed into
the boundary value problem of literature []. Therefore, our study improves and extends
the previous results in the relevant literature [, , ].

The rest of this paper is organized as follows. In Section , we recall some useful defini-
tions and properties, and present the properties of the Green’s function. In Section , we
give some sufficient conditions for the existence and uniqueness of solutions for boundary
value problem (.)-(.). Some examples are also provided to illustrate our main results
in Section .

2 Preliminaries
For convenience of the reader, we present here the necessary definitions from fractional
calculus theory. These definitions and properties can be found in the recent literature.

Definition . (see [, ]) The Riemann-Liouville fractional integral of order q >  of
a function f ∈ L[,∞) is given by

Iq
+f (t) =


�(q)

∫ t


(t – s)q–f (s) ds,

provided that the right-hand side is pointwise defined on (,∞).

Definition . (see [, ]) The Riemann-Liouville fractional derivative of order q > ,
n –  < q < n, n ∈ N , is defined as

Dq
+f (t) =


�(n – q)

(
d
dt

)n ∫ t


(t – s)n–q–f (s) ds,

where the function f (t) has absolutely continuous derivative up to order (n – ).
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Definition . (see [, ]) The Caputo derivative of order q for a function f : [,∞)→R

can be written as

cDq
+f (t) = Dq

+

(

f (t) –
n–∑

k=

tk

k!
f (k)()

)

, t > , n –  < q < n.

Remark . If f (t) ∈ Cn[,∞), then

cDq
+f (t) =


�(n – q)

∫ t



f (n)(s)
(t – s)q+–n ds = In–q

+ f (n)(t), t > , n –  < q < n.

Lemma . (see []) Assume that u ∈ C[,∞) with a Caputo fractional derivative of
order q >  that belongs to u ∈ Cn[,∞), then

Iq
+Dq

+u(t) = u(t) + c + ct + · · · + cntn–,

for some ci ∈ R, i = , , . . . , n, where n is the smallest integer greater than or equal to q.

Here we introduce the following useful fixed-point theorems.

Lemma . (see []) Let X be a Banach space with K ⊆ X closed and convex. Assume
� is a relatively open subset of K with  ∈ � and T : �→K is a completely continuous
operator. Then either

(a) T has a fixed point in �; or
(b) there exist u ∈ ∂� and λ ∈ (, ) with u = λTu.

Lemma . (Schauder fixed point theorem (see [])) Let X be a Banach space and � be
a closed convex subset of X. If the operator T : �→� is completely continuous, then the
operator T has at least one fixed point u∗ ∈ �.

Throughout this paper, we denote R = R×R, R+ = [, +∞), R+
 = (, +∞). For simplic-

ity, we introduce some notations as follows:

P =  – γ – δη, P =  – γ – δη, Q = γη +
δη




, Q =  – γη –

δη



,

D =
P

PQ + PQ
, D =

P

PQ + PQ
,

K =
Q

PQ + PQ
, K =

Q

PQ + PQ
,

m =
(

 +
δη

α+

α + 
+ γη

α

)
(|D| + |K|

)
+

(
δη

α+

α + 
+ γη

α

)
(|D| + |K|

)
+ ,

m =
(

 +
δη

α+

α + 
+ γη

α

)
|D| +

(
δη

α+

α + 
+ γη

α

)
|D| + α,

Q =


�(α + )

(
m + m +

m

�( – β)

)
.

Now we present the Green’s function for the system associated with BVP (.)-(.).
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Lemma . If h ∈ C[, ] and PQ + PQ �= , then the unique solution of (.)

⎧
⎪⎪⎨

⎪⎪⎩

cDα
+u(t) + h(t) = ,  < α < , t ∈ J = (, ],

u() – γu(η) = δ
∫ η

 u(s) ds,

u() – γu(η) = δ
∫ η

 u(s) ds, u′′() = 

(.)

is formulated by

u(t) =
∫ 


G(t, s)h(s) ds,

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g(t, s),  ≤ s ≤ t ≤ η ≤  or  ≤ s ≤ η ≤ t ≤ ,

g(t, s),  ≤ η ≤ s ≤ t ≤ ,

g(t, s),  ≤ t ≤ s ≤ η ≤ ,

g(t, s)  ≤ t ≤ η ≤ s ≤  or  ≤ η ≤ t ≤ s ≤ ,

g(t, s) =
ρ(t)( – s)α– – (t – s)α– – ρ(t) (η–s)α

α
– ρ(t)(η – s)α–

�(α)
,

g(t, s) =
ρ(t)( – s)α– – (t – s)α–

�(α)
, (.)

g(t, s) =
ρ(t)( – s)α– – ρ(t) (η–s)α

α
– ρ(t)(η – s)α–

�(α)
,

g(t, s) =
ρ(t)( – s)α–

�(α)
,

ρ(t) = Dt + K, ρ(t) = (δD – δD)t + δK + δK, ρ(t) = (γD – γD)t + γK + γK.

Proof Applying Lemma ., equation (.) is changed into an equivalent integral equa-
tion,

u(t) = –Iα
+h(t) + C + Ct + Ct

= –


�(α)

∫ t


(t – s)α–h(s) ds + C + Ct + Ct. (.)

From u′′() = , we derive C = . According to u() – γu(η) = δ
∫ η

 u(s) ds, we ob-
tain

C – γ
(
–Iα

+h(η) + C + Cη
)

= δ

∫ η


u(s) ds. (.)

By u() – γu(η) = δ
∫ η

 u(s) ds, we have

–Iα
+h() + C + C – γ

(
–Iα

+h(η) + C + Cη
)

= δ

∫ η


u(s) ds. (.)



Zhao and Wang Advances in Difference Equations  (2016) 2016:284 Page 6 of 18

By (.), we get

∫ η


u(s) ds = –


�(α)

∫ η



[∫ s


(s – τ )α–h(τ ) dτ

]
ds + C

∫ η


ds + C

∫ η


s ds

= –


�(α)

∫ η



[∫ η

τ

(s – τ )α– ds
]

h(τ ) dτ + Cη +
Cη





= –


α�(α)

∫ η


(η – τ )αh(τ ) dτ + Cη +

Cη



,

which yields

∫ η


u(s) ds = –Iα+

+ h(η) + Cη +
Cη




. (.)

Substituting (.) into (.) and (.), we obtain

PC – QC = –δIα+
+ h(η) – γIα

+h(η) � A, (.)

PC + QC = Iα
+h() – δIα+

+ h(η) – γIα
+h(η) � B. (.)

By (.) and (.), we get C =
AQ + BQ

PQ + PQ
, C =

PC – A
Q

. Therefore, the solution of BVP

(.) is

u(t) = –Iα
+h(t) + C +

PC – A
Q

t = –Iα
+h(t) +

(
 +

Pt
Q

)
C –

A
Q

t

= –Iα
+h(t) +

Q + Pt
Q

AQ + BQ

PQ + PQ
–

A
Q

t

= –Iα
+h(t) +

Q + Pt
Q

BQ

PQ + PQ
+

Q + Pt
Q

AQ

PQ + PQ
–

A
Q

t

= –Iα
+h(t) +

Q + Pt
PQ + PQ

B +
[

(Q + Pt)Q

PQ + PQ
– t

]
A
Q

= –Iα
+h(t) + (K + Dt)B + (K – Dt)A

= –Iα
+h(t) + (K + Dt)

[
Iα

+h() – δIα+
+ h(η) – γIα

+h(η)
]

+ (K – Dt)
[
–δIα+

+ h(η) – γIα
+h(η)

]

= –Iα
+h(t) + (K + Dt)Iα

+h() –
[
(K + Dt)δ + (K – Dt)δ

]
Iα+

+ h(η)

–
[
(K + Dt)γ + (K – Dt)γ

]
Iα

+h(η)

= –Iα
+h(t) + ρ(t)Iα

+h() – ρ(t)Iα+
+ h(η) – ρ(t)Iα

+h(η)

= –


�(α)

∫ t


(t – s)α–h(s) ds +

ρ(t)
�(α)

∫ 


( – s)α–h(s) ds

–
ρ(t)

�(α + )

∫ η


(η – s)αh(s) ds –

ρ(t)
�(α)

∫ η


(η – s)α–h(s) ds.
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When t ≤ η, we have

u(t) =
ρ(t)
�(α)

(∫ t


+

∫ η

t
+

∫ 

η

)
( – s)α–h(s) ds –


�(α)

∫ t


(t – s)α–h(s) ds

–
(∫ t


+

∫ η

t

)(
ρ(t)(η – s)α

�(α + )
+

ρ(t)(η – s)α–

�(α)

)
h(s) ds

=


�(α)

∫ t



(
ρ(t)( – s)α– – (t – s)α– – ρ(t)

(η – s)α

α
– ρ(t)(η – s)α–

)
h(s) ds

+


�(α)

∫ η

t

(
ρ(t)( – s)α– – ρ(t)

(η – s)α

α
– ρ(t)(η – s)α–

)
h(s) ds

+


�(α)

∫ 

η

ρ(t)( – s)α–h(s) ds

=
∫ 


G(t, s)h(s) ds.

When t ≥ η, we have

u(t) =
ρ(t)
�(α)

(∫ η


+

∫ t

η

+
∫ 

t

)
( – s)α–h(s) ds –


�(α)

(∫ η


+

∫ t

η

)
(t – s)α–h(s) ds

–
∫ η



(
ρ(t)(η – s)α

�(α + )
+

ρ(t)(η – s)α–

�(α)

)
h(s) ds

=


�(α)

∫ η



(
ρ(t)( – s)α– – (t – s)α– – ρ(t)

(η – s)α

α
– ρ(t)(η – s)α–

)
h(s) ds

+


�(α)

∫ t

η

(
ρ(t)( – s)α– – (t – s)α–)h(s) ds +


�(α)

∫ 

t
ρ(t)( – s)α–h(s) ds

=
∫ 


G(t, s)h(s) ds,

where G(t, s) is defined by (.).
Next, we will prove the uniqueness of solution for BVP (.). In fact, let u(t), u(t) be any

two solutions of (.). Denote w(t) = u(t) – u(t), then (.) is changed into the following
system:

⎧
⎪⎪⎨

⎪⎪⎩

cDα
+w(t) = ,  < α < , t ∈ J = (, ],

w() – γw(η) = δ
∫ η

 w(s) ds,

w() – γw(η) = δ
∫ η

 w(s) ds, w′′() = .

Similar to the above discussion, we get w(t) = , namely, u(t) = u(t), which indicates that
the solution for BVP (.) is unique. The proof is complete. �

Lemma . If PQ + PQ �= , then the Green’s function G(t, s) defined by (.) possesses
the following properties:

(i)
∫ 

 |G(t, s)|ds ≤ m
�(α+) , for all t ∈ [, ].

(ii)
∫ 

 | ∂
∂t G(t, s)|ds ≤ m

�(α+) , for all t ∈ [, ].
(iii)

∫ 
 | ∂

∂t G(t, s)|ds ≤ α–
�(α) , for all t ∈ [, ].
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Proof In fact, according to the expression of G(t, s), we have, for t, s ∈ [, ],

∫ 



∣∣G(t, s)
∣∣ds ≤ |ρ(t)|

�(α)

∫ 


( – s)α– ds +


�(α)

∫ t


(t – s)α– ds

+
|ρ(t)|

�(α + )

∫ η


(η – s)α ds +

|ρ(t)|
�(α)

∫ η


(η – s)α– ds

≤ 
�(α + )

(∣∣ρ(t)
∣∣ + tα +

|ρ(t)|ηα+

α + 
+

∣∣ρ(t)
∣∣ηα

)

≤ 
�(α + )

(
|D| + |K| +  +

[(|D| + |K|
)
δ +

(|D| + |K|
)
δ

] ηα+

α + 

+
[(|D| + |K|

)
γ +

(|D| + |K|
)
γ

]
ηα

)
=

m

�(α + )
,

∫ 



∣
∣∣∣
∂

∂t
G(t, s)

∣
∣∣∣ds ≤

∣
∣∣∣
∂

∂t
ρ(t)

∣
∣∣∣


�(α)

∫ 


( – s)α– ds +

α – 
�(α)

∫ t


(t – s)α– ds

+
∣∣
∣∣
∂

∂t
ρ(t)

∣∣
∣∣


�(α + )

∫ η


(η – s)α ds +

∣∣
∣∣
∂

∂t
ρ(t)

∣∣
∣∣


�(α)

∫ η


(η – s)α– ds

≤ 
�(α + )

(∣
∣∣
∣
∂

∂t
ρ(t)

∣
∣∣
∣ + αtα– +

∣
∣∣
∣
∂

∂t
ρ(t)

∣
∣∣
∣
ηα+

α + 
+

∣
∣∣
∣
∂

∂t
ρ(t)

∣
∣∣
∣η

α

)

≤ 
�(α + )

(
|D| + α +

(|D|δ + |D|δ
) ηα+

α + 
+

(|D|γ + |D|γ
)
ηα

)

=
m

�(α + )

and

∫ 



∣∣
∣∣
∂

∂t G(t, s)
∣∣
∣∣ds ≤

∣∣
∣∣
∂

∂t ρ(t)
∣∣
∣∣


�(α)

∫ 


( – s)α– ds +

(α – )(α – )
�(α)

∫ t


(t – s)α– ds

+
∣∣
∣∣
∂

∂t ρ(t)
∣∣
∣∣


�(α + )

∫ η


(η – s)α ds

+
∣∣
∣∣
∂

∂t ρ(t)
∣∣
∣∣


�(α)

∫ η


(η – s)α– ds

≤ (α – )tα–

�(α)
≤ α – 

�(α)
.

The proof is complete. �

3 Main results
In this section, we will discuss the existence and uniqueness of solutions for BVP (.)-(.)
by the Schauder fixed point theorem, the Leray-Schauder nonlinear alternative, and the
Banach contraction principle.

For r > , Cr represents the Banach space of all continuous functions ϕ, ϕ′, cDβ
+ϕ :

[–r, ]→R endowed with the sup-norm ‖ϕ‖[–r,] = sup–r≤s≤{|ϕ(s)| + |ϕ′(s)| + |cDβ
+ϕ(s)|}.
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Let X = {u|u ∈ C[–r, ], u′ ∈ C[–r, ], cDβ
+u ∈ C[–r, ],β ∈ (, )} denote a real Banach

space with the norm ‖ · ‖ defined by

‖u‖ = max
t∈I

∣
∣u(t)

∣
∣ + max

t∈I

∣
∣u′(t)

∣
∣ + max

t∈I

∣
∣cDβ

+u(t)
∣
∣, (.)

where u ∈ C(I), I = [–r, ]. C(I) and C(I) represent the sets of continuous and continu-
ously differentiable functions on I .

From Lemma ., we can obtain the following lemma.

Lemma . Suppose that f is continuous, then u ∈ X is a solution of BVP (.)-(.) if and
only if u ∈ X is a solution of the integral equation

u(t) =

⎧
⎨

⎩

∫ 
 G(t, s)f (s, us, u′(s), cDβ

+u(s)) ds, t ∈ J ,

ϕ(t), t ∈ [–r, ].

Define T : X→X as the operator

(Tu)(t) = u(t) =

⎧
⎨

⎩

∫ 
 G(t, s)f (s, us, u′(s), cDβ

+u(s)) ds, t ∈ J ,

ϕ(t), t ∈ [–r, ].
(.)

By Lemma ., the fixed point of operator T coincides with the solution of BVP (.)-(.).

Theorem . Assume that PQ + PQ �=  and f : J × R
→R is continuous. Suppose

further that the conditions (H)-(H) are satisfied:

(H) There exist the nonnegative functions a, a ∈ L(J) and a nonnegative nondecreasing
function φ(x, y, z) with respect to each variable x, y, z, such that

∣
∣f (t, x, y, z)

∣
∣ ≤ a(t) + a(t)φ

(|x|, |y|, |z|).

(H) There exists a constant R > k such that φ(R, R, R) ≤ R–k
k

, where ki =
Q

∫ 
 |ai(t)|dt = Q‖ai‖, i = , .

Then BVP (.)-(.) has at least one solution.

Proof Define a closed ball of Banach space X as follows:

U =
{

u ∈ X : ‖u‖ ≤ R
}

. (.)

Now we will show that T(U) ⊂ U . In fact, any u ∈ U , t ∈ J , from Lemma . and (H), we
have

∣
∣(Tu)(t)

∣
∣ ≤

∫ 



∣
∣G(t, s)

∣
∣
∣
∣f

(
s, us, u′(s), cDβ

+u(s)
)∣∣ds

≤
∫ 



∣∣G(t, s)
∣∣∣∣a(s) + a(s)φ(R, R, R)

∣∣ds

≤ m(‖a‖ + ‖a‖φ(R, R, R))
�(α + )
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and

∣∣(Tu)′(t)
∣∣ ≤

∫ 



∣
∣∣
∣
∂

∂t
G(t, s)

∣
∣∣
∣
∣∣f

(
s, us, u′(s), cDβ

+u(s)
)∣∣ds

≤
∫ 



∣∣
∣∣
∂

∂t
G(t, s)

∣∣
∣∣
∣
∣a(s) + a(s)φ(R, R, R)

∣
∣ds

≤ m(‖a‖ + ‖a‖φ(R, R, R))
�(α + )

.

Hence,

∣∣cDβ
+(Tu)(t)

∣∣ =
∣
∣∣∣


�( – β)

∫ t


(t – s)–β(Tu)′(s) ds

∣
∣∣∣

≤
(

m(‖a‖ + ‖a‖φ(R, R, R))
�(α + )

)


�( – β)

∫ t


(t – s)–β ds

≤ m(‖a‖ + ‖a‖φ(R, R, R))
�( – β)�(α + )

.

In view of (.), (.), and (H), we have

∥∥(Tu)(t)
∥∥ ≤ ‖a‖ + ‖a‖φ(R, R, R)

�(α + )

(
m + m +

m

�( – β)

)

≤ (‖a‖ + ‖a‖φ(R, R, R)
)
Q

≤ k + kφ(R, R, R) ≤ R,

which implies that T(U) ⊂ U . The continuity of the operator T follows from the continuity
of f and G.

Next, we shall show that T is a completely continuous operator through the following
three cases. Indeed, let L � maxt∈J |f (t, ut , u′(t), cDβ

+u(t))| + , u ∈ U , and t, t ∈ [–r, ]
with t < t.

Case . When  < t < t ≤ , from Lemma ., we have

∣
∣(Tu)(t) – (Tu)(t)

∣
∣ =

∣∣
∣∣

∫ t

t

(Tu)′(s) ds
∣∣
∣∣ ≤

∫ t

t

∣
∣(Tu)′(s)

∣
∣ds

≤
∫ t

t

(∫ 



∣∣
∣∣
∂

∂s
G(s, τ )

∣∣
∣∣
∣
∣f

(
τ , uτ , u′(τ ), cDβ

+u(τ )
)∣∣dτ

)
ds

≤ mL
�(α + )

(t – t),

∣
∣(Tu)′(t) – (Tu)′(t)

∣
∣ =

∣∣
∣∣

∫ t

t

(Tu)′′(s) ds
∣∣
∣∣ ≤

∫ t

t

∣
∣(Tu)′′(s)

∣
∣ds ≤ (α – )L

�(α)
(t – t)

and

∣
∣cDβ

+(Tu)(t) – cDβ
+(Tu)(t)

∣
∣

=


�( – β)

∣∣
∣∣

∫ t


(t – s)–β (Tu)′(s) ds –

∫ t


(t – s)–β(Tu)′(s) ds

∣∣
∣∣
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≤ 
�( – β)

∣
∣∣
∣

∫ t


(t – s)–β (Tu)′(s) ds –

∫ t


(t – s)–β (Tu)′(s) ds

∣
∣∣
∣

+


�( – β)

∣∣
∣∣

∫ t


(t – s)–β (Tu)′(s) ds –

∫ t


(t – s)–β(Tu)′(s) ds

∣∣
∣∣

≤ 
�( – β)

∣
∣∣
∣

∫ t

t

(t – s)–β
∣∣(Tu)′(s)

∣∣ds +
∫ t



(
(t – s)–β – (t – s)–β

)∣∣(Tu)′(s)
∣∣ds

∣
∣∣
∣

≤ 
�( – β)

∣∣∣
∣

∫ t

t

(t – s)–β

(∫ 



∣∣∣
∣
∂

∂s
G(s, τ )

∣∣∣
∣
∣∣f

(
τ , uτ , u′(τ ), cDβ

+u(τ )
)∣∣dτ

)
ds

∣∣∣
∣

+


�( – β)

∣∣
∣∣

∫ t



(
(t – s)–β – (t – s)–β

)

×
(∫ 



∣
∣∣
∣
∂

∂s
G(s, τ )

∣
∣∣
∣
∣∣f

(
τ , uτ , u′(τ ), cDβ

+u(τ )
)∣∣dτ

)
ds

∣
∣∣
∣

≤ mL
�( – β)�(α + )

[∫ t

t

(t – s)–β ds +
∫ t



(
(t – s)–β – (t – s)–β

)
ds

]

≤ mL
�( – β)�(α + )

[
(t – t)–β + t

–β – t
–β

]
.

So, we get

∥∥(Tu)(t) – (Tu)(t)
∥∥ ≤ mL

�(α + )
(t – t) +

(α – )L
�(α)

(t – t) +
mL

�( – β)�(α + )

× [
(t – t)–β + t

–β – t
–β

]→ as t→t.

Case . When –r ≤ t <  < t ≤ , |t – t| is small enough, namely, |t – t|→ as t→t

means that t→– and t→+. Then we obtain

∣∣(Tu)(t) – (Tu)(t)
∣∣ ≤ ∣∣(Tu)(t) – (Tu)()

∣∣ +
∣∣(Tu)() – (Tu)(t)

∣∣

≤
∫ t



∣
∣(Tu)′(s)

∣
∣ds +

∣
∣ϕ() – ϕ(t)

∣
∣

≤ mL
�(α + )

t +
∣∣ϕ() – ϕ(t)

∣∣,

∣∣(Tu)′(t) – (Tu)′(t)
∣∣ ≤ ∣∣(Tu)′(t) – (Tu)′()

∣∣ +
∣∣(Tu)′() – (Tu)′(t)

∣∣

≤
∫ t



∣∣(Tu)′′(s)
∣∣ds +

∣∣ϕ′() – ϕ′(t)
∣∣

≤ (α – )L
�(α)

t +
∣
∣ϕ′() – ϕ′(t)

∣
∣

and

∣
∣cDβ

+(Tu)(t) – cDβ
+(Tu)(t)

∣
∣

≤ ∣
∣cDβ

+(Tu)(t) – cDβ
+(Tu)()

∣
∣ +

∣
∣cDβ

+(Tu)() – cDβ
+(Tu)(t)

∣
∣

≤ 
�( – β)

∣∣
∣∣

∫ t


(t – s)–β (Tu)′(s) ds – 

∣∣
∣∣ +

∣
∣cDβ

+ϕ() – cDβ
+ϕ(t)

∣
∣
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≤ mL
�( – β)�(α + )

∫ t


(t – s)–β ds +

∣∣cDβ
+ϕ() – cDβ

+ϕ(t)
∣∣

≤ mL
�( – β)�(α + )

t
–β +

∣
∣cDβ

+ϕ() – cDβ
+ϕ(t)

∣
∣,

which implies that

∥∥(Tu)(t) – (Tu)(t)
∥∥

≤ mL
�(α + )

t +
∣∣ϕ() – ϕ(t)

∣∣ +
(α – )L
�(α)

t +
∣∣ϕ′() – ϕ′(t)

∣∣

+
mL

�( – β)�(α + )
t

–β +
∣
∣cDβ

+ϕ() – cDβ
+ϕ(t)

∣
∣→ as t→t.

Case . When –r ≤ t < t ≤ , we have

∥∥(Tu)(t) – (Tu)(t)
∥∥ =

∣∣ϕ(t) – ϕ(t)
∣∣ +

∣∣ϕ′(t) – ϕ′(t)
∣∣

+
∣∣cDβ

+ϕ(t) – cDβ
+ϕ(t)

∣∣→ as t→t.

Thus, for any ε >  (small enough), there exists σ = σ (ε) >  with independent of t, t,
and u such that ‖(Tu)(t) – (Tu)(t)‖ ≤ ε, whenever |t – t| ≤ σ . Therefore T : X→X is
completely continuous. In view of Lemma ., T has at least one fixed point u ∈ U which
is the solution of BVP (.)-(.). The proof is complete. �

From Theorem ., we easily obtain the following corollaries.

Corollary . Assume that PQ + PQ �=  and f : J × R
→R be continuous. Suppose

that the conditions (H)-(H) are satisfied:

(H) There exists a nonnegative function a ∈ L(J) and a nonnegative nondecreasing func-
tion φ(x, y, z) with respect to each variable x, y, z, such that

∣∣f (t, x, y, z)
∣∣ ≤ a(t)φ

(|x|, |y|, |z|).

(H) There exists a positive constant R such that φ(R, R, R) ≤ R
k

, where k =
Q

∫ 
 |a(t)|dt = Q‖a‖.

Then BVP (.)-(.) has at least one solution.

Corollary . Assume that PQ + PQ �=  and f : J × R
→R are continuous. Suppose

that the condition (H) is satisfied:

(H) There exists a nonnegative function a ∈ L(J) such that |f (t, x, y, z)| ≤ a(t).

Then BVP (.)-(.) has at least one solution.

Theorem . Assume that PQ + PQ �=  and f : J × R
→R is continuous. Suppose

further that the hypotheses (H)-(H) are satisfied:
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(H) There exist a function σ ∈ C(J ,R+) and a nondecreasing function ψ : R→R
+
 such that

∣∣f (t, x, y, z)
∣∣ ≤ σ (t)ψ

(|x| + |y| + |z|) for (t, x, y, z) ∈ J ×R
.

(H) There exists a constant M >  such that M
Q‖σ‖ψ(M) > , where ‖σ‖ = maxt∈J |σ (t)|.

Then BVP (.)-(.) has at least one solution.

Proof Let � = {u ∈ X : ‖u‖ < M} and define the operator T : X→X as (.). Similar to
Theorem ., we know that T : �→� is completely continuous. If ∃u ∈ ∂�, λ ∈ (, ) such
that

u = λTu, (.)

then

u′ = λ(Tu)′ (.)

and

cDβ
+u = λcDβ

+(Tu). (.)

When t ∈ [–r, ], in the light of (.) and ϕ(t) �≡ , we clearly can conclude that (.)-(.)
do not hold. When t ∈ J , from Lemma ., conditions (H)-(H), and (.)-(.), we have

‖u‖ = max
t∈J

∣
∣u(t)

∣
∣ + max

t∈J

∣
∣u′(t)

∣
∣ + max

t∈J

∣
∣cDβ

+u(t)
∣
∣

= max
t∈J

∣
∣λ(Tu)(t)

∣
∣ + max

t∈J

∣
∣λ(Tu)′(t)

∣
∣ + max

t∈J

∣
∣λcDβ

+(Tu)(t)
∣
∣

≤ max
t∈J

∣∣(Tu)(t)
∣∣ + max

t∈J

∣∣(Tu)′(t)
∣∣ + max

t∈J

∣∣cDβ
+(Tu)(t)

∣∣

= max
t∈J

∣
∣∣
∣

∫ 


G(t, s)f

(
s, us, u′(s), cDβ

+u(s)
)

ds
∣
∣∣
∣

+ max
t∈J

∣∣
∣∣

∫ 



∂

∂t
G(t, s)f

(
s, us, u′(s), cDβ

+u(s)
)

ds
∣∣
∣∣

+ max
t∈J

∣
∣∣
∣


�( – β)

∫ t


(t – s)–β

∣∣(Tu)′(s)
∣∣ds

∣
∣∣
∣

≤ max
t∈J

∫ 



∣
∣G(t, s)

∣
∣
∣
∣f

(
s, us, u′(s), cDβ

+u(s)
)∣∣ds

+ max
t∈J

∫ 



∣
∣∣
∣
∂

∂t
G(t, s)

∣
∣∣
∣
∣∣f

(
s, us, u′(s), cDβ

+u(s)
)∣∣ds

+ max
t∈J


�( – β)

∫ t


(t – s)–β

∣
∣(Tu)′(s)

∣
∣ds

≤ max
t∈J

∫ 



∣∣G(t, s)
∣∣σ (s)ψ

(|us| +
∣∣u′(s)

∣∣ +
∣∣cDβ

+u(s)
∣∣)ds

+ max
t∈J

∫ 



∣∣
∣∣
∂

∂t
G(t, s)

∣∣
∣∣σ (s)ψ

(|us| +
∣
∣u′(s)

∣
∣ +

∣
∣cDβ

+u(s)
∣
∣)ds
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+ max
t∈J


�( – β)

∫ t


(t – s)–β

∣∣(Tu)′(s)
∣∣ds

≤ m

�(α + )
‖σ‖ψ(‖u‖) +

m

�(α + )
‖σ‖ψ(‖u‖) +

m

�(α + )
‖σ‖ψ(‖u‖)

× max
t∈J


�( – β)

∫ t


(t – s)–β ds

=
m

�(α + )
‖σ‖ψ(‖u‖) +

m

�(α + )
‖σ‖ψ(‖u‖)

+
m

�(α + )
‖σ‖ψ(‖u‖)max

t∈J

t–β

�( – β)

≤
[

m

�(α + )
+

m

�(α + )
+

m

�(α + )�( – β)

]
‖σ‖ψ(‖u‖)

= Q‖σ‖ψ(M) < M,

which is in contradiction with u ∈ ∂�, that is, ‖u‖ = M. According to Lemma ., we can
conclude that T has a fixed point u ∈ �. Then BVP (.)-(.) has at least one solution.
The proof is complete. �

Theorem . Assume that PQ + PQ �=  and f : J × R
→R be continuous. Suppose

that the conditions (H)-(H) are satisfied:

(H) There exists a nonnegative function b ∈ L(J) and a nonnegative nondecreasing func-
tion φ(x, y, z) with respect to each variable x, y, z such that

∣
∣f (t, x, y, z) – f (t, x, y, z)

∣
∣ ≤ b(t)φ

(|x – x|, |y – y|, |z – z|).

(H) For any R > , φ(R, R, R) ≤ R and
∫ 

 |b(t)|dt = ‖b‖ < 
Q .

Then BVP (.)-(.) has a unique solution.

Proof Now, we will use Banach contraction principle to prove that T : X→X defined by
(.) has a fixed point. We first show that T is a contraction. In fact, when t ∈ J , from
Lemma . and (.), we obtain

∣∣(Tu)(t) – (Tv)(t)
∣∣

≤
∫ 



∣∣G(t, s)
∣∣∣∣f

(
s, us, u′(s), cDβ

+u(s)
)

– f
(
s, vs, v′(s), cDβ

+v(s)
)∣∣ds

≤ max
t∈J

∣
∣b(t)

∣
∣φ

(‖u – v‖,‖u – v‖,‖u – v‖)
∫ 



∣
∣G(t, s)

∣
∣ds

≤ m‖b‖
�(α + )

‖u – v‖ < Q‖b‖‖u – v‖ = �‖u – v‖, (.)

∣∣(Tu)′(t) – (Tv)′(t)
∣∣

≤
∫ 



∣
∣∣∣
∂

∂t
G(t, s)

∣
∣∣∣
∣∣f

(
s, us, u′(s), cDβ

+u(s)
)

– f
(
s, vs, v′(s), cDβ

+v(s)
)∣∣ds

≤ max
t∈J

∣
∣b(t)

∣
∣φ

(‖u – u‖,‖u – u‖,‖u – u‖)
∫ 



∣∣
∣∣
∂

∂t
G(t, s)

∣∣
∣∣ds
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≤ m‖b‖
�(α + )

‖u – v‖ < Q‖b‖‖u – v‖

= �‖u – v‖ (.)

and

∣∣cDβ
+(Tu)(t) – cDβ

+(Tv)(t)
∣∣

=
∣
∣∣
∣


�( – β)

∫ t


(t – s)–β

(
(Tu)′(s) – (Tv)′(s)

)
ds

∣
∣∣
∣

≤ 
�( – β)

∫ t


(t – s)–β

∣
∣(Tu)′(s) – (Tv)′(s)

∣
∣ds

≤ m‖b‖
�( – β)�(α + )

‖u – v‖ < Q‖b‖‖u – v‖ = �‖u – v‖, (.)

where � = Q‖b‖ < 
 . According to (.)-(.), we get ‖Tu – Tv‖ < �‖u – v‖, for all u, v ∈ X,

 < t ≤ . When t ∈ [–r, ], it is obvious that ‖Tu – Tv‖ = ‖ϕ(t) – ϕ(t)‖ =  < �‖u – v‖. So,
for all u, v ∈ X, t ∈ [, ], we obtain ‖Tu – Tv‖ < �‖u – v‖, namely, T is a contraction. In
view of the Banach contraction principle, we conclude that T has the unique fixed point
which is the unique solution of BVP (.)-(.). The proof is complete. �

4 Some examples
Example . Consider the following BVP of nonlinear fractional differential equations
with time delays:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cD


+u(t) + t + 

 (t – 
 )e

ut +u′(t)
 – + | sin π t|

π
|cD



+u(t)| = ,

u() = 
 u( 

 ), u() = 
 u( 

 ), u′′() = ,

u(s) = ϕ(s), s ∈ [–, ],

(.)

where t ∈ J = [, ], α = 
 , β = 

 , γ = 
 , γ = 

 , δ = , δ = , η = 
 , ut = u(t + θ ) (– ≤

θ ≤ ), ϕ ∈ C([–, ]). By simple computation, we have P = – 
 , P = – 

 , Q = 
 , Q = 

 ,
Q = ., PQ + PQ = – 

 �= . Let

f (t, x, y, z) = t +



(
t –




)

e
x+y

 – +
| sin π t|

π
z

and choose a(t) = t, a(t) = maxt∈J{ 
 (t – 

 ), | sin π t|
π

} = 
 , φ(x, y, z) = e

x+y
 – + z. Clearly,

φ(x, y, z) is nondecreasing function with respect to each variable x, y, z, and

f (t, x, y, z) ≤ a(t) + a(t)φ(x, y, z),

that is, (H) holds. Next, we check the condition (H). Since

k = Q
∥∥a(t)

∥∥ = Q
∫ 



∣∣t∣∣dt =
Q


≈ .,

k = Q
∥
∥a(t)

∥
∥ = Q

∫ 






dt =
Q


≈ .,
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choose R =  > k, we have

φ(R, R, R) = e
R+R

 – + R = e +  =  <
R – k

k
=

 – .
.

≈ .,

which implies that (H) is satisfied. Hence BVP (.) has at least one solution by Theo-
rem ..

Remark . In BVP (.), the nonlinear function f involves exponential growth, but the
results of [] are only allowed to have power growth, that is, BVP (.) cannot be solved
by using the results of []. So the results obtained in this paper give a significant improve-
ment of the previous work in [].

Example . Consider the following time-delay integral BVP of nonlinear fractional dif-
ferential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD


+u(t) +

√
t + ( + |ut |+|u′(t)|+|cD



+u(t)|

+|ut |+|u′(t)|+|cD


+u(t)|

) = ,

u() – 
 u( 

 ) = 
∫ 


 u(s) ds,

u() – 
 u( 

 ) = 
∫ 


 u(s) ds, u′′() = ,

u(s) = ϕ(s), s ∈ [–, ],

(.)

where t ∈ J = [, ], α = 
 , β = 

 , γ = 
 , γ = 

 , δ = , δ = , η = 
 , ut = u(t + θ ) (– ≤

θ ≤ ), ϕ ∈ C([–, ]). By simple computation, we get P = – 
 , P = – 

 , Q = 
 , Q = 

 ,
Q = ., PQ + PQ = – 

 �= . Let

f
(
t, ut , u′(t), cDβ

+u(t)
)

=
√

t + 
(

 +
|ut| + |u′(t)| + |cD



+u(t)|

 + |ut| + |u′(t)| + |cD


+u(t)|

)

≤ σ (t)ψ
(‖u‖),

with σ (t) =
√

t +  and ψ(‖u‖) = . Noting that we have ‖σ‖ =  and condition (H), we
have M > ψ(‖u‖)Q‖σ‖ ≈ .. Thus all the conditions of Theorem . are satisfied.
In conclusion, BVP (.) has at least one solution.

Example . Consider the following delayed integral BVP of nonlinear fractional differ-
ential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cD


+u(t) + |ut |+|u′(t)|+|cD



+u(t)|

t(+|ut |+|u′(t)|+|cD


+u(t)|)

+
√

et + cosπ t = ,

u() = u′′() = , u() = 


∫ 


 u(s) ds,

u(s) = ϕ(s), s ∈ [–, ],

(.)

where t ∈ J = [, ], α = 
 , β = 

 , γ = γ = δ = , δ = 
 , η = 

 , ut = u(t + θ ) (– ≤ θ ≤ ),
ϕ ∈ C([–, ]). By simple computation, we obtain P = , P = – 

 , Q = , Q = 
 , PQ +
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PQ = 
 �= , Q = .. Set

f (t, x, y, z) =
|x| + |y| + |z|

t( + |x| + |y| + |z|) +
√

et + cosπ t,

for x, x, y, y, z, z ∈R, t ∈ J , we have

∣
∣f (t, x, y, z) – f (t, x, y, z)

∣
∣

=


t

∣
∣∣
∣

|x| + |y| + |z|
 + |x| + |y| + |z| –

|x| + |y| + |z|
 + |x| + |y| + |z|

∣
∣∣
∣

=


t

∣∣
∣∣

(|x| – |x| + |y| – |y| + |z| – |z|)
( + |x| + |y| + |z|)( + |x| + |y| + |z|)

∣∣
∣∣

≤ (|x – x| + |y – y| + |z – z|)
t( + |x| + |y| + |z|)( + |x| + |y| + |z|) ≤ |x – x| + |y – y| + |z – z|

t .

Thus, choose

φ(x, y, z) =
|x| + |y| + |z|


, b(t) =


t ,

then

∣∣f (t, x, y, z) – f (t, x, y, z)
∣∣ ≤ b(t)φ

(|x – x|, |y – y|, |z – z|),

and φ(x, y, z) is a nonnegative nondecreasing function with respect to each variable x, y, z.
This means that (H) holds.

Now, we check the condition (H). Since, for any R > , we have

φ(R, R, R) =
R + R + R


< R

and

∥∥b(t)
∥∥ =

∫ 




t dt =




≈ . <


Q
= .,

(H) is satisfied. We conclude that BVP (.) has a unique solution by Theorem ..
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