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Abstract
This paper investigates the almost sure synchronization control problem for a class of
stochastic delayed complex networks by using the stochastic differential equation
theory and the Kronecker product technique. Different from the existing works, the
considered problem is that all the nodes in the complex networks can synchronize
with each other although the target node is unknown. Some sufficient conditions
which guarantee the complex networks to have almost sure synchronization are
derived and two kinds of controllers are designed, respectively. Finally, a numerical
example is given to illustrate the effectiveness of the main results.
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1 Introduction
Complex dynamical networks are composed of a family of interconnected nodes, in which
each node denotes an individual element in the network and adjusts its behavior by the
information received from its neighbor nodes. They can be used to model some complex
nonlinear dynamical systems in science and engineering. Thus, in recent years, complex
networks have attracted increasing attention in various fields such as biology [, ], soci-
ology [], and physics [, ].

In the dynamical behaviors of complex networks, synchronization motion is one of the
important elements. Synchronization means that all the nodes’ action in complex net-
works will attain the same dynamic behavior along with the time evolution. For example,
both a group of fish swarming together and a flock of birds synchronously flying belong
to the synchronization phenomena. Up to now, there exists much literature such as [–
] studying the synchronization control problem of complex networks by using different
methods. For instance, [, ] study the synchronization control problem of discrete com-
plex dynamical networks with a time varying delay by using the method of partitioning
time delay and chief stability function, respectively. For the continuous complex networks
with different characters, such as time delayed complex networks [–], stochastic com-
plex networks [, ], complex networks with switching topology [–], there have ex-
isted a great deal of papers to study the synchronization control problem. The control
methods mainly include pinning control [–], impulsive control [, ], adaptive con-
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trol [–], etc. The adopted theories mainly include Lyapunov stability theory, the chief
stability function method, and M-matrix theory.

It should be noted that most of these works required all the nodes in complex networks
to synchronize with the target node or the isolated node given beforehand. If the target
node is unknown, then these results and methods could fail to achieve the synchronization
because the designed controllers are usually based on the state information of the target
node. In fact, when the target node is known, each node in the complex networks could
adjust its behavior according to the error with the target node. However, if the target node
is unknown, each node can only adjust its behavior according to the information from its
adjacent nodes, at the same time, the adjacent nodes are varying. Practically, the phenom-
ena of the unknown target node also exist in the real world. For example, for a complex
network consisting of some multi-agents without leader, all the agents achieve consensus
by adjusting the information received from its adjacent agents. In addition, sometimes it
is difficult to precisely describe the state equation of the target node when systems are dis-
turbed by stochastic noise and transmission time delay. Hence, it is necessary to analyze
the synchronization control problem of complex networks with unknown target node.

On the other hand, the stochastic complex networks models are very common and there
also exists much literature such as [, ] and [–] studying synchronization problems
of stochastic complex network. However, these papers mainly focus on the synchroniza-
tion in mean square. For the almost sure synchronization of complex networks, there ex-
ist few results. Especially, the complex network which is the almost sure synchronization
could not have synchronization in mean square, the relative counter-example can be found
in [–].

Motivated by the above discussion, in this paper, we will consider the almost sure syn-
chronization control problem for a class of stochastic delayed complex networks. The con-
tributions of our paper are as follows. (i) The almost sure synchronization control other
than synchronization in mean square is investigated. (ii) The provided results can suit
for the synchronization of complex networks with the target node unknown. (iii) The ob-
tained results only depend on the complex network’s parameters.

The rest of this paper is organized as follows. In Section , we introduce the stochastic
delayed complex dynamical network model and some useful lemmas. In Section , some
criteria which ensure that the complex network synchronizes well are derived and some
synchronization controllers are given. In Section , a numerical example is provided to il-
lustrate the effectiveness of our proposed results. Finally, this paper ends with conclusions
in Section .

Notation Rn and Rn×m denote the n-dimensional Euclidean space and the set of all n × m
dimensional real matrices, respectively. For a vector v = (v, v, . . . , vn)T ∈ Rn, whose -
norm is denoted by ‖v‖ =

√∑n
i= v

i . AT , tr(A), and det(A) represent the transpose, trace,
and determinant of the matrix A, respectively. λmin(A) and λmax(A) represent the mini-
mum and maximum eigenvalues of the matrix A, respectively. X ≥ Y (respectively, X > Y )
means that X – Y is a symmetric positive semi-definite matrix (respectively, positive def-
inite matrix), where X, Y are symmetric matrices. In is the n × n identity matrix, ⊗ is
the Kronecker product. The set (�,F , {Ft}t≥,P) denotes the complete probability space
with a filtration {Ft}t≥ satisfying right continuity and F containing all P-null sets.
Cb
F

([–τ , ]; Rn) denotes the family of all bounded F-measurable C([–τ , ]; Rn) valued
random variables. Throughout this paper, all matrices have the appropriate dimensions.
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2 Problem formulation and preliminaries
In this paper, we consider the following stochastic delayed complex network composed of
N identical nodes with linear couplings. Each node is an n-dimensional dynamical sub-
system, whose state equation is described by

⎧
⎪⎨
⎪⎩

dxi(t) = [Axi(t) + f (t, xi(t), xi(t – τ )) +
∑N

j= cij�xj(t – τ ) + ui(t)] dt
+ g(xi(t)) dw(t), i = , , . . . , N ,

xi(t) = ψi(t), t ∈ [–τ , ],
()

where N is the number of coupled nodes. xi(t) = (xi(t), xi(t), . . . , xin(t))T ∈ Rn denotes the
state vector, A ∈ Rn×n is a constant real matrix, f (·) ∈ Rn is a continuous differential vector
function. C = [cij] ∈ RN×N is the outer-coupling matrix, where cij is defined as follows: if
there exists a connection between node i with node j, then cij > ; otherwise, cij = . In
addition, the elements of the matrix C satisfy

cii = –
N∑

j=,j �=i

cij.

� ∈ Rn×n is the inner-coupling matrices, τ >  denotes the transmission time delay, ui(t) ∈
Rn is the control input to be designed in the sequel. w(t) is a -dimensional Brownian
motion defined on the probability space (�,F , {Ft}t≥,P) with

E
{

w(t)
}

= , E
{

dw(t)
}

= dt.

g(·) ∈ Rn is the noise intensity. The initial condition ψi(t) ∈ Rn is a continuous vector func-
tion.

Definition  Complex network () is said to have almost sure synchronization if

lim
t→+∞

(
xi(t) – xj(t)

)
= , a.s.

holds for i, j = , , . . . , N .

Remark  The idea of Definition  comes from [–]. It is obvious that complex net-
work () can achieve almost sure synchronization only if

lim
t→+∞

(
xi(t) – x(t)

)
= , a.s.

holds for i = , . . . , N . Compared with the synchronization in mean square for complex
networks [–], the almost sure synchronization is more general, the detailed difference
for this two concepts can be found in []. On the other hand, it should be noticed that the
theory used in this paper is similar to []. But the proposed results and methods in []
are not suitable for this paper. This paper considers a complex network with the unknown
target node other than a master-slave system.

In order to study the almost sure synchronization of complex network (), we can arbi-
trarily choose a node as the target node. Without the loss of generality, we assume that the



Wang et al. Advances in Difference Equations  (2016) 2016:306 Page 4 of 16

state of the target node is x(t). Let ei(t) = xi(t) – x(t), then one gets the error system as
follows:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dei(t) = [Aei(t) + f (t, xi(t), xi(t – τ )) – f (t, x(t), x(t – τ ))
+

∑N
j=(cij – cj)�ej(t – τ ) + ui(t) – u(t)] dt

+ [g(xi(t)) – g(x(t))] dw(t), i = , . . . , N ,
ei(t) = ψi(t) – ψ(t), t ∈ [–τ , ].

()

Writing e(t) = (eT
 (t), eT

 (t), . . . , eT
N (t))T ,

Fi
(
t, ei(t), ei(t – τ )

)
= f

(
t, xi(t), xi(t – τ )

)
– f

(
t, x(t), x(t – τ )

)
,

F
(
t, e(t), e(t – τ )

)
=

(
FT


(
t, e(t), e(t – τ )

)
, . . . , FT

N
(
t, eN (t), eN (t – τ )

))T ,

G
(
e(t)

)
=

(
gT(

x(t)
)

– gT(
x(t)

)
, . . . , gT(

xN (t)
)

– gT(
x(t)

))T ,

U(t) =
(
uT

 (t) – uT
 (t), . . . , uT

N (t) – uT
 (t)

)T ,

�(t) =
(
ψT

 (t) – ψT
 (t), . . . ,ψT

N (t) – ψT
 (t)

)T ,

C̃ =

⎡
⎢⎢⎣

c – c · · · cN – cN
... · · · ...

cN – c · · · cNN – cN

⎤
⎥⎥⎦ ∈ R(N–)×(N–),

thus error system () can be written in the following compact form:

⎧
⎪⎨
⎪⎩

de(t) = [(IN– ⊗ A)e(t) + F(t, e(t), e(t – τ ))
+ (C̃ ⊗ �)e(t – τ ) + U(t)] dt + G(e(t)) dw(t),

e(t) = �(t), t ∈ [–τ , ].
()

Remark  Different from [–], it is not necessary to exactly know the state equation
of the target node

ṡ(t) = As(t) + f
(
s(t)

)
()

in this paper. Hence, the methods in these papers are not suitable for our paper.

Before moving on, we present some necessary assumptions and lemmas.
(H) Assume that there exist two constants M ≥  and M ≥  such that

∥∥f
(
t, ξ(t), ξ(t – τ )

)
– f

(
t, ξ(t), ξ(t – τ )

)∥∥

≤ M
∥∥ξ(t) – ξ(t)

∥∥ + M
∥∥ξ(t – τ ) – ξ(t – τ )

∥∥ ()

for any ξ(t), ξ(t) ∈ Rn and t > .
(H) Assume that there exists a constant L ≥  such that

∥∥g
(
ξ(t)

)
– g

(
ξ(t)

)∥∥ ≤ L
∥∥ξ(t) – ξ(t)

∥∥

for any ξ(t), ξ(t) ∈ Rn.
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Lemma  ([]) The matrix C has a single eigenvalue  and all the other eigenvalues are
negative.

Remark  Without loss of generality, in this paper, we assume that the eigenvalues of the
matrix C are  = λ ≥ λ ≥ λ ≥ · · · ≥ λN .

Lemma  The eigenvalues of the matrix C are composed of the eigenvalues of matrix C̃
and .

Proof According to the definition of the eigenvalue and properties of the determinant, we
have

det(λIN – C) = det

⎡
⎢⎢⎢⎢⎣

λ – c –c · · · –cN

–c λ – c · · · –cN
...

...
...

...
–cN –cN · · · λ – cNN

⎤
⎥⎥⎥⎥⎦

= det

⎡
⎢⎢⎢⎢⎣

λ –c · · · –cN

λ λ – c · · · –cN
...

...
...

...
λ –cN · · · λ – cNN

⎤
⎥⎥⎥⎥⎦

= λ · det

⎡
⎢⎢⎢⎢⎣

 –c · · · –cN

 λ – c · · · –cN
...

...
...

...
 –cN · · · λ – cNN

⎤
⎥⎥⎥⎥⎦

= λ · det

⎡
⎢⎢⎢⎢⎣

 –c · · · –cN

 λ – (c – c) · · · –(cN – cN )
...

...
...

...
 –(cN – c) · · · λ – (cNN – cN )

⎤
⎥⎥⎥⎥⎦

= λ · det(λIN– – C̃).

Therefore, one more eigenvalue of matrix C than C̃ is the single . The proof is com-
pleted. �

From Lemma , we know that the eigenvalues of the matrix C̃ are λ,λ, . . . ,λN , respec-
tively.

Lemma  ([]) Assume that the stochastic differential delay equation

dx(t) = f
(
x(t), x(t – τ ), t

)
dt + g

(
x(t), x(t – τ ), t

)
dυ(t) ()

exists a unique solution x(t, ξ (t)) on t ≥  for any given initial condition ξ (t) ∈ Cb
F

([–τ , ];
Rn), where υ(t) is a n-dimensional Wiener process. Moreover, both f (x(t), x(t – τ ), t) and
g(x(t), x(t – τ ), t) are locally bounded and uniformly bounded on t. If there exist functions
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V (x(t), t) ∈ C,(Rn × R+; R+), β(t) ∈ L(R+; R+) and ω,ω ∈ C(Rn; R+) such that

LV
(
x(t), x(t – τ ), t

) ≤ β(t) – ω
(
x(t)

)
+ ω

(
x(t – τ )

)
, ∀x(t) ∈ Rn,

ω
(
x(t)

)
> ω

(
x(t)

)
, ∀x(t) �= ,

lim‖x‖→∞ inf
≤t<∞ V

(
x(t), t

)
= ∞,

then

lim
t→∞ x

(
t, ξ (t)

)
= , a.s.

for every ξ (t) ∈ Cb
F

([–τ , ]; Rn), where the operator LV (x(t), t) is defined as

LV
(
x(t), t

)
= Vt

(
x(t), t

)
+ Vx

(
x(t), t

)
f
(
x(t), x(t – τ ), t

)

+



tr
{

gT(
x(t), x(t – τ ), t

)
Vxxg

(
x(t), x(t – τ ), t

)}
, ()

Vt(x(t), t) = ∂V (x(t),t)
∂t , Vx(x(t), t) = ( ∂V (x(t),t)

∂x
, ∂V (x(t),t)

∂x
, . . . , ∂V (x(t),t)

∂xn
) and Vxx = [ ∂V (x(t),t)

∂xi ∂xj
]n×n.

Lemma  ([]) The Kronecker product ⊗ has the following properties:
() (A + B) ⊗ C = A ⊗ C + B ⊗ C, C ⊗ (A + B) = C ⊗ A + C ⊗ B;
() (A ⊗ B)T = AT ⊗ BT ;
() (A ⊗ C)(B ⊗ D) = AB ⊗ CD;
() λ(A ⊗ B) = {γiθj, i = , , . . . , n, j = , , . . . , m},

where A, B, C, and D are real matrices with appropriate dimensions, γi (i = , , . . . , n) are
the eigenvalues of the matrix A ∈ Rn×n and θj (j = , , . . . , m) are the eigenvalues of matrix
B ∈ Rm×m.

3 Synchronization analysis and control
3.1 Synchronization analysis
In this section, we will first analyze the almost sure stability of system () without control
input, i.e.,

{
de(t) = [(IN– ⊗ A)e(t) + F(t, e(t), e(t – τ )) + (C̃ ⊗ �)e(t – τ )] dt + G(e(t)) dw(t),
e(t) = �(t), t ∈ [–τ , ].

()

Theorem  Suppose that assumptions (H) and (H) hold. If there exist positive definite
symmetric matrices P, R ∈ Rn×n and positive constants α > , β > , μ > , such that

P < μIn ()

and

� =

⎡
⎢⎣

�, P P
P –αIn 
P  –βIn

⎤
⎥⎦ < , ()
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where

�, = PA + AT P + τR + (Mα + Mα + μL) · In + βλ
N�T�,

then system () is almost sure asymptotic stability for any initial condition.

Proof Choose the following Lyapunov function:

V
(
e(t)

)
= eT (t)(IN– ⊗ P)e(t) +

∫ 

–τ

∫ t

t+s
eT (θ )(IN– ⊗ R)e(θ ) dθ ds. ()

By Lemma , the differential of V (e(t)) along the state trajectories of system () is

dV
(
e(t)

)
= LV

(
e(t)

)
dt + eT (t)(IN– ⊗ P)G

(
e(t)

)
dw(t), ()

where

LV
(
e(t)

)
= eT (t)(IN– ⊗ P)

[
(IN– ⊗ A)e(t) + F

(
t, e(t), e(t – τ )

)

+ (C̃ ⊗ �)e(t – τ )
]

+ tr
{

GT(
e(t)

)
(IN– ⊗ P)G

(
e(t)

)}

+ τeT (t)(IN– ⊗ R)e(t) –
∫ t

t–τ

eT (s)(IN– ⊗ R)e(s) ds

≤ eT (t)
[
IN– ⊗ (

PA + AT P + τR
)]

e(t)

+ eT (t)(IN– ⊗ P)F
(
t, e(t), e(t – τ )

)

+ eT (t)(IN– ⊗ P)(C̃ ⊗ �)e(t – τ )

+ tr
{

GT(
e(t)

)
(IN– ⊗ P)G

(
e(t)

)}
. ()

From assumptions (H)-(H) and (), for any α > , one gets

eT (t)(IN– ⊗ P)F
(
t, e(t), e(t – τ )

)

= 
N∑

i=

eT
i (t)P

[
f
(
t, xi(t), xi(t – τ )

)
– f

(
t, x(t), x(t – τ )

)]

≤
N∑

i=

{
α–eT

i (t)PPT ei(t) + αFT
i
(
t, ei(t), ei(t – τ )

)
Fi

(
t, ei(t), ei(t – τ )

)}

≤ α–eT (t)(IN– ⊗ P)(IN– ⊗ P)e(t) + MαeT (t)e(t)

+ MαeT (t – τ )e(t – τ ) ()

and

GT(
e(t)

)
(IN– ⊗ P)G

(
e(t)

)

=
N∑

i=

[
g
(
xi(t)

)
– g

(
x(t)

)]T P
[
g
(
xi(t)

)
– g

(
x(t)

)]
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≤ λmax(P)
N∑

i=

[
g
(
xi(t)

)
– g

(
x(t)

)]T[
g
(
xi(t)

)
– g

(
x(t)

)]

≤ λmax(P)L
N∑

i=

eT
i (t)ei(t)

≤ μLeT (t)e(t). ()

On the other hand, it is noted that the inequality

eT (t)(IN– ⊗ P)(C̃ ⊗ �)e(t – τ )

≤ β–eT (t)(IN– ⊗ P)(IN– ⊗ P)e(t)

+ βeT (t – τ )(C̃ ⊗ �)T (C̃ ⊗ �)e(t – τ ) ()

holds for any positive constant β > .
From ()-() and Lemma , one gets

LV
(
e(t)

) ≤ eT (t)
{

IN– ⊗ [
PA + AT P + τR + (Mα + μL) · In

]

+
(
α– + β–)(IN– ⊗ P)(IN– ⊗ P)

}
e(t)

+ eT (t – τ )
[
Mα · In(N–) + β(C̃ ⊗ �)T (C̃ ⊗ �)

]
e(t – τ ).

= –eT (t)�e(t) + eT (t – τ )�e(t – τ ), ()

where

� = –IN– ⊗ [
PA + AT P + τR + (Mα + μL) · In

]
–

(
α– + β–)(IN– ⊗ P)(IN– ⊗ P),

� = Mα · In(N–) + β(C̃ ⊗ �)T (C̃ ⊗ �).

We have

� – � = Mα · In(N–) + β(C̃ ⊗ �)T (C̃ ⊗ �)

+ IN– ⊗ [
PA + AT P + τR + (Mα + μL) · In

]

+
(
α– + β–)(IN– ⊗ P)(IN– ⊗ P)

= IN– ⊗ [
PA + AT P + τR + (Mα + Mα + μL) · In

]

+ β(C̃ ⊗ �)T (C̃ ⊗ �) +
(
α– + β–)(IN– ⊗ P)(IN– ⊗ P)

≤ IN– ⊗ [
PA + AT P + τR + (Mα + Mα + μL) · In

]

+ βλ
N IN– ⊗ (

�T�
)

+
(
α– + β–)(IN– ⊗ P)(IN– ⊗ P)

= IN– ⊗ [
PA + AT P + τR + (Mα + Mα + μL) · In

+ βλ
N�T� +

(
α– + β–)P]. ()

By the Schur complete lemma [], inequality () is equivalent to � < �. Thus, system
() has almost sure asymptotic stability by Lemma . Hence, complex network () without
the control input has almost sure synchronization. The proof is completed. �
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Remark  Inequalities () and () are linear matrix inequalities and can be easily solved
by the LMI’s toolbox in Matlab. Moreover, these inequalities only depend on the networks’
parameters and the time delay. In addition, different from [, ], the inner-coupling ma-
trix � need not to be a diagonal matrix in this paper.

3.2 Synchronization controller design
In general, a complex network is not able to achieve synchronization without a control
input. In this section, we will design appropriate controllers such that the closed-loop
complex network has almost sure synchronization. Next, we introduce two methods, re-
spectively.

(I) If we only control a part of nodes in the complex network. Without loss of generality,
let the index number of controlled nodes be i = , , . . . , l + ,  ≤ l < N – , respectively. We
take the controller as

ui(t) = –kiei(t),

then one gets

U(t) = –[K ⊗ In]e(t), ()

where K = diag{k, k, . . . , kl+︸ ︷︷ ︸
l

, , . . . , ︸ ︷︷ ︸
N––l

}, ki >  is the control gain to be determined. Thus,

we obtain the closed-loop system

⎧
⎪⎨
⎪⎩

de(t) = [(IN– ⊗ A – K ⊗ In)e(t) + F(t, e(t), e(t – τ ))
+ (C̃ ⊗ �)e(t – τ )] dt + G(e(t)) dw(t),

e(t) = �(t), t ∈ [–τ , ].
()

From Theorem , the following result is obtained.

Theorem  Suppose that assumptions (H) and (H) hold. If there exist positive defi-
nite symmetric matrices P, R ∈ Rn×n and positive constants α > , β > , μ > , ki > 
(i = , , . . . , l), such that

P < μIn ()

and

� =

⎡
⎢⎣

�, IN– ⊗ P IN– ⊗ P
IN– ⊗ P –αIn(N–) 
IN– ⊗ P  –βIn(N–)

⎤
⎥⎦ <  ()

hold, where

�, = IN– ⊗ [
PA + AT P + τR + (Mα + Mα + μL) · In + βλ

N�T�
]

– K ⊗ P,

then complex network () has almost sure synchronization under the action of con-
troller ().
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As a special case of (I), if we only control one node, without loss of generality, assuming
that the index number of controlled node is i = . We take the controller as

u(t) = k
N∑

i=

ei(t),

thus

U(t) = –k[L ⊗ In]e(t), ()

where L is a N –  order square matrix whose elements are , k >  is the control gain to
be determined. Under the action of controller (), we obtain the following closed-loop
system:

⎧
⎪⎨
⎪⎩

de(t) = [(IN– ⊗ A – kL ⊗ In)e(t) + F(t, e(t), e(t – τ ))
+ (C̃ ⊗ �)e(t – τ )] dt + G(e(t)) dw(t),

e(t) = �(t), t ∈ [–τ , ].
()

From Theorem , the following corollary is obtained.

Corollary  Suppose that assumptions (H) and (H) hold. If there exist positive definite
symmetric matrices P, R ∈ Rn×n and positive constants α > , β > , μ > , k > , such
that

P < μIn ()

and

� =

⎡
⎢⎣

�, IN– ⊗ P IN– ⊗ P
IN– ⊗ P –αIn(N–) 
IN– ⊗ P  –βIn(N–)

⎤
⎥⎦ <  ()

hold, where

�, = IN– ⊗ [
PA + AT P + τR + (Mα + Mα + μL) · In + βλ

N�T�
]

– kL ⊗ P,

then complex network () has almost sure synchronization under the action of con-
troller ().

(II) In order to obtain better control performance, we can use the following pinning
adaptive controller. Let the index number of controlled nodes be i = , , . . . , l + ,  ≤ l <
N – , respectively. Taking the controller as

ui(t) = –ki(t)ei(t)

and updated law as

k̇i(t) = δ
∥∥ei(t)

∥∥, ()
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then one gets

U(t) = –
[
K (t) ⊗ In

]
e(t), ()

where K (t) = diag{k(t), k(t), . . . , kl+(t)︸ ︷︷ ︸
l

, , . . . , ︸ ︷︷ ︸
N––l

}, δ >  is any positive constant. Thus, we

obtain the following closed-loop system:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

de(t) = {[IN– ⊗ A – K (t) ⊗ In]e(t) + F(t, e(t), e(t – τ ))
+ (C̃ ⊗ �)e(t – τ )}dt + G(e(t)) dw(t),

˙K (t) = diag{δ‖e(t)‖, δ‖e(t)‖, . . . , δ‖el+(t)‖, , . . . , ︸ ︷︷ ︸
N––l

},

e(t) = �(t), t ∈ [–τ , ].

()

Similar to Theorem , we obtain the following result.

Theorem  Suppose that assumptions (H) and (H) hold. If there exist positive definite
symmetric matrices P, R ∈ Rn×n and positive constants α > , β > , μ > , k∗ > , such
that

P < μIn ()

and

� =

⎡
⎢⎣

�, IN– ⊗ P IN– ⊗ P
IN– ⊗ P –αIn(N–) 
IN– ⊗ P  –βIn(N–)

⎤
⎥⎦ <  ()

hold, where

�, = IN– ⊗ [
PA + AT P + τR + (Mα + Mα + μL) · In + βλ

N�T�
]

– K ⊗ In,

K = diag{k∗, k∗, . . . , k∗
︸ ︷︷ ︸

l

, , . . . , ︸ ︷︷ ︸
N––l

}, then complex network () has almost sure synchroniza-

tion under the action of pinning adaptive controller ().

Proof Choose the Lyapunov function as

V
(
e(t)

)
= V

(
e(t)

)
+


δ

l∑
i=

(
ki(t) – k∗), ()

where V (e(t)) is the same as in Theorem . After some necessary computation, we find
that the differential of V(e(t)) along the state trajectories of system () satisfies

LV
(
e(t)

)
< LV

(
e(t)

)
– eT (t)Ke(t). ()

As inequalities () and () hold, LV(e(t)) < . Hence, complex network () has almost
sure synchronization under the action of controller (). The proof is completed. �
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Remark  It is worth mentioning that the pinning control is one of important control
methods for complex network and has been studied in some literature such as [–].
Obviously, this method also suits for the case of controlling every node in complex net-
work. Specially, while controlling N – nodes, inequalities () and () must exist feasible
solutions because k∗ can be chosen sufficiently large, which shows that complex network
() could achieve synchronization under the action of adaptive controller (). Further-
more, the synchronization speed can be adjusted by tuning δ.

4 A numerical example
In this section, we provide a numerical example to illustrate the effectiveness of our pro-
posed methods.

Example  Consider the following dynamical system:

⎧
⎪⎨
⎪⎩

ż(t) = [z(t) – z(t) – f(z(t), z(t – τ ))],
ż(t) = z(t) – z(t) + z(t),
ż(t) = –z(t) – .z(t),

()

where f(z(t), z(t –τ )) = bz(t)+.(a–b)(|z(t)+|– |z(t –τ )–|), a, b are two constants.
System () can be written in vector form,

ż(t) = Az(t) + f
(
z(t), z(t – τ )

)
, ()

where

z(t) =
(
z(t), z(t), z(t)

)T ,

A =

⎡
⎢⎣

–  
 – 
 – –.

⎤
⎥⎦ ,

f
(
z(t), z(t – τ )

)
=

(
–f

(
z(t), z(t – τ )

)
, , 

)T .

Since

∥∥f
(
z(t), z(t – τ )

)
– f

(
ẑ(t), ẑ(t – τ )

)∥∥


= 
∣∣f

(
z(t), z(t – τ )

)
– f

(
ẑ(t), ẑ(t – τ )

)∣∣

≤ 
(

|b| +


|a – b|

)
· ∣∣z(t) – ẑ(t)

∣∣

+ |a – b| · ∣∣z(t – τ ) – ẑ(t – τ )
∣∣

≤ 
(

|b| +


|a – b|

)
· ∥∥z(t) – ẑ(t)

∥∥


+ |a – b| · ∥∥z(t – τ ) – ẑ(t – τ )
∥∥



for any z(t), ẑ(t) ∈ R, f (z(t)) satisfies assumption (H). When τ = , system () is the
Chua dynamical system.
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Consider complex network () with ten nodes (N = ) and take system () as each
node. Other parameters are as follows:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–         
 –        
  –       
   –      
    –     
     –    
      –   
       –  
        – 
         –

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

� =

⎡
⎢⎣

. –. 
– . –.
. –. .

⎤
⎥⎦ ,

Table 1 The solutions of the inequalities in Theorems 1-3 and Corollary 1 with the parameters
such as Example 1

P R α β μ

Theorem 1 - - - - - -
Corollary 1 - - - - - -
Theorem 2 P3 R3 0.1226 0.1474 1.4654 l = 9, k = 50
Theorem 3 P4 R4 0.2079 0.0403 0.6772 l = 9, k∗ = 30

Figure 1 State trajectories of the complex
network under the action of pinning controller
(19). (a) State trajectories of every node; (b) error
state trajectories of every node with the first node.
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Figure 2 State trajectories of the complex
network under the action of pinning adaptive
controller (28). (a) State trajectories of every node;
(b) error state trajectories of every node with the first
node; (c) state trajectories of updated law (27) with
δ = 0.02.

a = –., b = –., τ = . The noise intensity is g(xi(t)) = tanh(xi(t)) for  ≤ i ≤ . It
is easy to verify that assumption (H) holds when setting L = . By the LMI’s toolbox in
Matlab, we obtain the feasible solutions of the inequalities in Theorems - and Corollary 
shown in Table , respectively, where

P =

⎡
⎢⎣

. –. .
–. . –.
. –. .

⎤
⎥⎦ , R =

⎡
⎢⎣

. . –.
. . .
–. . .

⎤
⎥⎦ ,

P =

⎡
⎢⎣

. . .
. . –.
. –. .

⎤
⎥⎦ , R =

⎡
⎢⎣

. . –.
. . .

–. . .

⎤
⎥⎦ .

From Table , we can see that the inequalities in Theorem  and Corollary  are infeasible
and as regards the inequalities in Theorem  and Theorem  there exist feasible solutions,
which implies that the complex network could not synchronize with each other if lacking
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control input or only controlling one node, and they could synchronize well if utilizing
pinning controller or pinning adaptive controller. Our simulating computation, we depict
in five figures. In particular, Figure  is the state trajectories of complex network and its
error system under the action of pinning controller (), these figures show that all the
nodes synchronize well. Figure  is the state trajectories of complex network, its error
system and updated laws under the action of pinning adaptive controller (), respectively,
which shows that all the nodes have synchronization.

5 Conclusions
This paper has investigated the almost sure synchronization control problem for a class of
stochastic delayed complex networks based on the stochastic differential equation theory.
Some synchronization criteria and two kinds of pinning controllers have been proposed.
These results reflect the relation of synchronization to the parameters of complex net-
works. A numerical example has shown that our method is effective.

This paper investigated the almost sure synchronization control other than synchro-
nization in mean square of complex networks, and the obtained results may be appropri-
ate for the synchronization of complex networks with the target node unknown. Specially,
the results obtained only depend on the complex network’s parameters.
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