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Abstract
We study the stability problem of mild solutions of impulsive stochastic differential
equations driven by a fractional Brown motion with finite time-varying delay. The
Hurst parameter H of the fractional Brown motion belongs to ( 12 , 1). In terms of
fractional power of operators and semigroup theory, we obtain sufficient conditions
that guarantee the stability of the mild solution of such a equation in two cases: the
impulse depends on current states of the system and the impulse depends not only
on current states but also on historical states of the system. We give two examples
illustrating the theorems.
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1 Introduction
Fractional Brownian motions (fBms) play a central role in the modeling and analysis of
many complex phenomena in applications where the systems are subject to “rough” ex-
ternal forcing. An fBm with Hurst parameter H ∈ (, ) is a zero-mean Gaussian process
denoted by W H = {W H(t), t ≥ }. If H ∈ (, 

 ), then it is regarded as a short-memory pro-
cess; if H = 

 , then it reduces to the standard Brownian motion; if H ∈ ( 
 , ), then it is

regarded as a long-memory process. It is easy to see that fBm is a generalization of Brow-
nian motion, but it behaves different significantly from the standard Brownian motion.
In particular, it is neither a semimartingale nor a Markov process. It is characterized by
stationary increments and memory property, which make an fBm a potential candidate to
model noise in biology and finance (see, e.g., [–], in geophysics ([]), in communication
networks ([]), in electricity markets ([]), and so on.

In recent years, stochastic differential equations driven by fBms have attracted increas-
ing interest because of their applications in a variety of fields (see [, –] and references
therein). However, most of the existing literature is focused on the existence and unique-
ness of mild solutions for stochastic differential equations driven by fBms (see, e.g., [–
]), but the existing results on the stability of mild solutions for stochastic differential
equations driven by fBms are relatively few. We only found a few stories in the literature
[, –]. In [], the authors provided sufficient conditions to guarantee the exponential
asymptotic behavior of solutions of general linear stochastic differential equations driven
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by fBms with time-varying delays. In [], the authors provided the conditions for the ex-
istence, uniqueness, and exponential asymptotic behavior of mild solutions to stochastic
delay evolution equations perturbed by an fBm. In [], the authors provided conditions to
ensure the exponential decay to zero in mean square of solutions of neutral stochastic dif-
ferential equations driven by fBms in a Hilbert space. However, in [, , ], the impulses
are not considered in the systems. In [], the author gave asymptotic stability conditions
for mild solutions of neutral stochastic differential equations driven by fBms with finite
delays and nonlinear impulsive effects. In [], the authors gave mean-square exponential
stability conditions for mild solutions of neutral stochastic differential equations driven
by fBms with infinite delays and impulses. However, the impulses in stochastic differential
equations in [, ] only depend on the current states of the systems, which are supposed
to be of the form Ik(x(tk)) at impulsive moments tk (k = , , . . .). Here, the delayed im-
pulses we consider describe the impulsive transients depending not only on their current
states but also on historical states of the system. Delayed impulses exist in many practical
problems, for example, in communication security systems based on impulsive synchro-
nization. During the information transmission process, the sampling delay created from
sampling the impulses at some discrete instances causes the impulsive transients depend
on their historical states. There are some results ([–]) on delayed impulsive differen-
tial equation, where the delays in impulsive perturbations are fixed as constants or vary
in a finite interval. However, most of these studies of stability for such delayed impulsive
differential equations consider deterministic equations ([–]), whereas stochastic dif-
ferential equations are rarely considered ([]). In [], the stochastic term was supposed
to be of the form g(xt , t) dw(t), where w(t) is a standard Brownian motion, not a fractional
one.

In view of the above discussion, we investigate the stability of impulsive stochastic delay
differential equations driven by fBms with Hurst parameter H ∈ ( 

 , ). Firstly, we assume
that the impulse in such an equation depends on the current states and give mean-square
exponential stability conditions. Secondly, we assume that the impulse in such an equation
depends on the historical states and give mean-square asymptotic stability conditions.

The rest of this paper is organized as follows. In Section , we introduce some notation,
concepts, and lemmas. In Section , we give mean-square exponential stability conditions
for stochastic differential equations driven by fBms with impulses and time-varying delays,
where the impulses only depend on the current states of the system. In Section , we
study a delayed impulsive differential equation driven by an fBm with impulses and time-
varying delay, where the impulses depend not only on the current states but also on the
historical states of the system, and provide mean-square asymptotic stability conditions
for such an equation. In Section , we give two illustrative examples. Conclusions are given
in Section .

2 Preliminaries
In the present paper, we study stability behavior of mild solutions of an impulsive stochas-
tic delay differential equation driven by an fBm in a Hilbert space of the form

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = [Ax(t) + F(t, x(t – σ (t)))] dt + G(t) dW H (t), t ≥ t, t �= tk ,

�x(tk) = Ik(x(t–
k ), x(t–

k – δ)), k ∈N,

x(t + θ ) = φ(θ ), θ ∈ [–α, ],

()
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where A is the infinitesimal generator of an analytic semigroup {S(t)}t≥t of bounded linear
operators in a Hilbert space X, W H (t) is am fBm with Hurst parameter H ∈ ( 

 , ) on a
real separable Hilbert space Y , the delay σ (t) : [t, +∞) → [,α] (α > ) is continuous,
N denotes the set of positive integers, impulsive moments satisfy  ≤ t < t < t < · · · <
tk < tk+ < · · · and limk→∞ tk = ∞, �x(tk) = x(t+

k ) – x(t–
k ) represents the jump size in the

state x at tk , x(t+
k ) and x(t–

k ) are respectively the right and left limits of x(t) at t = tk , δ is a
constant delay in impulses, Ik : X × X → X is continuous, the initial data φ ∈ C([–α, ], X)
(the space of all continuous functions from [–α, ] to X) has finite second moments, and
F : [t, +∞) × X → X and G : [t, +∞) → L

(Y , X), where L
(Y , X) is the space of all Q-

Hilbert-Schmidt operators ψ : Y → X.
In the rest of this section, we recall the definition of Wiener integrals with respect to

fBms and two useful lemmas.
Let (	,F, P) be a complete probability space. An fBm {W H(t), t ≥ t} with Hurst param-

eter H ∈ ( 
 , ) is a continuous centered Gaussian process with covariance function

RH (t, s) = E
[
W H (t)W H(s)

]
=



(|t|H + |s|H – |t – s|H)

and has the following Wiener integral representation:

W H (t) =
∫ t

t

KH (t, s) dW (s),

where W (t) = {W (t) : t ≥ t} is a standard Wiener process, KH (t, s) is the kernel given by

KH (t, s) = cH s

 –H

∫ t

s
(u – s)H– 

 uH– 
 du, t > s,

with cH =
√

H(H–)
B(–H,H– 

 )
, and B denotes the beta function. Let KH (t, s) =  for t ≤ s. For the

deterministic function ϕ ∈ L([t, +∞)), it is known from [] that the fractional Wiener
integral with respect to W H(t) can be defined by

∫ ∞

t

ϕ(t) dW H(t) =
∫ ∞

t

(
K∗

Hϕ
)
(t) dW (t),

where (K∗
Hϕ)(s) =

∫ t
s ϕ(t) ∂KH (t,s)

∂t dt.
Next, we are interested in considering an fBm with values in a Hilbert space and giving

the definition of the corresponding stochastic integral.
Let X and Y be real separable Hilbert spaces, and let L(Y , X) denote the space of all

bounded linear operators from Y to X. Let Q ∈ L(Y , X) be the operator defined by Qen =
λnen with finite trace tr Q =

∑∞
n= λn, where λn, n = , , . . . , are nonnegative real numbers,

and {en, n = , , . . .} is a complete orthonormal basis in Y . Define a Y -valued Gaussian
process as

W H (t) =
∞∑

n=

√
λnenW H

n (t),
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where W H
n (t) (n = , , . . .) are real independent fBms. It has the covariance

E
〈
W H(t), x

〉〈
W H(s), y

〉
= R(t, s)

〈
Q(x), y

〉

for all x, y ∈ Y and t, s ≥ t. The space L
(Y , X) the space of all Q-Hilbert-Schmidt opera-

tors ψ : Y → X, equipped with the following norm and inner product

‖ψ‖L
(Y ,X) =

∞∑

n=

‖√λnψen‖

and

〈φ,ψ〉L
(Y ,X) =

∞∑

n=

〈φen,ψen〉.

The space L
(Y , X) is a separable Hilbert space. Then (see []) the fractional Wiener

integral of the function ψ : [t, +∞) →L
(Y , X) with respect to the fBm is defined by

∫ t

t

ψ(s) dW H(s) =
∞∑

n=

∫ t

t

√
λnψ(s)en dW H

n (s) =
∞∑

n=

∫ t

t

√
λnK∗

H (ψen)(s) dWn(s).

Lemma  ([]) For any ψ : [t,∞) → L
(Y , X) satisfying

∫ ∞
t

‖ψ(s)‖
L

(Y ,X) ds < +∞, the

integral
∫ t

t
ψ(s) dW H(s) is well defined as an X-valued random variable, and

E

∥
∥
∥
∥

∫ t

t

ψ(s) dW H (s)
∥
∥
∥
∥



≤ cH(H – )(t – t)H–
∫ t

t

∥
∥ψ(s)

∥
∥
L

(Y ,X) ds, t > t,

where c = c(H) is a constant.

Lemma  ([]) For any μ > , assume that there exist positive constants α, α, βk , k ∈N,
and a function ψ : [–α,∞) → [,∞) such that

ψ(t) ≤ αe–μt , t ∈ [–α, t],

and, for each t ≥ t,

ψ(t) ≤ αe–μt + α

∫ t

t

e–μ(t–s) sup
θ∈[–α,]

ψ(s + θ ) ds +
∑

tk <t
βke–μ(t–tk )ψ

(
t–
k
)

if α
μ

+
∑∞

k= βk < . Then we have

ψ(t) ≤ Me–λt , t ≥ –α,

where λ >  is the unique solution of the equation αeλα

μ–λ
+

∑∞
k= βk = , and M =

max{α, α(μ–λ)
αeλα }.
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Definition . A mild solution of system () is said to be exponentially stable in mean
square if there is a pair of positive constants λ, M such that

E
∥
∥x(t, t,φ)

∥
∥ ≤ Me–λ(t–t).

3 Mean-square exponential stability of the impulsive differential equation
driven by an fBm with time-varying delay

In this section, we first assume that the impulses in Eq. () only depend on the current
states of the system, that is, the impulses can be described as Ik(x(t–

k ), x(t–
k – δ)) = Ik(x(t–

k )).
Then Eq. () reduces to the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = [Ax(t) + F(t, x(t – σ (t)))] dt + G(t) dW H (t), t ≥ t, t �= tk ,

�x(tk) = Ik(x(t–
k )), k ∈N,

x(t + θ ) = φ(θ ), θ ∈ [–α, ].

()

Next, we present the definition of a mild solution of Eq. ().

Definition . An X-valued stochastic process {x(t), t ∈ [–α,∞)} is called a mild solution
of Eq. () if x(t + θ ) = φ(θ ) on the interval [–α, ] and the following conditions hold:

(i) x(·) is continuous on [t, t] and on each interval (tk , tk+], k ∈N,
(ii) for each k, the limits x(t+

k ), x(t–
k ) exist, and x(t–

k ) = x(tk),
(iii) for each t ≥ t, we have a.s.

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ t
t

S(t – s)F(s, x(s – σ (s))) ds +
∫ t

t
S(t – s)G(s) dW H(s),

t ∈ [t, t],

S(t – tk)[x(t–
k ) + Ik(x(t–

k ))] +
∫ t

tk
S(t – s)F(s, x(s – σ (s))) ds

+
∫ t

tk
S(t – s)G(s) dW H(s), t ∈ (tk , tk+], k ∈N.

()

Our aim in this section is to obtain mean-square exponential stability conditions for a
mild solution for Eq. (). For this, we need the following assumptions.

(H) The strongly continuous semigroup {S(t)}t≥t is exponentially stable, that is, there
exist a constant M >  and a real number r >  such that ‖S(t)‖ ≤ Me–rt , t ≥ t.

(H) There exists a nonnegative real number R >  such that

∥
∥F(t, x)

∥
∥ ≤ R‖x‖, t ≥ t, x ∈ X.

(H) There exist nonnegative real numbers dk , k ∈ N, such that

∥
∥Ik(x) – Ik(y)

∥
∥ ≤ dk‖x – y‖

for all x, y ∈ X and
∑∞

k= dk < ∞
(H) The function G : [t,∞) →L

(Y , X) satisfies, for some r > ,

∫ ∞

t

ers∥∥G(s)
∥
∥
L

(Y ,X) ds < ∞.
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Theorem . Suppose that (H)-(H) hold and

MR


r + M

( ∞∑

i=

di

)

< . ()

Then, the mild solution of Eq. () is mean-square exponentially stable.

Proof For t ∈ [t, t], we have

x(t) =
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds +

∫ t

t

S(t – s)G(s) dW H(s). ()

For t ∈ (t, t], from () we get

x(t) = S(t – t)
(
x
(
t–

)

+ I
(
x
(
t–

)))

+
∫ t

t

S(t – s)G(s) dW H(s)

+
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds. ()

By (ii) of Definition ., x(t–
k ) = x(tk), and combining () with(), for t ∈ (t, t], we get

x(t) = S(t – t)I
(
x
(
t–

))

+ S(t – t)
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

+ S(t – t)
∫ t

t

S(t – s)G(s) dW H(s) +
∫ t

t

S(t – s)G(s) dW H(s)

+
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

=
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds + S(t – t)I

(
x
(
t–

))

+
∫ t

t

S(t – s)G(s) dW H(s). ()

In the same manner, for t ∈ (t, t], we get

x(t) = S(t – t)
(
x
(
t–

)

+ I
(
x
(
t–

)))

+
∫ t

t

S(t – s)G(s) dW H(s)

+
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

=
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

+
∫ t

t

S(t – s)G(s) dW H(s)

+ S(t – t)I
(
x
(
t–

))

+ S(t – t)I
(
x
(
t–

))

. ()
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Assuming that, for t ∈ (tm, tm+], where m ∈N,

x(t) =
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds +

∫ t

t

S(t – s)G(s) dW H(s)

+
m∑

i=

S(t – ti)Ii
(
x
(
t–
i
))

, ()

for t ∈ (tm+, tm+], by () we have

x(t) = S(t – tm+)
[
x
(
t–
m+

)
+ Im+

(
x
(
t–
m+

))]
+

∫ t

tm+

S(t – s)G(s) dW H(s)

+
∫ t

tm+

S(t – s)F
(
s, x

(
s – σ (s)

))
ds. ()

Combining () with (), for t ∈ (tm+, tm+], we have

x(t) = S(t – tm+)

[∫ tm+

t

S(tm+ – s)F
(
s, x

(
s – σ (s)

))
ds

+
∫ tm+

t

S(tm+ – s)G(s) dW H (s) +
m∑

i=

S(tm+ – ti)Ii
(
x
(
t–
i
))

]

+ S(t – tm+)Im+
(
x
(
t–
m+

))
+

∫ t

tm+

S(t – s)G(s) dW H(s)

+
∫ t

tm+

S(t – s)F
(
s, x

(
s – σ (s)

))
ds. ()

By the properties of a semigroup and (), for t ∈ (tm+, tm+], we have

x(t) =
∫ tm+

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

+
∫ tm+

t

S(t – s)G(s) dW H(s)

+
m∑

i=

S(t – ti)Ii
(
x
(
t–
i
))

+ S(t – tm+)Im+
(
x
(
t–
m+

))

+
∫ t

tm+

S(t – s)G(s) dW H(s) +
∫ t

tm+

S(t – s)F
(
s, x

(
s – σ (s)

))
ds. ()

Calculating (), then we get that, for t ∈ (tm+, tm+],

x(t) =
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds +

∫ t

t

S(t – s)G(s) dW H(s)

+
m+∑

i=

S(t – ti)Ii
(
x
(
t–
i
))

. ()
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From Eqs. () and (), by mathematical induction, for all t ∈ (tk , tk+], we have

x(t) =
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds +

∫ t

t

S(t – s)G(s) dW H(s)

+
k∑

i=

S(t – ti)Ii
(
x
(
t–
i
))

. ()

Taking the mathematical expectation of (), by the Cp inequality, for t ∈ (tk , tk+], k ∈ N,
we have

E
∥
∥x(t)

∥
∥ ≤ E

∥
∥
∥
∥

∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

∥
∥
∥
∥



+ E
∥
∥
∥
∥

∫ t

t

S(t – s)G(s) dW H(s)
∥
∥
∥
∥



+ E

∥
∥
∥
∥
∥

k∑

i=

S(t – ti)Ii
(
x
(
t–
i
))

∥
∥
∥
∥
∥



= 
∑

j=

Qj. ()

Next, we will estimate each item separately. Denote μ = r – ε, ε > . Using the Hölder
inequality and (H), (H), and (H), we have

Q = E

∥
∥
∥
∥

∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

∥
∥
∥
∥



≤ E

(∫ t

t

∥
∥S(t – s)

∥
∥
∥
∥F

(
s, x

(
s – σ (s)

))∥
∥ds

)

≤ M
E

(∫ t

t

e– r
 (t–s)e– r

 (t–s)∥∥F
(
s, x

(
s – σ (s)

))∥
∥ds

)

≤ M
∫ t

t

e–r(t–s) ds
∫ t

t

e–r(t–s)
E

∥
∥F

(
s, x

(
s – σ (s)

))∥
∥ ds

≤ M × 
r
(
 – e–r(t–t))

∫ t

t

e–r(t–s)R
E

∥
∥x

(
s – σ (s)

)∥
∥ ds

≤ MR


r

∫ t

t

e–μ(t–s) sup
θ∈[–α,]

E
∥
∥x(s + θ )

∥
∥ ds. ()

Using Lemma  and (H), we have

Q = E

∥
∥
∥
∥

∫ t

t

S(t – s)G(s) dW H(s)
∥
∥
∥
∥



≤ cH(H – )(t – t)H–
∫ t

t

∥
∥S(t – s)G(s)

∥
∥
L

(Y ,X) ds

≤ McH(H – )(t – t)H–e–rt
∫ t

t

erse–r(t–s)∥∥G(s)
∥
∥
L

(Y ,X) ds
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≤ McH(H – )(t – t)H–e–(μ+ε)t
∫ t

t

ers∥∥G(s)
∥
∥
L

(Y ,X) ds

≤ e–μt
(

McH(H – )(t – t)H–e–εt
∫ t

t

ers∥∥G(s)
∥
∥
L

(Y ,X) ds
)

. ()

In view of (H), there exists a constant R >  such that

McH(H – )(t – t)H–e–εt
∫ t


ers∥∥G(s)

∥
∥
L

(Y ,X) ds ≤ R. ()

Then, combining () and (), we have

Q ≤ Re–μt . ()

By the Hölder inequality, (H), and (H), we have

Q = E

∥
∥
∥
∥
∥

k∑

i=

S(t – ti)Ii
(
x
(
t–
i
))

∥
∥
∥
∥
∥



≤ E

( k∑

i=

∥
∥S(t – ti)Ii

(
x
(
t–
i
))∥

∥

)

≤ M
E

( k∑

i=

(di)

 (di)


 e–r(t–ti)x

(
t–
i
)
)

≤ M

( k∑

i=

di

)( k∑

i=

die–r(t–ti)E
∥
∥x

(
t–
i
)∥
∥

)

≤ M

( k∑

i=

di

) k∑

i=

die–μ(t–ti)E
∥
∥x

(
t–
i
)∥
∥. ()

By (), (), (), and (), for all t ≥ t, we have

E
∥
∥x(t)

∥
∥ ≤ 

MR


r

∫ t

t

e–μ(t–s) sup
θ∈[–α,]

E
∥
∥x(s + θ )

∥
∥ ds + Re–μt

+ M

( ∞∑

i=

di

)
∑

ti<t
die–μ(t–ti)E

∥
∥x

(
t–
i
)∥
∥, ()

and it is easy to see that, for t ∈ [–α, t],

E
∥
∥x(t)

∥
∥ ≤ αe–μt , ()

where α = max(R, supθ∈[–α,] E‖φ(θ )‖). By (), (), (), and Lemma , for all t ≥ –α,
we have

E
∥
∥x(t)

∥
∥ ≤ Me–λt , ()
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where λ is the unique solution to the equation αeλα

μ–λ
+

∑∞
k= βk = , with α = MR


r , βk =

Mdk(
∑∞

k= dk), and M = max{α, α(μ–λ)
αeλα }. This means that the mild solution of Eq. ()

is exponentially stable in mean square, and the proof is completed. �

Remark . We would like to mention that our method used in Theorem . can be ex-
tended to the neutral case.

Remark . If (H) is replaced by (H), then Theorem . remains true.

(H) There exist two nonnegative real numbers R >  and l >  such that

∥
∥F(t, x)

∥
∥ ≤ R‖x‖ + le–rt , ∀t ≥ t, x ∈ X.

Note that α in () should be α = max(R +  Ml
r(r–μ) , supθ∈[–α,] E‖φ(θ )‖).

Remark . If the impulses in () are removed, that is, �x(tk) = Ik(·) = , k ∈ N, then Eq.
() reduces to the following equation:

⎧
⎨

⎩

dx(t) = [Ax(t) + F(t, x(t – σ (t))] dt + G(t) dW H (t), t ≥ t,

x(t + θ ) = φ(θ ), θ ∈ [–α, ].
()

By using the same technique as in Theorem ., we can easily deduce the following corol-
lary.

Corollary . Suppose that (H), (H), (H) or (H), (H), (H) and MR < r hold. Then
the mild solution of Eq. () is exponentially stable in mean square.

Remark . In [], the authors studied Eq. () and proved the mean-square exponential
stability of the mild solution for (), assuming that the delay function σ (t) : [, +∞) →
[, r] is differentiable and | –σ ′(t)|– < ρ∗, where ρ∗ is a constant. It is obviousl that Corol-
lary . is less conservative than Theorem  in [].

4 Mean-square exponential stability of delayed impulsive differential
equation driven by an fBm with time-varying delay

In this section, we assume that the impulses in Eq. () depend on the historical states of
the system, that is, the impulses can be described as Ik(x(t–

k ), x(t–
k – δ)) = Ik(x(t–

k – δ)). In
addition, we assume that the impulses are linear. Then Eq. () reduces to the following
equation:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = [Ax(t) + F(t, x(t – σ (t)))] dt + G(t) dW H (t), t ≥ t, t �= tk ,

�x(tk) = ρkx(t–
k – δ), k ∈N,

x(t + θ ) = φ(θ ), θ ∈ [–α, ],

()

where the delay δ in impulses is a constant, and  ≤ δ < τ = infk∈N{tk – tk–}, ρk > , k ∈N,
are constants.

Next, we give the definition of a mild solution of Eq. ().
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Definition . An X-valued stochastic process {x(t), t ∈ [–α,∞)} is called a mild solution
of Eq. () if x(t + θ ) = φ(θ ) on the interval [–α, ] and the following conditions hold:

(i) x(·) is continuous on [t, t] and on each interval (tk , tk+], k ∈N,
(ii) for each k, the limits x(t+

k ), x(t–
k ) exist, and x(t–

k ) = x(tk),
(iii) for each t ≥ t, we have a.s.

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ t
t

S(t – s)F(s, x(s – σ (s))) ds +
∫ t

t
S(t – s)G(s) dW H(s),

t ∈ [t, t],

S(t – tk)[x(t–
k ) + ρkx(t–

k – δ)] +
∫ t

tk
S(t – s)F(s, x(s – σ (s))) ds

+
∫ t

tk
S(t – s)G(s) dW H(s), t ∈ (tk , tk+], k ∈N.

()

In order to obtain the mean-square asymptotic stability conditions of for the mild solu-
tion for Eq. (), we need the following assumption.

(H) The impulses satisfy

lim
k→∞

� < ∞,

where

� = k

(

C
k

k∑

i=

ρ
i e–r(k–i)τ + C

k

k–∑

i=

k∑

i>i

ρ
iρ


i e–r((k–i)τ–δ) + · · ·

+ Ck
k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ik e–r((k–i)τ–(k–)δ)

)

with binomial coefficients Cj
k =

( j
k
)
, j = , , . . . , k.

Remark . Assumption (H) looks complicated because of the addition of delay in im-
pulses; however, it is not difficult to realize. We give an example here. If dk = , k ∈ N,
then � = . It is easy to see that each term e–r(k–i) ≥ , i = , , . . . , k; e–r((k–i)τ–δ) ≥ ,
i = , , . . . , k – ; . . . e–r((k–i)τ–(k–)δ) ≥ , i = . If we choose ρk = 

k , then

� ≤ k
k∑

j=

(

Cj
k


kj

)

≤ k

( k∑

j=

Cj
k


kj

)

= k
[(

 +


k

)k

– 
]

.

Taking the limit on both sides of this inequality, we get

lim
k→∞

� ≤ lim
k→∞

{[( + 
k )k ]


k – }


k

= ,

so that limk→∞ � = .

Theorem . Suppose that (H), (H), (H), and (H) hold. Then, the mild solution of Eq.
() is asymptotically stable in mean square.
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Proof Denote by F the space of all stochastic processes x(t,ω) : [–α, +∞) × 	 → X satis-
fying x(t + θ ) = φ(θ ), θ ∈ [–α, ] and conditions (i)-(ii) in Definition . and

lim
t→∞E

∥
∥x(t)

∥
∥ = . ()

Our goal is to estimate the limit of E‖x(t)‖ as t → ∞. For t ∈ [t, t], we have

x(t) =
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds +

∫ t

t

S(t – s)G(s) dW H(s). ()

For t ∈ (t, t], by (), (), and Definition . we have

x(t) = S(t – t)
(
x
(
t–

)

+ ρx(t – δ)
)

+
∫ t

t

S(t – s)G(s) dW H(s)

+
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

=
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds +

∫ t

t

S(t – s)G(s) dW H(s)

+ ρ

∫ t–δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+ ρ

∫ t–δ

t

S(t – δ – s)G(s) dW H(s). ()

For t ∈ (t, t], from () we have

x(t) = S(t – t)
(
x
(
t–

)

+ ρx(t – δ)
)

+
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

+
∫ t

t

S(t – s)G(s) dW H(s). ()

By () and () we get, for t ∈ (t, t],

x(t) =
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds +

∫ t

t

S(t – s)G(s) dW H(s)

+ ρ

∫ t–δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+ ρ

∫ t–δ

t

S(t – δ – s)G(s) dW H(s)

+ ρ

∫ t–δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+ ρ

∫ t–δ

t

S(t – δ – s)G(s) dW H(s)

+ ρρ

∫ t–δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+ ρρ

∫ t–δ

t

S(t – δ – s)G(s) dW H (s). ()



Zhou et al. Advances in Difference Equations  (2016) 2016:328 Page 13 of 23

Assume that the following holds for t ∈ (tm, tm+] (for any m ∈N):

x(t) =
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds +

∫ t

t

S(t – s)G(s) dW H(s)

+
m∑

i=

ρi

∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+
m∑

i=

ρi

∫ ti –δ

t

S(t – δ – s)G(s) dW H(s)

+
m–∑

i=

m∑

i>i

ρiρi

∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+
m–∑

i=

m∑

i>i

ρiρi

∫ ti –δ

t

S(t – δ – s)G(s) dW H(s) + · · ·

+
∑

i=

∑

i>i

· · ·
m∑

im>im–

ρiρi · · ·ρim

∫ ti –δ

t

S(t – mδ – s)F
(
s, x

(
s – σ (s)

))
ds

+
∑

i=

∑

i>i

·
m∑

im>im–

ρiρi · · ·ρim

∫ ti –δ

t

S(t – mδ – s)G(s) dW H(s). ()

Then, for t ∈ (tm+, tm+], by () we have

x(t) = S(t – tm+)
(
x
(
t–
m+

)
+ ρm+x

(
t–
m+ – δ

))
+

∫ t

tm+

S(t – s)G(s) dW H(s)

+
∫ t

tm+

S(t – s)F
(
s, x

(
s – σ (s)

))
ds. ()

Substituting x(t–
m+) and x(t–

m+ – δ), which can be obtained from (), into (), by prop-
erties of semigroups and integrals, for t ∈ (tm+, tm+], we have

x(t) =
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

+
∫ t

t

S(t – s)G(s) dW H(s)

+
m+∑

i=

ρi

∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+
m+∑

i=

ρi

∫ ti –δ

t

S(t – δ – s)G(s) dW H(s)

+
m∑

i=

m+∑

i>i

ρiρi

∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+
m∑

i=

m+∑

i>i

ρiρi

∫ ti –δ

t

S(t – δ – s)G(s) dW H(s) + · · ·
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+
∑

i=

∑

i>i

· · ·
m+∑

im+>im

ρiρi · · ·ρim

∫ ti –δ

t

S
(
t – (m + )δ – s

)
F
(
s, x

(
s – σ (s)

))
ds

+
∑

i=

∑

i>i

· · ·
m+∑

im+>im

ρiρi · · ·ρim

∫ ti –δ

t

S
(
t – (m + )δ – s

)
G(s) dW H (s). ()

By mathematical induction and ()-(), for all k ∈N, t ∈ (tk , tk+], we have

x(t) =
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds +

∫ t

t

S(t – s)G(s) dW H(s)

+

( k∑

i=

ρi

∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+
k∑

i=

ρi

∫ ti –δ

t

S(t – δ – s)G(s) dW H(s)

+
k–∑

i=

k∑

i>i

ρiρi

∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+
k–∑

i=

k∑

i>i

ρiρi

∫ ti –δ

t

S(t – δ – s)G(s) dW H(s) + · · ·

+
∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρiρi · · ·ρik

∫ ti –δ

t

S(t – kδ – s)F
(
s, x

(
s – σ (s)

))
ds

+
∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρiρi · · ·ρik

∫ ti –δ

t

S(t – kδ – s)G(s) dW H(s)

)

=
∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds +

∫ t

t

S(t – s)G(s) dW H(s) + Ξ . ()

Now we estimate (). For all k ∈N, t ∈ (tk , tk+], we have

E
∥
∥x(t)

∥
∥ ≤ E

∥
∥
∥
∥

∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

∥
∥
∥
∥



+ E
∥
∥
∥
∥

∫ t

t

S(t – s)G(s) dW H(s)
∥
∥
∥
∥



+ E‖Ξ‖. ()

By (H), (H), and the Hölder inequality we have

T = E
∥
∥
∥
∥

∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

∥
∥
∥
∥



≤ E
(∫ t

t

Me–r(t–s)∥∥F
(
s, x

(
s – σ (s)

))∥
∥ds

)

≤ M
∫ t

t

e–r(t–s) ds
∫ t

t

e–r(t–s)∥∥F
(
s, x

(
s – σ (s)

))∥
∥ ds

≤ MR


r
(
 – e–r(t–t))

∫ t

t

e–r(t–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds. ()
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For any x ∈ F, by the definition of x ∈ F, for arbitrary ε > , there exists s∗ > t such that
E‖x(s – σ (s))‖ < ε for all s > s∗. So we have

∫ t

t

e–r(t–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds

=
∫ s∗

t

e–r(t–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds +


r
ε
(
 – e–r(t–s∗)). ()

Combining () with (), we have

lim
t→∞ T = lim

t→∞ E
∥
∥
∥
∥

∫ t

t

S(t – s)F
(
s, x

(
s – σ (s)

))
ds

∥
∥
∥
∥



= . ()

By Lemma  we get that

T = E
∥
∥
∥
∥

∫ t

t

S(t – s)G(s) dW H(s)
∥
∥
∥
∥



≤ cH(H – )(t – t)H–
∫ t

t

∥
∥S(t – s)G(s)

∥
∥
L

(Y ,X) ds

≤ cH(H – )(t – t)H–
∫ t

t

e–r(t–s)∥∥G(s)
∥
∥
L

(Y ,X) ds

= cH(H – )(t – t)H–e–rt
∫ t

t

erse–r(t–s)∥∥G(s)
∥
∥
L

(Y ,X) ds

≤ cH(H – )(t – t)H–e–rt
∫ t

t

ers∥∥G(s)
∥
∥
L

(Y ,X) ds. ()

It is easy to see that limt→∞(t – t)H–e–rt = , and by condition (H) we get

lim
t→∞ T = E

∥
∥
∥
∥

∫ t

t

S(t – s)G(s) dW H(s)
∥
∥
∥
∥



= . ()

Next, we estimate E‖Ξ‖:

T = E

∥
∥
∥
∥
∥

k∑

i=

ρi

∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+
k∑

i=

ρi

∫ ti –δ

t

S(t – δ – s)G(s) dW H (s)

+
k–∑

i=

k∑

i>i

ρiρi

∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

+
k–∑

i=

k∑

i>i

ρiρi

∫ ti –δ

t

S(t – δ – s)G(s) dW H(s) + · · ·

+
∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρiρi · · ·ρik

∫ ti –δ

t

S(t – kδ – s)F
(
s, x

(
s – σ (s)

))
ds
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+
∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρiρi · · ·ρik

∫ ti –δ

t

S(t – kδ – s)G(s) dW H(s)

∥
∥
∥
∥
∥



= E‖Ξ‖. ()

Using the Cp inequality, we get

T = E‖Ξ‖

≤  × k

{

E

∥
∥
∥
∥
∥

k∑

i=

ρi

∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

∥
∥
∥
∥
∥



+ E

∥
∥
∥
∥
∥

k–∑

i=

k∑

i>i

ρiρi ×
∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

∥
∥
∥
∥
∥



+ · · ·

+ E

∥
∥
∥
∥
∥

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρiρi · · ·ρik

∫ ti –δ

t

S(t – kδ – s)F
(
s, x

(
s – σ (s)

))
ds

∥
∥
∥
∥
∥



+ E

∥
∥
∥
∥
∥

k∑

i=

ρi

∫ ti –δ

t

S(t – δ – s)G(s) dW H(s)

∥
∥
∥
∥
∥



+ E

∥
∥
∥
∥
∥

k–∑

i=

k∑

i>i

ρiρi

∫ ti –δ

t

S(t – δ – s)G(s) dW H(s)

∥
∥
∥
∥
∥



+ · · ·

+ E

∥
∥
∥
∥
∥

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρiρi · · ·ρik

∫ ti –δ

t

S(t – kδ – s)G(s) dW H(s)

∥
∥
∥
∥
∥

}

= k

( k∑

j=

Uj +
k∑

j=

Vj

)

. ()

Firstly, we estimate the terms Uj (j = , , . . . , k). By (H), (H), the Cp inequality, and the
Hölder inequality we have

U ≤ C
k

k∑

i=

ρ
iE

∥
∥
∥
∥

∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

∥
∥
∥
∥



≤ MR
 C

k

k∑

i=

ρ
i

∫ ti –δ

t

e–r(t–δ–s) ds
∫ ti –δ

t

e–r(t–δ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds

≤ MR


r
C

k

k∑

i=

ρ
i e–r(t–ti )( – e–r(ti –δ–t))

×
∫ ti –δ

t

e–r(t–δ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds

≤ MR


r
C

k

k∑

i=

ρ
i e–r(t–ti )

∫ ti –δ

t

e–r(ti –δ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds. ()
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In a similar way, we get

U ≤ C
k

k–∑

i=

k∑

i>i

ρ
iρ


iE

∥
∥
∥
∥

∫ ti –δ

t

S(t – δ – s)F
(
s, x

(
s – σ (s)

))
ds

∥
∥
∥
∥



≤ MR
 C

k

k–∑

i=

k∑

i>i

ρ
iρ


i

∫ ti –δ

t

e–r(t–δ–s) ds

×
∫ ti –δ

t

e–r(t–δ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds

≤ MR


r
C

k

k–∑

i=

k∑

i>i

ρ
iρ


i e–r(t–ti –δ)( – e–r(ti –δ–t))

×
∫ ti –δ

t

e–r(ti –δ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds

≤ MR


r
C

k

k–∑

i=

k∑

i>i

ρ
iρ


i e–r(t–ti –δ)

∫ ti –δ

t

e–r(ti –δ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds. ()

In the same way, one get

Uk ≤ Ck
k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ikE

∥
∥
∥
∥

∫ ti –δ

t

S(t – kδ – s)F
(
s, x

(
s – σ (s)

))
ds

∥
∥
∥
∥



≤ MR
 Ck

k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ik

∫ ti –δ

t

e–r(t–kδ–s) ds

×
∫ ti –δ

t

e–r(t–kδ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds

≤ MR


r
Ck

k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ik e–r(t–ti –(k–)δ)

× (
 – e–r(ti –δ–t))

∫ ti –δ

t

e–r(ti –δ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds

≤ MR


r
Ck

k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ik e–r(t–ti –(k–)δ)

×
∫ ti –δ

t

e–r(ti –δ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds. ()

By Cp, Lemma , and (H) we have

V ≤ C
k

k∑

i=

d
iE

∥
∥
∥
∥

∫ ti –δ

t

S(t – δ – s)G(s) dW H(s)
∥
∥
∥
∥



≤ C
k

k∑

i=

ρ
i cH(H – )(ti – δ – t)H–

∫ ti –δ

t

∥
∥S(t – δ – s)G(s)

∥
∥ ds
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≤ McH(H – )C
k

k∑

i=

ρ
i (ti – δ – t)H–

∫ ti –δ

t

e–r(t–δ–s)∥∥G(s)
∥
∥
L

(Y ,X) ds

≤ McH(H – )C
k

k∑

i=

ρ
i (ti – δ – t)H–e–r(t–δ)

∫ ti –δ

t

ers∥∥G(s)
∥
∥
L

(Y ,X) ds

≤ McH(H – )C
k

k∑

i=

ρ
i (ti – δ – t)H–e–r(t–δ)

∫ t

t

ers∥∥G(s)
∥
∥
L

(Y ,X) ds

≤ McH(H – )C
k

k∑

i=

ρ
i (ti – δ – t)H–e–r(ti –δ–t)e–r(t–ti )

×
∫ t

t

ers∥∥G(s)
∥
∥
L

(Y ,X) ds. ()

We can do the same calculation for V:

V ≤ C
k

k–∑

i=

k∑

i>i

ρ
iρ


iE

∥
∥
∥
∥

∫ ti –δ

t

S(t – δ – s)G(s) dW H(s)
∥
∥
∥
∥



≤ C
k

k–∑

i=

k∑

i>i

ρ
iρ


i cH(H – )(ti – δ – t)H–

∫ ti –δ

t

∥
∥S(t – δ – s)G(s)

∥
∥ ds

≤ cH(H – )MC
k

k–∑

i=

k∑

i>i

ρ
iρ


i (ti – δ – t)H–

∫ ti –δ

t

e–r(t–δ–s)∥∥G(s)
∥
∥ ds

≤ cH(H – )MC
k

k–∑

i=

k∑

i>i

ρ
iρ


i (ti – δ – t)H–e–r(t–δ)

∫ ti –δ

t

ers∥∥G(s)
∥
∥ ds

≤ cH(H – )MC
k

k–∑

i=

k∑

i>i

ρ
iρ


i (ti – δ – t)H–e–r(t–δ)

∫ t

t

ers∥∥G(s)
∥
∥ ds

≤ cH(H – )MC
k

k–∑

i=

k∑

i>i

ρ
iρ


i (ti – δ – t)H–e–r(ti –δ–t)e–r(t–ti –δ)

×
∫ t

t

ers∥∥G(s)
∥
∥ ds. ()

The rest can be done in the same manner as before:

Vk ≤ Ck
k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ikE

∥
∥
∥
∥

∫ ti –δ

t

S(t – kδ – s)G(s) dW H(s)
∥
∥
∥
∥



≤ Ck
k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ik cH(H – )(ti – δ – t)H–

×
∫ ti –δ

t

∥
∥S(t – kδ – s)G(s)

∥
∥ ds

≤ cH(H – )MCk
k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ik (ti – δ – t)H–
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× e–r(t–kδ)
∫ ti –δ

t

ers∥∥G(s)
∥
∥ ds

≤ cH(H – )MCk
k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ik (ti – δ – t)H–

× e–r(t–kδ)
∫ t

t

ers∥∥G(s)
∥
∥ ds

≤ cH(H – )MCk
k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ik (ti – δ – t)H–

× e–r(ti –δ–t)e–r(t–ti –(k–)δ)
∫ t

t

ers∥∥G(s)
∥
∥ ds. ()

By () to () we get

k∑

j=

Uj ≤ MR


r

(

C
k

k∑

i=

ρ
i e–r(t–ti )

∫ ti –δ

t

e–r(ti –δ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds

+ C
k

k–∑

i=

k∑

i>i

ρ
iρ


i e–r(t–ti –δ)

∫ ti –δ

t

e–r(ti –δ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds

+ · · · + Ck
k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ik e–r(t–ti –(k–)δ)

×
∫ ti –δ

t

e–r(ti –δ–s)
E

∥
∥x

(
s – σ (s)

)∥
∥ ds

)

. ()

For any x(t) ∈ F, by the definition of F and by (H) we get

lim
k→∞

k
k∑

j=

Uj =  ()

and

k∑

j=

Vj ≤ McH(H – )
∫ t

t

ers∥∥G(s)
∥
∥
L

(Y ,X) ds

×
{

C
k

k∑

i=

ρ
i e–r(t–ti )(ti –δ–t)H–e–r(ti –δ–t)

+ C
k

k–∑

i=

k∑

i>i

ρ
iρ


i (ti – δ – t)H–e–r(ti –δ–t)e–r(t–ti –δ)

+ Ck
k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

ρ
iρ


i · · ·ρ

ik (ti – δ – t)H–

× e–r(ti –δ–t)e–r(t–ti –(k–)δ)

}

. ()
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By (H) and (H) we get

lim
k→∞

k
k∑

j=

Vj = . ()

By (), (), and () we get

lim
t→∞ T = . ()

By (), (), (), and () we finally get limt→∞ E‖x(t)‖ =  and complete the proof of
the theorem. �

Remark . The delay in impulses of Eq. () are assume to satisfy  ≤ δ < τ = infk∈N{tk –
tk–}, which means that impulsive instances depend on information of the prior interval
in the history. In other words, the information of the history of the prior interval (tk–, tk]
is needed to decide the impulsive instances at tk . In fact, we can assume that the impul-
sive instance states are determined by the information of the prior several intervals in the
history, and the method of Theorem . is also applicable, although the expression of the
states of the system is very complex.

Remark . �x(tk) = ρkx(t–
k – δ) in Eq. () describe that impulsive moments are linear

in structure and dependent on delayed state variables. By the method of Theorem . and
Theorem . we can get corresponding stability conditions when the impulsive moments
are described as �x(tk) = Ik(x(t–

k )) + ρkx(t–
k – δ). Here we omit the details.

Remark . In [] and [], the authors investigated the exponential stability of impul-
sive stochastic differential equations driven by an fBm. In [], the impulses were not con-
sidered in the systems. In [], the impulses were considered in the systems, but they only
depended on the current states of the systems. However, in our paper, the impulses con-
sidered in the systems depend not only on the current states but also on the historical
states of the systems.

5 Examples
In this section, we provide two examples to illustrate the obtained results.

Example  Let us consider the following impulsive stochastic differential equation driven
by an fBm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dZ(t, x) = [ ∂Z(t,x)
∂x + a(t) Z(t– α

 (+sin t))
+[Z(t– α

 (+sin t))] ] dt + e–πt dW H (t),

t ≥ t, t �= tk ,  ≤ x ≤ π ,

�Z(tk , x) = b
k Z(t–

k ), k ∈N,

Z(t, ) = Z(t,π ) = ,

Z(t + θ , x) = φ(θ , x), θ ∈ [–α, ],

()

where a(t) : [t,∞) → R
+ is a continuous bounded function for t ≥ t. Denote by a

the smallest upper bound of the function a(t) and let b >  be a constant. Let X =
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L[,π ] and Y = L[,π ], and let the operator A : X → X be defined by Ax = x′′ with
domain D(A) = {x ∈ X : x, x′ are absolutely continuous, x′′ ∈ X, x() = x(π ) = }. Then,
Ax =

∑∞
n= n〈x, xn〉xn, x ∈ D(A), where xn(t) =

√

π

sin(nt), n = , , . . . , is the orthogonal
set of eigenvectors in A. It is easy to see that A is the infinitesimal generator of an an-
alytic semigroup {S(t)}t≥ in X. Furthermore, we have S(t)x =

∑∞
n= e–nt〈x, xn〉xn for all

x ∈ X, t > . We have seen that ‖S(t)‖ ≤ e–πt . To define the operator Q : Y → X, we take
a sequence {λn}n≥ ⊂ R+ and set Qωn = λnωn, where ωn is a complete orthonormal ba-
sis in Y . Also, assume that tr(Q) =

∑∞
n= λ/

n < ∞. Now we define the process W H(t) by
W H (t) =

∑∞
n=

√
λnωnW H

n (t), where H ∈ ( 
 , ), and {W H

n (t)} is a sequence of independent
two-sided one-dimensional fBms.

Now, let us verify the conditions of Theorem .. Since ‖S(t)‖ ≤ e–πt , we can choose
M =  and r = π in (H) and σ (t) = α

 ( + sin t) ∈ [,α]. The function F has the form

F(t, Z) = a(t)
Z

 + Z .

So, we can choose R = a in (H) and dk = b 
k in (H). Then

∑∞
k= dk = b π

 < ∞. So,
conditions (H) and (H) hold. In Eq. (), the function G(t) = e–πt , and (H) holds. If a

and b satisfy the inequality

MR


r + M

( ∞∑

i=

di

)

=
a


π +

bπ


< ,

then all the assumptions in Theorem . are satisfied. By Theorem . the mild solution of
Eq. () is exponentially stable in mean square.

Example  Let us consider the following stochastic differential equation driven by an fBm
with delayed impulses:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dZ(t, x) = [ ∂Z(t,x)
∂x + a(t) Z(t– α

 (+sin t))
+[Z(t– α

 (+sin t))] ] dt + e–πt dW H (t),

t ≥ t, t �= tk ,  ≤ x ≤ π ,

�Z(tk , x) = b
k Z(t–

k – δ), k ∈N,

Z(t, ) = Z(t,π ) = ,

Z(t + θ , x) = φ(θ , x), θ ∈ [–α, ],

()

where a(t), b, A, F(t, y) are the same as in Eq. (). The conditions (H), (H), and (H)
hold, so we only need to verify condition (H). We assume that tk – tk+ = , k ∈ N, and
δ = .. Then

� ≤ k

(

C
k

k∑

i=

b

k + C
k

k–∑

i=

k∑

i>i

b

k + · · · + Ck
k

∑

i=

∑

i>i

· · ·
k∑

ik >ik–

b

k

)

, ()

and by binomial expansion we get

� ≤ k
k∑

j=

(

Cj
k


kj

)

≤ k

( k∑

j=

Cj
k


kj

)

= k
((

 +


k

)k

– 
)

.
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From an important limit we get that limk→∞ � =  < ∞. So all the conditions of Theo-
rem . are satisfied, and the mild solution of Eq. () is asymptotically stable in mean
square.

6 Conclusion
In this article, we obtained two stability results for stochastic differential equations driven
by an fBm (Hurst parameter H ∈ ( 

 , )) with varying delays and impulses. The mean-
square exponential stability conditions for mild solutions under the condition that the
impulses only depend on the current states of the systems, and the mean-square asymp-
totic stability conditions for mild solutions under the condition that the impulses depend
not only on the current states but also on the history states of the systems. Two examples
were given to illustrate the theorems.
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