
Ding and Ji Advances in Difference Equations  (2016) 2016:289 
DOI 10.1186/s13662-016-1020-2

R E S E A R C H Open Access

Pseudo-almost periodic solutions for a
discrete Nicholson’s blowflies model with
harvesting term
Hui-Sheng Ding* and Meng-Xuan Ji

*Correspondence:
dinghs@mail.ustc.edu.cn
College of Mathematics and
Information Science, Jiangxi Normal
University, Nanchang, Jiangxi
330022, People’s Republic of China

Abstract
This paper is concerned with a discrete Nicholson’s blowflies model, which involves a
linear harvesting term. In the case where the coefficients are pseudo-almost periodic
functions, we establish the existence and local exponential stability of pseudo-almost
periodic solutions for the addressed Nicholson’s blowflies model by using the
contraction mapping theorem and a Lyapunov functional. An example is given to
illustrate our results.
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1 Introduction and preliminaries
In , Nicholson [] and later in , Gurney et al. [] proposed the following delay
differential equation model:

x′(t) = –δx(t) + px(t – τ )e–γ x(t–τ ), (.)

where x(t) is the size of the population at time t, p is the maximum per capita daily egg
production, 

γ
is the size at which the population reproduces at its maximum rate, δ is the

per capita daily adult death rate, and τ is the generation time.
Now, Nicholson’s blowflies model and its various analogous equations have attracted

more and more attention. There is a wide literature on this topic (see [–]). Especially,
several authors have made contributions on a discrete Nicholson’s blowflies model (see,
e.g., [–, , ] and references therein). On the other hand, since the harvest of pop-
ulation species is commonly practiced in fishery, forestry and wildlife management, the
study of population dynamics with harvesting has become an important subject. Espe-
cially, Berezansky et al. [] proposed the following Nicholson’s blowflies model with linear
harvesting term:

x′(t) = –δx(t) + px(t – τ )e–γ x(t–τ ) – H(t – σ ).
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Since the work of Berezansky et al. [], it has attracted much attention of many researchers
to study the qualitative properties of the Nicholson’s blowflies model with harvesting term.
We refer the reader to [, –, , , ] and references therein for some of recent works
on the Nicholson’s blowflies model with harvesting term.

Stimulated by the works mentioned, in this paper, we aim to study the following discrete
Nicholson’s blowflies model involving a linear harvesting term:

�x(n) = –α(n)x(n) + β(n)x
(
n – τ (n)

)
e–γ (n)x(n–τ (n)) – H(n)x

(
n – σ (n)

)
, (.)

where n ∈ Z, and α, β , γ , τ , σ , H are all pseudo-almost periodic sequences.
Recently, Alzabut et al. [, ] investigated the existence and stability of almost periodic

solutions for equation (.). Yao [] studied the existence and stability of almost periodic
solutions for continuous case of equation (.). Chérif [] and Duan and Huang [] inves-
tigated the existence and stability of pseudo-almost periodic solutions for the continuous
case of equation (.). However, it seems that there are no results concerning pseudo-
almost periodic solutions for discrete equation (.), which is the main motivation for this
paper.

It is worth noting that the behavior of pseudo-almost periodic functions is more tricky
than that of almost periodic functions. In fact, in [, ], not all the coefficients are assumed
to be pseudo-almost periodic (some coefficients are assumed to be almost periodic). In this
paper, we try to study this problem in the case where all coefficients are pseudo-almost
periodic functions. As we will see, the pseudo-almost periodicity of α, τ , σ causes some
extra difficulties.

Throughout this paper, we denote by R the set of real numbers, by R
+ the set of non-

negative real numbers, by N the set of positive integers, by Z the set of integers, by Z
+

the set of nonnegative integers, and by card S the number of elements in a subset S of Z.
Moreover, for every bounded sequence f : Z →R, we denote

f + = sup
n∈Z

f (n), f – = inf
n∈Z

f (n).

In addition, for some notations related to the initial value problem of equation (.), we
refer the reader to some earlier references (see, e.g., []).

Next, let us recall some basic definitions and results about almost periodic sequences.
For more details, we refer the reader to [–].

Definition . A set E ⊂ Z is called relatively dense if there exists l ∈ N such that

[n, n + l] ∩Z∩ E �= ∅

for every n ∈ Z.

Definition . A function f : Z → R is called an almost periodic sequence if for every
ε > ,

P(ε, f ) =
{
τ ∈ Z :

∣∣f (n + τ ) – f (n)
∣∣ < ε for all n ∈ Z

}

is a relatively dense set in Z. We denote by AP(Z,R) the set of all such functions.
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Next, we denote by PAP(Z,R) the space of all bounded functions f : Z →R such that

lim
n→∞


n

n∑

k=–n

∣
∣f (k)

∣
∣ = .

Lemma . ([]) Let f : Z → R be bounded. Then f ∈ PAP(Z,R) if and only if for every
ε > ,

lim
n→∞

card{k ∈ [–n, n] ∩Z : |f (k)| ≥ ε}
n

= .

Definition . A function f : Z → R is called a pseudo-almost periodic sequence if it
admits a decomposition f = g + h, where g ∈ AP(Z,R) and h ∈ PAP(Z,R). We denote by
PAP(Z,R) the set of all such functions.

Lemma . ([–]) Let X ∈ {AP(Z,R), PAP(Z,R)}. Then:
(a) every f ∈ X is bounded;
(b) if f , g ∈ X , then f + g ∈ X and f · g ∈ X ;
(c) X is a Banach space equipped with the supremum norm;
(d) f ∈ X implies that f (· + s) ∈ X for every s ∈R;
(d) f ∈ X implies that F ◦ f ∈ X for every continuous function F : R→ R.

Now, let us recall some basic results about the linear difference system

x(n + ) = A(n)x(n), n ∈ Z, (.)

where for every n ∈ Z, x(n) ∈ R
q and A(n) is an invertible q × q matrix. Denote


(n, m) =

⎧
⎪⎨

⎪⎩

A(n – ) · · ·A(m), n > m,
I, n = m,
A–(n) · · ·A–(m), n < m.

Definition . ([]) We say that the linear difference system (.) has an exponential
dichotomy on Z if there are positive constants K , λ and a family of projections P(n) such
that

P(n + )A(n) = A(n)P(n), n ∈ Z,

and

∣∣
(n, m)P(m)
∣∣ ≤ Ke–λ(n–m), n ≥ m,

∣∣
(n, m)
(
I – P(m)

)∣∣ ≤ Ke–λ(m–n), m > n.

Lemma . ([]) If the linear difference system (.) has an exponential dichotomy on Z

and f : Z →R is bounded, then the inhomogeneous system

x(n + ) = A(n)x(n) + f (n), n ∈ Z,
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has a unique bounded solution given by

x(n) =
n–∑

m=–∞

(n, m + )P(m + )f (m) –

+∞∑

m=n

(n, m + )

(
I – P(m + )

)
f (m), n ∈ Z.

2 Main results
Before presenting our main results, let us first establish some lemmas. For every subset
� ⊂ R, we denote by PAP(Z,�) the set of all functions f ∈ PAP(Z,�) with f (Z) ⊂ �. We
also use the notations AP(Z,�) and PAP(Z,�), which are similar to PAP(Z,�).

Lemma . Let f ∈ PAP(Z,Z). Then, there exist periodic functions f : Z → Z and f ∈
PAP(Z,Z) such that f = f + f.

Proof Let f = f + f, where f ∈ AP(Z,R) and f ∈ PAP(Z,R). By Lemma . in [] we
have

{
f(n) : n ∈ Z

} ⊂ {
f (n) : n ∈ Z

} ⊂ Z,

and we conclude that f ∈ AP(Z,Z) and f ∈ PAP(Z,Z). Moreover, since f ∈ AP(Z,Z),
there exists p >  such that

sup
n∈Z

∣
∣f(n + p) – f(n)

∣
∣ <




,

which means that f(n + p) = f(n) for all n ∈ Z, that is, f is a periodic function. �

Example . Let

σ(n) =

{
, n = k + , k ∈ Z,
, n = k, k ∈ Z,

and σ(n) =

{
, n = k , k = , , . . . ,
, otherwise.

It is not difficult to verify that σ = σ + σ ∈ PAP(Z,Z).

Lemma . Let φ ∈ PAP(Z,R) and τ ∈ PAP(Z,Z). Then, φ(· – τ (·)) ∈ PAP(Z,R).

Proof Let φ = φ + φ and τ = τ + τ, where φ ∈ AP(Z,R), φ ∈ PAP(Z,R), τ ∈ AP(Z,Z),
and τ ∈ PAP(Z,Z).

For all n ∈ Z, we have

φ
(
n – τ (n)

)
= φ

(
n – τ (n)

)
+ φ

(
n – τ (n)

)

= φ
(
n – τ(n)

)
+ φ

(
n – τ (n)

)
– φ

(
n – τ(n)

)
+ φ

(
n – τ (n)

)

= I(n) + I(n) + I(n),

where I(n) = φ(n – τ(n)), I(n) = φ(n – τ (n)) – φ(n – τ(n)), I(n) = φ(n – τ (n)).
For every ε ∈ (, ), noting that τ ∈ AP(Z,Z), we have

τ(n + p) = τ(n), n ∈ Z, p ∈ P(ε, τ),
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which yields that, for all n ∈ Z and p ∈ P(ε, τ) ∩ P(ε,φ),

∣
∣I(n + p) – I(n)

∣
∣ =

∣
∣φ

(
n + p – τ(n + p)

)
– φ

(
n – τ(n)

)∣∣

=
∣
∣φ

(
n + p – τ(n)

)
– φ

(
n – τ(n)

)∣∣ < ε.

Recalling that P(ε, τ)∩P(ε,φ) is still relatively dense in Z, we conclude that I ∈ AP(Z,R).
We claim that, for all ε ∈ (, ) and n ∈N,

{
k ∈ [–n, n] ∩Z :

∣∣I(k)
∣∣ ≥ ε

} ⊂ {
k ∈ [–n, n] ∩Z :

∣∣τ(k)
∣∣ ≥ ε

}
. (.)

In fact, if k /∈ {k ∈ [–n, n]∩Z : |τ(k)| ≥ ε}, then |τ(k)| < ε < , and thus τ(k) =  since τ is
integer valued. So I(k) = , that is, k /∈ {k ∈ [–n, n]∩Z : |I(k)| ≥ ε}. Since τ ∈ PAP(Z,Z),
for the above ε ∈ (, ), it follows from Lemma . that

lim
n→∞

card{k ∈ [–n, n] ∩Z : |τ(k)| ≥ ε}
n

= .

Then, by (.) we get

lim
n→∞

card{k ∈ [–n, n] ∩Z : |I(k)| ≥ ε}
n

= .

Again by Lemma ., we conclude that I ∈ PAP(Z,R).
Let K = supn∈Z |τ (n)|. Then K ∈ Z

+ since τ ∈ PAP(Z,Z). Noting that φ ∈ PAP(Z,R),
we have


n

n∑

k=–n

∣
∣I(k)

∣
∣ =


n

n∑

k=–n

∣
∣φ

(
k – τ (k)

)∣∣

≤ 
n

n∑

k=–n

K∑

m=–K

∣∣φ(k – m)
∣∣

=
K∑

m=–K

(


n

n∑

k=–n

∣
∣φ(k – m)

∣
∣
)

.

Combining this with the fact that PAP(Z,R) is translation invariant, we get

lim
n→∞


n

n∑

k=–n

∣
∣I(k)

∣
∣ = .

Thus, I ∈ PAP(Z,R).
It follows from the above proof that φ(· – τ (·)) ∈ PAP(Z,R). �

Lemma . Let θ , f ∈ PAP(Z,R) with ‖θ‖ < , and

F(n) =
n–∑

m=–∞

[ n–∏

i=m+

θ (i)

]

f (m), n ∈ Z,

where we denote
∏n–

i=n θ (i) =  for simplicity. Then F ∈ PAP(Z,R).
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Proof It is easy to see that

F(n) =
+∞∑

k=

[ n–∏

i=n–k+

θ (i)

]

f (n – k), n ∈ Z.

For every l ∈N, we denote

Fl(n) =
l∑

k=

[ n–∏

i=n–k+

θ (i)

]

f (n – k), n ∈ Z.

It follows from Lemma . that Fl ∈ PAP(Z,R) for every l ∈ N. On the other hand, we have

‖F – Fl‖ = sup
n∈Z

∣∣∣
∣∣

+∞∑

k=l+

[ n–∏

i=n–k+

θ (i)

]

f (n – k)

∣∣∣
∣∣

≤ ‖f ‖ ·
+∞∑

k=l+

‖θ‖k–

= ‖f ‖ · ‖θ‖l

 – ‖θ‖ → , l → +∞.

Since PAP(Z,R) is a Banach space, we conclude that F ∈ PAP(Z,R). �

For the next existence theorem, we will use the following assumptions:
(A) α ∈ PAP(Z,R) with  < α– ≤ α+ < , β ,γ , H ∈ PAP(Z,R+) with β–,γ – > , and

τ ,σ ∈ PAP(Z,Z+).
(A) � > � ≥ 

γ + , where

β+

α–γ –e
= �,

�(β–e–γ +� – H+)
α+ = �.

(A) H+ + β+ max{ |–k|
ek , 

e } < α–, where k = �γ
–.

Theorem . Under assumptions (A)-(A), there exists a unique pseudo-almost periodic
solution of equation (.) in

� =
{
ϕ ∈ PAP(Z,R) : � ≤ ϕ(n) ≤ �,∀n ∈ Z

}
.

Proof Taking ϕ ∈ �, consider the following difference equation:

�x(n) = –α(n)x(n) + β(n)ϕ
(
n – τ (n)

)
e–γ (n)ϕ(n–τ (n)) – H(n)ϕ

(
n – σ (n)

)
,

that is,

x(n + ) =
(
 – α(n)

)
x(n) + β(n)ϕ

(
n – τ (n)

)
e–γ (n)ϕ(n–τ (n)) – H(n)ϕ

(
n – σ (n)

)
. (.)

By Lemma . we have

ϕ
(· – τ (·)),ϕ

(· – σ (·)) ∈ PAP(Z,R).
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Then, by Lemma . we conclude that

β(·)ϕ(· – τ (·))e–γ (·)ϕ(·–τ (·)) – H(·)ϕ(· – σ (·)) ∈ PAP(Z,R).

Noting that  < α– ≤ α+ < , x(n + ) = ( – α(n))x(n) admits an exponential dichotomy on
Z with P(n) ≡ I . Then, by Lemma . we deduce that equation (.) has a unique bounded
solution given by

xϕ(n) =
n–∑

m=–∞

[ n–∏

i=m+

(
–α(i)

)
]

·(β(m)ϕ
(
m–τ (m)

)
e–γ (m)ϕ(m–τ (m)) –H(m)ϕ

(
m–σ (m)

))
.

Now, define a mapping on � by

(Tϕ)(n) = xϕ(n), n ∈ Z,ϕ ∈ �.

It follows from Lemma . that Tϕ ∈ PAP(Z,R) for every ϕ ∈ �. Next, let us show that
T(�) ⊂ �.

Since

sup
x≥

xe–γ –x =


γ –e

for every ϕ ∈ � and n ∈ Z, we have

(Tϕ)(n) =
n–∑

m=–∞

[ n–∏

i=m+

(
 – α(i)

)
]

· (β(m)ϕ
(
m – τ (m)

)
e–γ (m)ϕ(m–τ (m)) – H(m)ϕ

(
m – σ (m)

))

≤
n–∑

m=–∞

[ n–∏

i=m+

(
 – α(i)

)
]

· β(m)ϕ
(
m – τ (m)

)
e–γ –ϕ(m–τ (m))

≤
n–∑

m=–∞

[ n–∏

i=m+

(
 – α–)

]

· β+

γ –e

=
β+

α–γ –e
= �.

On the other hand, by (A) we know that � ≥ 
γ + , which yields

inf
�≤x≤�

xe–γ +x = �e–γ +� .

Thus, we have

(Tϕ)(n) =
n–∑

m=–∞

[ n–∏

i=m+

(
 – α(i)

)
]

· (β(m)ϕ
(
m – τ (m)

)
e–γ (m)ϕ(m–τ (m)) – H(m)ϕ

(
m – σ (m)

))

≥
n–∑

m=–∞

[ n–∏

i=m+

(
 – α+)

]

· (β–ϕ
(
m – τ (m)

)
e–γ +ϕ(m–τ (m)) – H+�

)
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≥
n–∑

m=–∞

[ n–∏

i=m+

(
 – α+)

]

· (β–�e–γ +� – H+�
)

=
�(β–e–γ +� – H+)

α+ = �

for every ϕ ∈ � and n ∈ Z.
We have shown that T is a self-mapping from � to �. It is obvious that � is a closed

subset in PAP(Z,R). Next, let us show that T is a contraction. Noting that

∣∣xe–x – ye–y∣∣ ≤ max

{ | – k|
ek ,


e

}
|x – y|, x, y ≥ k (.)

for all ϕ,ψ ∈ �, we have

∥
∥T(ϕ) – T(ψ)

∥
∥

= sup
n∈Z

∣∣
∣∣
∣

n–∑

m=–∞

[ n–∏

i=m+

(
 – α(i)

)
]

· {H(m)ψ
(
m – σ (m)

)
– H(m)ϕ

(
m – σ (m)

)

+ β(m)ϕ
(
m – τ (m)

)
e–γ (m)ϕ(m–τ (m)) – β(m)ψ

(
m – τ (m)

)
e–γ (m)ψ(m–τ (m))}

∣
∣∣
∣∣

≤ sup
n∈Z

n–∑

m=–∞

[ n–∏

i=m+

(
 – α(i)

)
]

·
{

H+‖ϕ – ψ‖ + β+ max

{ | – k|
ek ,


e

}
‖ϕ – ψ‖

}

≤ H+ + β+ max{ |–k|
ek , 

e }
α– ‖ϕ – ψ‖,

which implies by (A) that the mapping T is a contraction. Therefore, T has a unique fixed
point in �, which means that equation (.) has a unique pseudo-almost periodic solution
in �. �

Next, let us discuss locally exponential stability of the pseudo-almost periodic solution
of equation (.).

Theorem . Suppose that (A)-(A) and

(A) H+ + β+ max

{ | – k|
ek ,


e

}
<

 – α+

 – α– · α–

are satisfied. Let x∗ be the unique pseudo-almost periodic solution of equation (.) in �,
and x be an arbitrary solution of equation (.) with infn≥–N x(t) ≥ �. Then, there exists a
constant λ >  such that

∣
∣x(n) – x∗(n)

∣
∣ ≤ Me–λn, n ≥ –N ,

where N = max{τ+,σ +} and M = max–N≤n≤ |x(n) – x∗(n)|.

Proof Let y(n) = x(n) – x∗(n), n ≥ –N . Then

�y(n) = – α(n)y(n) + β(n)
[
x
(
n – τ (n)

)
e–γ (n)x(n–τ (n)) – x∗(n – τ (n)

)
e–γ (n)x∗(n–τ (n))]

– H(n)y
(
n – σ (n)

)
,
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that is,

�y(n) = –
α(n)

 – α(n)
y(n + )

+
β(n)

 – α(n)
[
x
(
n – τ (n)

)
e–γ (n)x(n–τ (n)) – x∗(n – τ (n)

)
e–γ (n)x∗(n–τ (n))]

–
H(n)

 – α(n)
y
(
n – σ (n)

)
. (.)

Letting k̃ = max{ |–k|
ek , 

e }, by (A) there exists λ >  such that

H+

 – α+ eλ(N+) + eλ –  +
β+

 – α+ k̃eλ(N+) <
α–

 – α– . (.)

Consider the discrete Lyapunov functional

V (n) =
∣∣y(n)

∣∣eλn, n ≥ –N .

It is easy to see that V (n) ≤ M for all n ∈ [–N , ] ∩ Z. We claim that V (n) ≤ M for all
n ≥ –N . In fact, if this were not true, then

{
n >  : V (n) > M

} �= ∅.

Set

n = min
{

n >  : V (n) > M
}

– .

Then n ≥  and

V (n + ) > M, V (n) ≤ M, n ∈ [–N , n] ∩Z.

Combining this with (.), we get that

 < V (n + ) – V (n)

= �V (n) = �
(∣∣y(n)

∣
∣eλn

)

= �
∣
∣y(n)

∣
∣eλ(n+) +

∣
∣y(n)

∣
∣�eλn

≤ –
α(n)

 – α(n)
∣∣y(n + )

∣∣eλ(n+) +
H(n)

 – α(n)
∣∣y

(
n – σ (n)

)∣∣eλ(n+)

+
∣
∣y(n)

∣
∣(eλ(n+) – eλn

)
+

β(n)
 – α(n)

∣
∣x

(
n – τ (n)

)
e–γ (n)x(n–τ (n))

– x∗(n – τ (n)
)
e–γ (n)x∗(n–τ (n))∣∣eλ(n+)

≤ –
α(n)

 – α(n)
V (n + ) +

H+

 – α+ V
(
n – σ (n)

)
eλσ (n)eλ

+ V (n)
(
eλ – 

)
+

β+

 – α+ k̃y
(
n – τ (n)

)
eλ(n+)
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≤ –
α–

 – α– M +
H+

 – α+ Meλ(N+) + M
(
eλ – 

)
+

β+

 – α+ k̃V
(
n – τ (n)

)
eλτ (n)eλ

≤ –
α–

 – α– M +
H+

 – α+ Meλ(N+) + M
(
eλ – 

)
+

β+

 – α+ k̃Meλ(N+)

= M
(

–
α–

 – α– +
H+

 – α+ eλ(N+) + eλ –  +
β+

 – α+ k̃eλ(N+)
)

.

Thus, we have

H+

 – α+ eλ(N+) + eλ –  +
β+

 – α+ k̃eλ(N+) >
α–

 – α– ,

which contradicts with (.). So V (n) ≤ M for all n ≥ –N , that is,

∣
∣x(n) – x∗(n)

∣
∣ ≤ Me–λn, n ≥ –N . �

At last, we give an example to show that (A)-(A) can be satisfied. For convenience of
calculation, the following example does not aim at generality.

Example . Let τ = σ be as in Example ., β(n) ≡ e, γ (n) ≡ , and

α(n) =

{

 , n = k , k = , , . . . ,

 , otherwise,

and H(n) =
cos n + cos √

n + e–n


.

By a direct calculation we get

α– =



, α+ =



, β+ = β– = e, γ + = γ – = , H+ =



.

It is easy to see that (A) holds. Moreover,

� =
β+

α–γ –e
= , � =

�(β–e–γ +� – H+)
α+ =




(

e

–




)
.

It is easy to see that � > � ≥ 
γ + , that is, (A) holds. Moreover, we have

H+ + β+ max

{ | – k|
ek ,


e

}
=




+

e

<



=
 – α+

 – α– · α– < α–,

which means that (A) and (A) hold. This means that all the assumption of Theorem .
and Theorem . are satisfied. Thus, equation (.) has a unique pseudo-almost periodic
solution x∗ in �, and x∗ is locally exponentially stable.
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