
Ren et al. Advances in Difference Equations  (2016) 2016:327 
DOI 10.1186/s13662-016-1021-1

R E S E A R C H Open Access

Robust stability of uncertain Markovian
jump neural networks with mode-dependent
time-varying delays and nonlinear
perturbations
Jiaojiao Ren1,2*, Hong Zhu1, Shouming Zhong3 and Xia Zhou4

*Correspondence:
jiaojiaoren06@163.com
1School of Automation Engineering,
University of Electronic Science and
Technology of China, Chengdu,
611731, P.R. China
2Department of Applied
Mathematics, University of
Waterloo, Waterloo, N2L 3G1,
Canada
Full list of author information is
available at the end of the article

Abstract
In this paper, the problem of delay-dependent stability is investigated for uncertain
Markovian jump neural networks with leakage delay, two additive time-varying delay
components, and nonlinear perturbations. The Markovian jumping parameters in the
connection weight matrices and two additive time-varying delay components are
assumed to be different in the system model, and the Markovian jumping parameters
in each of the two additive time-varying delay components are also different. The
relationship between the time-varying delays and their upper delay bounds is
efficiently utilized to study the suggested system in two cases: with known or
unknown parameters, which leads to more information of the lower and upper
bounds of the time-varying delays that can be used. By constructing a newly
augmented Lyapunov-Krasovskii functional and using the extended Wirtinger
inequality and a reciprocally convex method, several sufficient criteria are derived to
guarantee the stability of the proposed model. Numerical examples and their
simulations are given to show the effectiveness and advantage of the proposed
method.

Keywords: Markovian jump neural networks; robust; leakage delay; additive
time-varying delays; nonlinear perturbations

1 Introduction
Over the last decades, considerable attention has been devoted to the study of neural net-
works because they have been extensively applied in many areas, such as signal processing,
optimization problem, static image treatment, and so on [–]. However, significant dif-
ferences between an ideal and a practical neural networks are often encountered due to
the limitations of hardware. These differences can cause unpredictable problems such as
time delays, uncertainties, etc. [–]. A special type of time delay, namely, leakage delay,
is a time delay that exists in the negative feedback terms of the system which has a ten-
dency to destabilize a system [–]. In [], Peng discusses global attractive periodic
solutions of BAM neural networks with continuously distributed delays in the leakage
terms. Very recently, the stability problem for a class of dynamical systems with leakage
delay and nonlinear perturbations is investigated in []. Further, Zhao et al. [] deal with
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the passivity problem for a class of stochastic neural networks with time-varying delays
and leakage delay as well as generalized activation functions by the free-weighting method
and stochastic analysis technique. In addition, it is well known that nonlinear perturba-
tions exist widely in practice and may cause instability, oscillation, and poor performance
of real systems. With this regard, many attentions have been paid to the problem of non-
linear perturbed systems with time delays [, –]. However, it is rare to see the study of
the stability problem for Markovian jump neural networks with leakage delay, two additive
time-varying delays, and nonlinear perturbations.

In applications, there will be some parameter variations in the structures of neural net-
works. These changes may be abrupt or may be continuous variations. Abrupt variations
can be described by the switch or Markovian jump systems [–]. For Markovian jump
systems with one time-varying delay component, the finite-time boundedness of delayed
Markovian jumping neural networks is studied in []. However, in [], the Markovian
jumping parameters in the connection weight matrices and discrete delays are the same.
Furthermore, the state estimation problem of delayed Markovian jump neural networks is
investigated in [], where the Markovian jumping parameters in the connection weight
matrices and delays are assumed to be different. For Markovian jump systems with two
additive time-varying delay components, in [], Chen et al. discuss the problem of delay-
dependent stability and dissipativity analysis of generalized Markovian jump neural net-
works with two delay components, where the two delay components are not related to the
Markovian jumping parameters. Once again, the Markovian jump neural network is in-
vestigated in [], in the considered system, two additive time-delay components are two
mode-dependent time-varying delays, which have the same Markovian jumping parame-
ters with connection weight matrices. Motivated by [], it is natural to consider the case
that the Markovian jumping parameters in the connection weight matrices and each of the
two additive time-varying delay components are different. In fact, when the modes in the
connection weight matrices are fixed, two additive time-varying delay components may
also have finite modes due to the dynamic systems subject to abrupt variation frequently
in their structures, and the switching between different modes can also be governed by a
Markov chain. The Markovian jumping parameters in the connection weight matrices and
two additive time-varying delay components may be different. Similarly, when the modes
in the connection weight matrices and one of the two additive time-varying delay com-
ponents are fixed, the other time delay of the two additive time-varying components may
have different finite modes as well. So the Markovian jumping parameters in the connec-
tion weight matrices and each of the two additive time-varying delay components may be
different. To the best of the authors’ knowledge, there are results as regards the stability
of delayed neural networks with three different Markovian jumping parameters.

Due to the complexity of neural networks, parameter uncertainties which often destroy
the stability of systems can be commonly encountered. Fortunately, one can obtain the
ranges of some fundamental coefficients by engineering experience even from incom-
plete information. Therefore, to meet the practical applications, it is of great importance
and significance to study the robustness of delayed neural networks [–]. In the field
of robust analysis, how to estimate more accurately the derivatives of the constructed
Lyapunov-Krasovskii functional is a crucial step in reducing the conservatism. There have
been many methods in the existing works such as Jenson’s inequality [], the reciprocally
convex approach [], the integral inequality technique [], and so on. It is worth noting
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that there is still room for improvement. First, both sides of Jenson’s inequality in [] are
integrals about the state. In this paper, the extended Wirtinger inequality is introduced,
which indicates the relationship between the state and the derivative of the state. Second,
all the above mentioned works do not consider the relationship between time-varying de-
lays and their upper bounds. In [], the relationship between the time-varying delay and
its upper bound is taken into account when estimating the upper bound of the derivative
of Lyapunov functional, and it is seen that d(t) is not simply enlarged as h, instead, the
relationship that d(t) + (h – d(t)) = h is considered. Recently, the relationship between
time-varying delays and their upper bounds is further considered in []. According to the
relationship  ≤ d(t) ≤ d and d(t) ≤ d(t) ≤ d, the authors consider two cases while cal-
culating the derivative of the Lyapunov functional: d(t) ∈ [d(t), d) and d(t) ∈ [d, d]. But
so far, this method has not been fully used to investigate the robust stability of Markovian
jump neural networks with two additive time-varying delay components. Third, since the
relationship between time-varying delays and their upper bounds is fully considered, the
extended reciprocally convex approach in [] will be used to deal with the robust sta-
bility problem of Markovian jump neural networks with two additive time-varying delay
components.

Enlightened by the above discussion, the problem of robust stability for neural networks
with mode-dependent time-varying delays and nonlinear perturbations is studied in this
paper. The Markovian jumping parameters in the connection weight matrices and each
of the two additive time-varying components are assumed to be different in the system
model. Accordingly, a new weak infinitesimal operator is first proposed to act on the
Lyapunov-Krasovskii functional with three different Markovian jumping parameters. The
relationship between the time-varying delays and their upper delay bounds is efficiently
utilized. According to which interval time-varying delay h(t) belongs to, different methods
are used to estimate the derivatives of the constructed Lyapunov-Krasovskii functional. By
constructing a newly augmented Lyapunov-Krasovskii functional and using the extended
Wirtinger inequality, extended reciprocally convex method, several sufficient conditions
are derived to guarantee the stability of the proposed model for all admissible parameter
uncertainties. Numerical examples and their simulations are given to show the smaller
conservatism and the effectiveness of the proposed method.

Notations Throughout this paper, the superscripts – and T stand for the inverse and
transpose of a matrix, respectively; P >  means that the matrix P is symmetric posi-
tive definite; Rn denotes n-dimensional Euclidean space; Rm×n is the set of m × n real
matrices; ∗ denotes the symmetric block in symmetric matrix; ‖ · ‖ refers to the in-
duced matrix -norm; Sym{M} means M + MT ; C

τ = C([–τ , ], Rn) = {φ : [–τ , ] →
Rn is continuously differentiable}; λmax(Q) and λmin(Q) denote, respectively, the maximal
and minimal eigenvalue of matrix Q; The space of functions ϕ: [a, b] → Rn which are ab-
solutely continuous on [a, b), have a finite limθ→b– ϕ(θ ), and have square integrable first
order derivatives, is denoted by Wn[a, b).

2 Problem statement and preliminaries
Let {rt , t ≥ }, {δt , t ≥ }, and {�t , t ≥ } be three right-continuous Markov chains on a
complete probability space (	, F , P) taking values in finite state spaces ς = {, , . . . , N},
ς = {, , . . . , N}, and ς = {, , . . . , N}, respectively. The transition probability matrices
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� = (πij)N×N , P = (pqk )N×N and L = (lrk )N×N are given by

pr(rt+� = j|rt = i) =

{
πij� + o(�), j 	= i,
 + πii� + o(�), j = i,

pr(δt+� = k|δt = q) =

{
pqk� + o(�), k 	= q,
 + pqq� + o(�), k = q,

pr(�t+� = k|�t = r) =

{
lrk� + o(�), k 	= r,
 + lrr� + o(�), k = r,

where � > , lim�→
o(�)
� = , πij ≥ , ∀j 	= i, pqk ≥ , ∀k 	= q and lrk ≥ , ∀k 	= r are,

respectively, the transition rate from mode i at time t to mode j at time t + �, mode q at
time t to mode k at time t + � and mode r at time t to mode k at time t + �. Moreover,
πii = –

∑j=N
j=,j 	=i πij, pqq = –

∑k=N
k=,k 	=q pqk and lrr = –

∑k=N
k=,k 	=r lrk .

In this paper, we consider the following dynamical system:

ẋ(t) = –C(rt)x(t – σ ) + A(rt)x
(
t – h(t, δt) – h(t,�t)

)
+ f
(
t, x(t – σ ), x

(
t – h(t, δt) – h(t,�t)

))
, t > ,

x(s) = φ(s), s ∈ [– max{σ , h}, 
]
,

()

where x(t) = [x(t), x(t), . . . , xn(t)]T ∈ Rn represents the neuron state vector; C(rt) =
diag{c(rt), c(rt), . . . , cn(rt)} is a diagonal matrix with positive entries. The matrices A(rt)
represent the discretely delayed connection weight matrices; σ ≥  is the leakage delay,
h(t, δt) and h(t,�t) are continuous mode-dependent time-varying functions that repre-
sent the two delay components in the state which satisfy

 ≤ h(t, δt) ≤ h(t) ≤ h,  ≤ h(t,�t) ≤ h(t) ≤ h,

ḣ(t) ≤ μ, ḣ(t) ≤ μ,
()

where h, h, μ, and μ are constants scalars, and we denote hqr(t) = h(t, δt) + h(t,�t),
h(t) = h(t) + h(t), h = h + h, and μ = μ + μ.

And φ(s) ∈ C
τ ; f (t, x(t –σ ), x(t –hqr(t))) represents the nonlinear term of system () which

satisfies f (t, , ) =  and

∥∥f
(
t, x(t – σ ), x

(
t – hqr(t)

))∥∥≤ α
∥∥Eαx(t – σ )

∥∥ + β
∥∥Eβx

(
t – h(t)

)∥∥, ()

where α ≥  and β ≥  are two real constants, Eα and Eβ are two known real matrices.

Remark  For Markovian jump systems with two additive time-varying delay compo-
nents, the two additive time-varying delay components may be irrelated to Markovian
jumping parameters []; the Markovian jumping parameters in the two additive time-
varying delay components may be the same as the one in the connection weight matrices
[]. In fact, when the modes in the connection weight matrices are fixed, two additive
time-varying delay components may also has finite modes, and the switching between
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different modes can also be governed by a Markov chain. So the Markovian jumping pa-
rameters in the connection weight matrices and two additive time-varying delay compo-
nents may be different. Similarly, when the modes in the connection weight matrices and
one of the two additive time-varying delay components are fixed, the other time delay of
the two additive time-varying components may has different finite modes as well. So the
Markovian jumping parameters in the connection weight matrices and each of the two ad-
ditive time-varying delay components may be different. Therefore, the considered model
() with three different Markovian jumping parameters needs to be introduced.

Moreover, the system () has an equivalent form as follows:

d
dt

[
x(t) – C(rt)

∫ t

t–σ

x(s) ds
]

= –C(rt)x(t) + A(rt)x
(
t – h(t, δt) – h(t,�t)

)
+ f
(
t, x(t – σ ), x

(
t – hqr(t)

))
, t > ,

x(s) = φ(s), s ∈ [– max{σ , h}, 
]
.

()

Before proceeding, the following definition and lemmas are introduced.

Definition  Let xt = x(t + s), – max{σ , h} ≤ s ≤ , {xt , rt , δt ,�t}t ≥  is a C([– max{σ , h}, ];
Rn) × ς × ς × ς-valued Markov process. The weak infinitesimal operator acting on a
LKF: C([– max{σ , h}, ]; Rn) × ς × ς × ς × R+ → R is defined by

LV (xt , rt , δt ,�t , t) = lim
�→+


�
{

E
[
V (xt+�, rt+�, δt+�,�t+�, t + �)

]
– V (xt , i, q, r, t)

}

= lim
�→+


�

{
E
[
V (xt+�, i, δt+�,�t+�, t + �)

]
– V (xt , i, q, r, t)

+

( N∑
j=

πij� + o(�)

)
V (xt+�, j, δt+�,�t+�, t + �)

}

= lim
�→+


�

{
E
[
V (xt+�, i, q,�t+�, t + �)

]
– V (xt , i, q, r, t)

+

( N∑
j=

πij� + o(�)

)
V (xt+�, j, δt+�,�t+�, t + �)

+

( N∑
k=

pqk� + o(�)

)
V (xt+�, i, k,�t+�, t + �)

}

= lim
�→+


�

{
V (xt+�, i, q, r, t + �) – V (xt , i, q, r, t)

+

( N∑
j=

πij� + o(�)

)
V (xt+�, j, δt+�,�t+�, t + �)

+

( N∑
k=

pqk� + o(�)

)
V (xt+�, i, k,�t+�, t + �)
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+

( N∑
k=

lrk� + o(�)

)
V (xt+�, i, q, k, t + �)

}

= V̇ (xt , i, q, r, t) +
N∑
j=

πijV (xt , j, q, r, t)

+
N∑

k=

pqk V (xt , i, k, r, t) +
N∑

k=

lrk V (xt , i, q, k, t).

Remark  Due to three different Markovian jumping parameters being introduced in the
model considered, a weak infinitesimal operator acting on a Lyapunov-Krasovskii func-
tional with three different Markovian jumping parameters is first proposed in Definition .

Lemma . ([]) Given any real matrix M >  of appropriate dimension and a vector
function ω(·) : [a, b] → Rn, such that the integrations concerned are well defined, then

[∫ a

b
ω(s) ds

]T

M
[∫ a

b
ω(s) ds

]
≤ (b – a)

∫ a

b
ωT (s)Mω(s) ds.

Lemma . ([]) For ki(t) ∈ [, ],
∑N

i=ki(t) = , and vectors ηi which satisfy ηi =  with
ki(t) = , and matrices Ri > , there exist matrices Sij (i = , . . . , N – , j = i + , . . . , N ), satis-
fying

[ Ri Sij
∗ Rj

]≥  such that the following inequality holds:

N∑
i=


ki(t)

ηT
i Riηi ≥

⎡
⎢⎢⎣

η
...

ηN

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

R · · · S,N

∗ . . .
...

∗ ∗ RN

⎤
⎥⎥⎦
⎡
⎢⎢⎣

η
...

ηN

⎤
⎥⎥⎦ .

Lemma . ([]) For any positive semi-definite matrix

X =

⎡
⎢⎣

X X X

XT
 X X

XT
 XT

 X

⎤
⎥⎦≥ ,

the following integral inequality holds:

–
∫ t

t–h
ẋT (s)Xẋ(s) ≤

∫ t

t–h

[
xT (t)xT (t – h)ẋT (s)

]⎡⎢⎣
X X X

XT
 X X

XT
 XT

 

⎤
⎥⎦
⎡
⎢⎣

x(t)
x(t – h)

ẋ(s)

⎤
⎥⎦ ds.

Lemma . ([]) Let x(t) ∈ Wn[a, b). For any matrix R > , the following inequality holds:

∫ b

a

(
xT (s) – xT (a)

)
R
(
x(s) – x(a)

)
ds ≤ (b – a)

π

∫ b

a
ẋT (s)Rẋ(s) ds.

In the sequel, for simplicity, when rt = i, δt = q, and �t = r, C(rt), A(rt), h(t, δt) and h(t,�t)
will be written as Ci, Ai, hq(t) and hr(t), respectively.
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3 Main results
For the sake of the simplicity of the matrix representation, ei (i = , . . . , ) are defined
as block entry matrices. (For example, ei

T = [, . . . , ︸ ︷︷ ︸
i–

, I, , . . . , ].) The notations for some

matrices and vectors are defined below (see the Appendix).
Now, we have the following result.

Theorem . For given scalars σ ≥ , h ≥ , h ≥ , μ ≥ , and μ ≥  satisfied (),
α ≥ , β ≥ , Eα and Eβ satisfies (), system () is globally asymptotically stable, if there
exist a constant ε ≥ , positive definite matrices Piqr ∈ Rn×n, R ∈ Rn×n, R ∈ Rn×n,
R ∈ Rn×n, R ∈ Rn×n, Qi ∈ Rn×n (i = , , ), Qj ∈ Rn×n (j = , ), Qk ∈ Rn×n (k = , , ),
Sq ∈ Rn×n (q = , , ), Sm ∈ Rn×n (m = , , . . . , ), and

⎡
⎢⎢⎢⎣

X X X X

∗ X X X

∗ ∗ X X

∗ ∗ ∗ R

⎤
⎥⎥⎥⎦≥ ,

any appropriately dimensioned matrices Ui (i = , , ), Tj (j = , , . . . , ), and Gk (k =
, , . . . , ), such that the following LMIs hold for i = , , . . . , N, q = , , . . . , N, and r =
, , . . . , N:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

	miqr(t)|h(t)=
h(t)=

< ,

	miqr(t)|h(t)=h
h(t)=

< ,

	miqr(t)| h(t)=
h(t)=h

< ,

	miqr(t)|h(t)=h
h(t)=h

< 

(m = , ) ()

and

Pi >  (i = , , , ),

[
S T

∗ S

]
> ,

[
S T

∗ S

]
> . ()

Proof Consider the new augmented Lyapunov-Krasovskii functional as follows:

V (t, xt , rt , δt ,�t) =
∑

j=

Vj(t, xt , rt , δt ,�t), ()

where

V = αT
 (t)P(rt , δt ,�t)α(t),

V =
∫ t

t–σ

f T
 (t, s)Rf(t, s) ds + σ

∫ t

t–σ

∫ t

λ

f T
 (t, s)Rf(t, s) ds dλ

+
∫ t

t–σ

∫ t

λ

ẋT (s)Rẋ(s) ds dλ +
σ 



∫ t

t–σ

∫ t

λ

∫ t

s
xT (u)Rx(u) du ds dλ,

V =
∫ t

t–h

f T
 (t, s)Qf(t, s) ds +

∫ t

t–h

f T
 (t, s)Qf(t, s) ds +

∫ t

t–h
f T
 (t, s)Qf(t, s) ds
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+
∫ t–h

t–h
f T
 (t, s)Qf(t, s) ds +

∫ t–h

t–h
f T
 (t, s)Qf(t, s) ds

+
∫ t

t–h(t)
f T
 (t, s)Qf(t, s) ds +

∫ t

t–h(t)
f T
 (t, s)Qf(t, s) ds

+
∫ t

t–h(t)
f T
 (t, s)Qf(t, s) ds,

V = h

∫ t

t–h

∫ t

λ

αT
 (s)Sα(s) ds dλ + h

∫ t

t–h

∫ t

λ

αT
 (s)Sα(s) ds dλ

+ h
∫ t

t–h

∫ t

λ

αT
 (s)Sα(s) ds dλ + h

∫ t

t–h

∫ t

λ

ẋT (s)Sẋ(s) ds dλ

+ h

∫ t

t–h

∫ t

λ

ẋT (s)Sẋ(s) ds dλ + h

∫ t–h

t–h

∫ t–h

λ

ẋT (s)Sẋ(s) ds dλ,

V =
h




∫ t

t–h

∫ t

λ

∫ t

s
xT (u)Sx(u) du ds dλ

+
h




∫ t

t–h

∫ t

λ

∫ t

s
xT (u)Sx(u) du ds dλ

+
h



∫ t

t–h

∫ t

λ

∫ t

s
xT (u)Sx(u) du ds dλ.

When rt = i, δt = q, and �t = r, the weak infinitesimal operator L of the stochastic process
{xt , rt , δt ,�t}, t ≥  along system () is

LV = αT
i (t)Piqrα̇i(t) +

N∑
j=

πijα
T
j (t)Pjqrαj(t) +

N∑
k=

pqkα
T
i (t)Pikrαi(t)

+
N∑

k=

lrkα
T
i (t)Piqkαi(t). ()

Here, it should be noted that

αi(t) =
[
e – eCT

i , e, e, e, e
]T

ξ (t) ()

and

α̇i(t) =
[
–eCT

i + eAT
i + e, e – e, e, e – e, e

]T
ξ (t). ()

Thus, LV can be represented as

LV = ξT (t)

(
�iPiqr�

T
i + �iPiqr�

T
i +

N∑
j=

πij�jPjqr�
T
j

+
N∑

k=

pqk�iPikr�
T
i +

N∑
k=

lrk�iPiqk�
T
i

)
ξ (t). ()
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By calculation of LV, we have

LV ≤ 

⎡
⎢⎢⎢⎣

∫ t
t–σ

x(s) ds
x(t) – x(t – σ )∫ t
t–σ

∫ t
s x(u) du ds

σx(t) –
∫ t

t–σ
x(s) ds

⎤
⎥⎥⎥⎦

T

R

⎡
⎢⎢⎢⎣




x(t)
ẋ(t)

⎤
⎥⎥⎥⎦ –

⎡
⎢⎢⎢⎣

x(t – σ )
ẋ(t – σ )∫ t
t–σ

x(s) ds
x(t) – x(t – σ )

⎤
⎥⎥⎥⎦

T

R

⎡
⎢⎢⎢⎣

x(t – σ )
ẋ(t – σ )∫ t
t–σ

x(s) ds
x(t) – x(t – σ )

⎤
⎥⎥⎥⎦

+ σ 

⎡
⎢⎣

x(t)
ẋ(t)



⎤
⎥⎦

T

R

⎡
⎢⎣

x(t)
ẋ(t)



⎤
⎥⎦ + σ

⎡
⎢⎣

∫ t
t–σ

∫ t
s x(u) du ds

σx(t) –
∫ t

t–σ
x(s) ds

σ

 x(t) –
∫ t

t–σ

∫ t
s x(u) du ds

⎤
⎥⎦

T

R

⎡
⎢⎣




ẋ(t)

⎤
⎥⎦

–

⎡
⎢⎣

∫ t
t–σ

x(s) ds
x(t) – x(t – σ )

σx(t) –
∫ t

t–σ
x(s) ds

⎤
⎥⎦

T

R

⎡
⎢⎣

∫ t
t–σ

x(s) ds
x(t) – x(t – σ )

σx(t) –
∫ t

t–σ
x(s) ds

⎤
⎥⎦

+ ζ T
 (t)Rζ(t) + σ ẋT (t)Rẋ(t) –

∫ t

t–σ

ẋT (s)Rẋ(s) ds

+
σ 


xT (t)Rx(t) –

σ 



∫ t

t–σ

∫ t

s
xT (u)Rx(u) du ds, ()

where ζ(t) = [xT (t), ẋT (t), , ]T .
Using Lemma . and Lemma . yields

–
∫ t

t–σ

ẋ(s)Rẋ(s) ds ≤
∫ t

t–σ

⎡
⎢⎢⎢⎣

x(t)
x(t – σ )
ẋ(t – σ )

ẋ(s)

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

X X X X

∗ X X X

∗ ∗ X X

∗ ∗ ∗ 

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x(t)
x(t – σ )
ẋ(t – σ )

ẋ(s)

⎤
⎥⎥⎥⎦ ds, ()

–
σ 



∫ t

t–σ

∫ t

s
xT (u)Rx(u) du ds ≤ –

∫ t

t–σ

∫ t

s
xT (u) du dsR

∫ t

t–σ

∫ t

s
x(u) du ds. ()

From () to (), an upper bound of LV can be

LV ≤ ξT (t)(� + �)ξ (t). ()

With the condition of ḣi(t) ≤ μi (i = , ), an upper bound of LV is obtained:

LV ≤ ζ T
 (t)(Q + Q + Q)ζ(t) + 

(
ζ T

h (t)Q + ζ T
h (t)Q + ζ T

h(t)Q
)
ζ(t)

– ζ T
h (t)Qζh (t) – ζ T

h (t)Qζh (t) – ζ T
h(t)Qζh(t) + ζ T

h (t)Qζh (t)

+ ζ T
hh (t)Qζh (t) – ζ T

h (t)Qζh (t) + ζ T
h (t)Qζh (t) + ζ T

hh (t)Qζh (t)

+ ζ T
 (t)(Q + Q + Q)ζ(t) – ζ T

h (t)Qζh (t) + 
(
ζ T

h(t)(t)Q + ζ T
h(t)(t)Q

+ ζ T
h(t)(t)Q

)
ζ(t) – ( – μ)ζ T

h(t)(t)Qζh(t)(t)

– ( – μ)ζ T
h(t)(t)Qζh(t)(t) – ( – μ)ζ T

h(t)(t)Qζh(t)(t)

= ξT (t)

( ∑
k=

�k + h(t)� + h(t)�

)
ξ (t), ()
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where ζh(t) = [
∫ t

t–h xT (s) ds, xT (t) – xT (t – h),
∫ t

t–h
∫ t

s xT (u) du ds,hxT (t) –
∫ t

t–h xT (s) ds]T ,
ζ(t) = [, , xT (t), ẋT (t)]T , ζh(t) = [xT (t – h), ẋT (t – h),

∫ t
t–h xT (s) ds, xT (t) – xT (t – h)]T , h

represents h, h, and h, respectively. ζ〈(t) = [xT (t – 〈), ẋT (t – 〈), ]T , 〈 represents h and
h, respectively. ζ�ı(t) = [

∫ t–�
t–h xT (s) ds, xT (t –�)–xT (t –h), ıxT (t –�)–

∫ t–�
t–h xT (s) ds]T , �

and ı represents h and h, h, and h, respectively. ζ〈(t) = [, , ẋT (t – 〈)]T , ζ〈(t) = [xT (t –
h), ẋT (t – h), xT (t – 〈) – xT (t – h)]T , ζ(t) = [xT (t), ]T , ζh(t)(t) = [

∫ t
t–h(t) xT (s) ds,h(t)xT (t) –∫ t

t–h(t) xT (s) ds]T , h(t) represents h(t), h(t), and h(t), respectively; ζ(t) = [, ẋT (t)]T ,
ζh(t)(t) = [xT (t – h(t)), xT (t) – xT (t – h(t))]T .

Calculation of LV and LV leads to

LV = αT
 (t)

(
h

 S + h
S + hS

)
α(t) – h

∫ t

t–h

αT
 (s)Sα(s) ds

– h

∫ t

t–h

αT
 (s)Sα(s) ds – h

∫ t

t–h
αT

 (s)Sα(s) ds

+ ẋT (t)
(
hS + h

 S
)
ẋ(t) + h

ẋT (t – h)Sẋ(t – h)

– h
∫ t

t–h
ẋT (s)Sẋ(s) ds – h

∫ t

t–h

ẋT (s)Sẋ(s) ds

– h

∫ t–h

t–h
ẋT (s)Sẋ(s) ds, ()

LV = xT (t)
(

h



S +

h



S +

h


S

)
x(t) –

h




∫ t

t–h

∫ t

s
xT (u)Sx(u) du ds

–
h




∫ t

t–h

∫ t

s
xT (u)Sx(u) du ds –

h



∫ t

t–h

∫ t

s
xT (u)Sx(u) du ds. ()

By Lemmas . and ., one can obtain

–h

∫ t

t–h

αT
 (s)Sα(s) ds ≤ –ζ T

h(t),h (t)Pζh(t),h (t), ()

–h

∫ t

t–h

αT
 (s)Sα(s) ds ≤ –ζ T

h(t),h (t)Pζh(t),h (t), ()

–h
∫ t

t–h
αT

 (s)Sα(s) ds ≤ –ζ T
h(t),h(t)Pζh(t),h(t), ()

–
h




∫ t

t–h

∫ t

s
xT (u)Sx(u) du ds

≤ –
∫ t

t–h

∫ t

s
xT (u) du dsS

∫ t

t–h

∫ t

s
x(u) du ds, ()

–
h




∫ t

t–h

∫ t

s
xT (u)Sx(u) du ds

≤ –
∫ t

t–h

∫ t

s
xT (u) du dsS

∫ t

t–h

∫ t

s
x(u) du ds, ()

–
h



∫ t

t–h

∫ t

s
xT (u)Sx(u) du ds

≤ –
∫ t

t–h

∫ t

s
xT (u) du dsS

∫ t

t–h

∫ t

s
x(u) du ds, ()
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where ζh(t),h(t) = [
∫ t

t–h(t) xT (s) ds, xT (t) – xT (t – h(t)),
∫ t–h(t)

t–h xT (s) ds, xT (t – h(t)) – xT (t –
h)]T , h(t) and h represent h(t) and h, h(t) and h, h(t) and h, respectively.

By utilizing Lemma ., it yields

–h
∫ t

t–h
ẋT (s)Sẋ(s) ds

≤ –
π

h

∫ t

t–h

(
x(s) – x(t – h)

)T S
(
x(s) – x(t – h)

)
ds

≤ –
π

h

∫ t

t–h

(
xT (s) – xT (t – h)

)
dsS

∫ t

t–h

(
x(s) – x(t – h)

)
ds. ()

For the time-varying delays and their upper delay bounds we have the following relation-
ship:

 ≤ h(t) ≤ h, h(t) ≤ h(t) ≤ h. ()

We consider two cases: h(t) ∈ [h(t), h) and h(t) ∈ [h, h].
Case : when h(t) ∈ [h(t), h), by some calculation and using Lemma . and Lemma .,

we have

–h

∫ t

t–h

ẋT (s)Sẋ(s) ds

= –h

∫ t

t–h(t)
ẋT (s)Sẋ(s) ds – h

∫ t–h(t)

t–h(t)
ẋT (s)Sẋ(s) ds – h

∫ t–h(t)

t–h

ẋT (s)Sẋ(s) ds

≤ –

⎡
⎢⎣

x(t) – x(t – h(t))
x(t – h(t)) – x(t – h(t))

x(t – h(t)) – x(t – h)

⎤
⎥⎦

T

P

⎡
⎢⎣

x(t) – x(t – h(t))
x(t – h(t)) – x(t – h(t))

x(t – h(t)) – x(t – h)

⎤
⎥⎦ , ()

–h

∫ t–h

t–h
ẋT (s)Sẋ(s) ds

≤ –
π

h

∫ t–h

t–h

(
xT (s) – xT (t – h)

)
S
(
x(s) – x(t – h)

)
ds

≤ –
π

h


∫ t–h

t–h

(
xT (s) – xT (t – h)

)
dsS

∫ t–h

t–h

(
x(s) – x(t – h)

)
ds. ()

From (), ()-(), ()-(), we can obtain

LV ≤ ξT (t)(� + � + �)ξ (t). ()

Case : when h(t) ∈ [h, h], by using Lemma ., we have

–h

∫ t

t–h

ẋT (s)Sẋ(s) ds

= –h

∫ t

t–h(t)
ẋT (s)Sẋ(s) ds – h

∫ t–h(t)

t–h

ẋT (s)Sẋ(s) ds

≤ –

[
x(t) – x(t – h(t))

x(t – h(t)) – x(t – h)

]T [
S T

∗ S

][
x(t) – x(t – h(t))

x(t – h(t)) – x(t – h)

]
, ()



Ren et al. Advances in Difference Equations  (2016) 2016:327 Page 12 of 26

–h

∫ t–h

t–h
ẋT (s)Sẋ(s) ds

= –h

∫ t–h

t–h(t)
ẋT (s)Sẋ(s) ds – h

∫ t–h(t)

t–h
ẋT (s)Sẋ(s) ds

≤ –

[
x(t – h) – x(t – h(t))
x(t – h(t)) – x(t – h)

]T [
S T

∗ S

][
x(t – h) – x(t – h(t))
x(t – h(t)) – x(t – h)

]
. ()

From (), ()-(), (), (), (), (), we have

LV ≤ ξT (t)(� + � + �)ξ (t). ()

Then through (), ()-(), one can obtain

LV ≤ ξT (t)�ξ (t). ()

It follows from () that, for any ε > ,

 ≤ εαxT (t – σ )ET
α Eαx(t – σ ) + εβxT(t – h(t)

)
ET

β Eβx
(
t – h(t)

)
– εFTF

= ξT (t)�ξ (t). ()

For any appropriately dimensioned matrices Gi (i = , , . . . , ), the following zero equality
holds:

 = 
[
xT (t)G + ẋT (t)G + xT (t – σ )G + ẋT (t – σ )G + xT(t – h(t)

)
G

+ ẋT (t – h)G + FG
][

–ẋ(t) – Clx(t – σ ) + Alx
(
t – h(t)

)
+ F

]
= ξT (t)�ξ (t). ()

Therefore, from equations ()-(), an upper bound of LV can be written as

LV ≤ ξT (t)	miqr(t)ξ (t) (m = , ). ()

From (), it is clear that 	miqr(t) is a function for h(t) and h(t), by using a convex poly-
hedron method, the LMIs described by () can guarantee 	miqr(t) <  to be true.

Thus, using Dynkin’s formula, when t ≥ , it can be induced that

E
{

V (t, xt , rt , δt ,�t)
}

– E
{∫ t


ξT (s)	miqr(s)ξ (s) ds

}
≤ E

{
V (, x, r, δ,�)

}
< ∞, ()

where

E
{

V (, x, r, δ,�)
}

≤
{(

 + σ  max
i∈,...,n

c
i + σ  + h

)
λmax(P) +

(
σ +

σ 



)
λmax(R)

+
(

σ  +
σ 



)
λmax(R) +

σ 


λmax(R) +

σ 


λmax(R) +

(
h +

h




)
λmax(Q)
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+
(

h +
h




)
λmax(Q) +

(
h +

h



)
λmax(Q)

+
(

h +
hh + hh

 + hhh


)
λmax(Q)

+
(

h +
hh + hh

 + hhh


)
λmax(Q)

+
(

h +
h




)
λmax(Q) +

(
h +

h




)
λmax(Q)

+
(

h +
h



)
λmax(Q) + h

λmax(S)

+ h
λmax(S) + hλmax(S) +

h


λmax(S) +

h



λmax(S) +

h



λmax(S)

+
h




λmax(S) +
h




λmax(S) +
h


λmax(S)

}
‖ψ‖

τ < ∞,

and ‖ψ‖τ = max{sup–τ≤s≤‖x(s)‖, sup–τ≤s≤‖ẋ(s)‖}.
Because of the definition of ξT (t), we have

–ξT (t)	miqr(t)ξ (t) ≥ λmin(–	miqr)ξT (t)ξ (t) ≥ λmin(–	miqr)xT (t)x(t), ()

–ξT (t)	miqr(t)ξ (t) ≥ λmin(–	miqr)ξT (t)ξ (t) ≥ λmin(–	miqr)ẋT (t)ẋ(t), ()

where

λmin(–	miqr) = min
{
λmin

(
–	miqr(t)|h(t)=

h(t)=

)
,λmin

(
–	miqr(t)| h(t)=

h(t)=h

)
,

λmin
(
–	miqr(t)|h(t)=h

h(t)=

)
,λmin

(
–	miqr(t)|h(t)=h

h(t)=h

)}
.

Applying the integral mean value theorem, there exists η ∈ [t, t + ], η = t + θ , θ ∈ [, ],
such that

∫ t+

t
x(s) ds = x(η) = x(t + θ ). ()

Using the Newton-Leibniz formula, we know

∥∥x(t)
∥∥ =

∥∥x(t) – x(t + θ ) + x(t + θ )
∥∥≤ ∥∥x(t + θ ) – x(t)

∥∥ +
∥∥x(t + θ )

∥∥
=
∥∥∥∥
∫ t+θ

t
ẋ(s) ds

∥∥∥∥ +
∥∥∥∥
∫ t+

t
x(s) ds

∥∥∥∥
≤
∫ t+θ

t

∥∥ẋ(s)
∥∥ds +

∫ t+

t

∥∥x(s)
∥∥ds ≤

∫ t+

t

(∥∥ẋ(s)
∥∥ +

∥∥x(s)
∥∥)ds

≤ √
λmin(–	miqr)

∫ t+

t
ξT (s)

(
–	miqr(s)

)
ξ (s) ds → , as t → ∞. ()

Therefore, the model () or () has a unique equilibrium point which is globally asymp-
totically stable. �
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Remark  In [], with respect to the discrete time-varying delay h(t),
∫ t

s x(u) du and∫ t
s ẋ(u) du are included as the element of augmented vector in the integrands. Motivated

by this method, in this paper,
∫ t

t–σ
x(s) ds and x(t – σ ) are considered as the elements of

augmented vector in V; in addition,
∫ t

s x(u) du and
∫ t

s ẋ(u) du are included in V.

Remark  Different from [, , ], this article fully considers the relationship between
time-varying delays and their upper bounds, different methods are used to enlarge the
time-derivative of the Lyapunov-Krasovskii functional appropriately according to differ-
ent values of the time delay h(t). Therefore, this method may lead to less conservative
results.

Remark  It should be noted that V contains the new integral term
∫ t–h

s ẋ(u) du and∫ t–h
s ẋ(u) du in the integrants and h

∫ t–h
t–h

∫ t–h
λ

ẋT (s)Sẋ(s) ds dλ is included in V. The
upper limits of the integral are ′t – h

′ and ′t – h
′, respectively but not ′t′ and ′t′; The in-

ner integral upper limits of the double integral is ′t – h
′ but not ′t′. More information

about the lower bound of the h(t) and h(t) is sufficiently used in the Lyapunov func-
tional ().

Remark  In [, , , ], the reciprocally convex method is usually employed to deal
with the case N =  in Lemma .. In this paper, since the relationship between time-
varying delays and their upper bounds is fully considered, in order to deal with the case
N > , Lemma . is introduced, which extends the reciprocally convex method in [, ,
, ].

Remark  In this paper, the inequality in Lemma . indicates the relationship between
the state and the derivative of state, which is different from the inequalities in [, , , ,
, –, –]. Both sides of these inequalities are functions regarding to the state.

Remark  In [], Barbalat’s lemma is used to show Theorem .. Different from [], the
integral mean value theorem is adopted in this paper to prove the considered system is
globally asymptotically stable.

In the following, we will investigate the stability of delayed Markovian jump neural net-
works with nonlinear perturbations and unknown parameters. We have

ẋ(t) = –
[
Ci + �C(t)

]
x(t – σ ) +

[
Ai + �A(t)

]
x
(
t – h(t, δt) – h(t,�t)

)
+ f
(
t, x(t – σ ), x

(
t – hqr(t)

))
, t > ,

x(s) = φ(s), s ∈ [– max{σ , h}, 
]
,

()

where �C(t) and �A(t) are unknown matrices denoting time-varying parameter uncer-
tainties and such that the following condition holds:

[�C(t) �A(t)
]

= MF(t)[V V], ()

where M, V and V are known constant matrices and F(t) is the unknown time-varying
matrix-value function satisfying

FT (t)F(t) ≤ I, ∀t ≥ . ()
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Definition  The trivial solution of system () is said to be robustly globally asymptoti-
cally stable if the trivial solution of the system () is globally asymptotically stable for all
admissible unknown parameters.

Theorem . For given scalars σ ≥ , h ≥ , h ≥ , μ ≥  and μ ≥  satisfied (),
α ≥ , β ≥ , Eα and Eβ satisfied (), system () is robustly globally asymptotically stable,
if there exist a constant ε ≥ , positive definite matrices Piqr ∈ Rn×n, R ∈ Rn×n, R ∈
Rn×n, R ∈ Rn×n, R ∈ Rn×n, Qi ∈ Rn×n (i = , , ), Qj ∈ Rn×n (j = , ), Qk ∈ Rn×n

(k = , , ), Sq ∈ Rn×n (q = , , ), Sm ∈ Rn×n (m = , , . . . , ), and

⎡
⎢⎢⎢⎣

X X X X

∗ X X X

∗ ∗ X X

∗ ∗ ∗ R

⎤
⎥⎥⎥⎦≥ ,

any appropriately dimensioned matrices Ui (i = , , ), Tj (j = , , . . . , ) and Gk (k =
, , . . . , ), such that the following LMIs hold for i = , , . . . , N, q = , , . . . , N, and r =
, , . . . , N:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�miqr(t)|h(t)=
h(t)=

< ,

�miqr(t)|h(t)=h
h(t)=

< ,

�miqr(t)| h(t)=
h(t)=h

< ,

�miqr(t)|h(t)=h
h(t)=h

< 

(m = , ) ()

and

Pi >  (i = , , , ),

[
S T

∗ S

]
> ,

[
S T

∗ S

]
> , ()

where

�̂ = � + eVV T
 eT

 + eVV T
 eT

, 	̂miqr(t) = 	miqr(t) – � + �̂,

�miqr(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	̂miqr(t) GMe GMe GMe GMe GMe GMe GMe
∗ – 

 I      
∗ ∗ – 

 I     
∗ ∗ ∗ – 

 I    
∗ ∗ ∗ ∗ – 

 I   
∗ ∗ ∗ ∗ ∗ – 

 I  
∗ ∗ ∗ ∗ ∗ ∗ – 

 I 
∗ ∗ ∗ ∗ ∗ ∗ ∗ – 

 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with the other elements the same as in Theorem ..

Proof Consider the same Lyapunov-Krasovskii functional as in Theorem .. Now replac-
ing Ci and Ai in () with Ci + �C(t) and Ai + �A(t), we can have

 = 
[
xT (t)G + ẋT (t)G + xT (t – σ )G + ẋT (t – σ )G + xT(t – h(t)

)
G

+ ẋT (t – h)G + FT G
][

–ẋ(t) –
(
Ci + �C(t)

)
x(t – σ )
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+
(
Ai + �A(t)

)
x
(
t – h(t)

)
+ F

]
= ξT (t)�ξ (t) + 

[
xT (t)G + ẋT (t)G + xT (t – σ )G + ẋT (t – σ )G

+ xT(t – h(t)
)
G + ẋT (t – h)G + FT G

]
× [

–�C(t)x(t – σ ) + �A(t)x
(
t – h(t)

)]
. ()

To this end, we have

–xT (t)G�C(t)x(t – σ )

= –xT (t)GMF(t)Vx(t – σ )

≤ xT (t)GMMT Gx(t) + xT (t – σ )V T
 Vx(t – σ ),

–ẋT (t)G�C(t)x(t – σ )

= –ẋT (t)GMF(t)Vx(t – σ )

≤ ẋT (t)GMMT Gẋ(t) + xT (t – σ )V T
 Vx(t – σ ),

–xT (t – σ )G�C(t)x(t – σ )

= –xT (t – σ )GMF(t)Vx(t – σ )

≤ xT (t – σ )GMMT Gx(t – σ ) + xT (t – σ )V T
 Vx(t – σ ),

–ẋT (t – σ )G�C(t)x(t – σ )

= –ẋT (t – σ )GMF(t)Vx(t – σ )

≤ ẋT (t – σ )GMMT Gẋ(t – σ ) + xT (t – σ )V T
 Vx(t – σ ),

–xT(t – h(t)
)
G�C(t)x(t – σ )

= –xT(t – h(t)
)
GMF(t)Vx(t – σ )

≤ xT(t – h(t)
)
GMMT Gx

(
t – h(t)

)
+ xT (t – σ )V T

 Vx(t – σ ),

–ẋT (t – h)G�C(t)x(t – σ )

= –ẋT (t – h)GMF(t)Vx(t – σ )

≤ ẋT (t – h)GMMT Gẋ(t – h) + xT (t – σ )V T
 Vx(t – σ ),

–FT G�C(t)x(t – σ )

= –FT GMF(t)Vx(t – σ )

≤FT GMMT GF + xT (t – σ )V T
 Vx(t – σ ).

Similarly, one can show that

–xT (t)G�A(t)x
(
t – h(t)

)
≤ xT (t)GMMT Gx(t) + xT(t – h(t)

)
V T

 Vx
(
t – h(t)

)
,

–ẋT (t)G�A(t)x
(
t – h(t)

)
≤ ẋT (t)GMMT Gẋ(t) + xT(t – h(t)

)
V T

 Vx
(
t – h(t)

)
,
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–xT (t – σ )G�A(t)x
(
t – h(t)

)
≤ xT (t – σ )GMMT Gx(t – σ ) + xT(t – h(t)

)
V T

 Vx
(
t – h(t)

)
,

–ẋT (t – σ )G�A(t)x
(
t – h(t)

)
≤ ẋT (t – σ )GMMT Gẋ(t – σ ) + xT(t – h(t)

)
V T

 Vx
(
t – h(t)

)
,

–xT(t – h(t)
)
G�A(t)x

(
t – h(t)

)
≤ xT(t – h(t)

)
GMMT Gx

(
t – h(t)

)
+ xT(t – h(t)

)
V T

 Vx
(
t – h(t)

)
,

–ẋT (t – h)G�A(t)x
(
t – h(t)

)
≤ ẋT (t – h)GMMT Gẋ(t – h) + xT(t – h(t)

)
V T

 Vx
(
t – h(t)

)
,

–FT G�A(t)x
(
t – h(t)

)≤FT GMMT GF + xT(t – h(t)
)
V T

 Vx
(
t – h(t)

)
.

Then along the same line as for Theorem ., we can obtain the desired result by applying
the Schur complement lemma. This completes the proof of Theorem .. �

Next, we consider the case that the system () without Markovian jumping parameters
and h(t) = h, then the system () can be rewritten as

ẋ(t) = –Cx(t – σ ) + Ax(t – h) + f
(
t, x(t – σ ), x(t – h)

)
, t > ,

x(s) = φ(s), s ∈ [– max{σ , h}, 
]
.

()

For system (), we have following result.

Corollary . For given scalars σ ≥ , h ≥ , α ≥ , β ≥ , Eα , and Eβ , system () is
globally asymptotically stable, if there exist a constant ε ≥ , positive definite matrices
P ∈ Rn×n, R ∈ Rn×n, R ∈ Rn×n, R ∈ Rn×n, R ∈ Rn×n, Q ∈ Rn×n, Q ∈ Rn×n, S ∈
Rn×n, S ∈ Rn×n, S ∈ Rn×n, and

⎡
⎢⎢⎢⎣

X X X X

∗ X X X

∗ ∗ X X

∗ ∗ ∗ R

⎤
⎥⎥⎥⎦≥ ,

any appropriately dimensioned matrices Gk (k = , , . . . , ), such that the following LMIs
hold:

�P�T
 + �P�T

 +
∑

k=

�k < , ()

where

� =
[
e – eCT , e, e, e, e

]
, � =

[
–eCT + eAT + e, e – e, e, e – e, e

]
,

� = [e, e, n×n, n×n]R[e, e, n×n, n×n]T – [e, e, e, e – e]R

× [e, e, e, e – e]T + σ [e, e, n×n]R[e, e, n×n]T – [e, e – e,σ e – e]
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× R[e, e – e,σ e – e]T + σ eReT
 + e

(
σX + X + XT

 +
σ 


R

)
eT



+ e
(
σX – X – XT


)
eT

 + σ eXeT
 – eReT

 ,

� = Sym

{
[e, e – e, e,σ e – e]R[n×n, n×n, e, e]T

+ σ

[
e,σ e – e,

σ 


e – e

]
R[n×n, n×n, e]T

+ e
(
σX – XT

 + XT

)
eT

 + e
(
σX + XT


)
eT

 + e
(
σX – XT


)
eT



}
,

� = [e, e, n×n, n×n]Q[e, e, n×n, n×n]T – [e, e, e, e – e]Q

× [e, e, e, e – e]T + [e, n×n]Q[e, n×n]T – [e, e – e]Q[e, e – e]T ,

� = Sym
{

[e, e – e, e, he – e]Q[n×n, n×n, e, e]T

+ [e, he – e]Q[n×n, e]T},

� = h[e, e]S[e, e]T + heSeT
 – [e, e – e]S[e, e – e]T

–
π

h eSeT
 –

π


eSeT

 + Sym

{
π

h
eSeT



}
,

� =
h


eSeT

 – eSeT
, � = εαeET

α EαeT
 + εβeET

β EβeT
 – εeeT

,

� = Sym
{

[eG + eG + eG + eG + eG + eG + eG]

× [
–eT

 – CeT
 + AeT

 + eT

]}

.

Remark  Compared to [], in this paper, the augmented vector ξ (t) has integrating
terms

∫ t
t–h x(s) ds,

∫ t
t–σ

∫ t
s x(u) du ds, and

∫ t
t–h
∫ t

s x(u) du ds, by these terms, more informa-
tion on the states is utilized in the criterion presented in Theorem ., which may lead to
a superior result.

4 Numerical examples
In this section, two numerical examples are introduced (by using MATLAB) to show the
effectiveness and the smaller conservativeness of our results.

Example . Consider the neural networks () with the parameters

C =

[
 
 λ

]
, A = ,

∥∥f
(
t, x(t – σ ), x(t – h)

)∥∥≤ .
∥∥x(t – h)

∥∥,

where h ≥ , σ ≥  and λ >  are some real constants.
When h = , the maximum leakage delay bounds for guaranteeing the global stability of

system () with different λ are listed in Table  including the results of [, ] and our
methods. In addition, for given σ and λ (or h and λ), the upper bounds of h (or σ ) are listed
in Tables  and . Meanwhile, the comparisons with the results obtained by the criterion in
[] are given. It follows from Corollary ., that the system () is globally asymptotically
stable, let f = .[x(t – h), x(t – h)]T , then the simulations of state responses for system
() with different h, σ , and λ are depicted in Figure .
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Table 1 Allowable upper bounds of σ with h = 0 and different values of λ

Methods λ = 1 λ = 2 λ = 3 λ = 4 λ = 5

[10] 0.3172 0.3172 0.2468 0.1997 0.1671
[12] 0.4999 0.4999 0.4100 0.2499 0.3011
Corollary 3.1 0.5849 0.5887 0.4655 0.3530 0.3641

Table 2 Allowable upper bounds of h with different values of σ and λ

σ Methods λ = 2 λ = 3 λ = 4

0.10 [12] 2.8284 2.4748 2.1213
Corollary 3.1 3.6171 3.4587 2.8116

0.15 [12] 2.4748 1.9445 1.4140
Corollary 3.1 3.0166 3.0156 2.0427

0.20 [12] 2.1213 1.4141 0.7069
Corollary 3.1 2.6582 2.3019 1.2583

0.25 [12] 1.7677 0.8837 -
Corollary 3.1 2.5228 1.9425 1.0121

0.30 [12] 1.4141 0.3534 -
Corollary 3.1 2.1087 1.5007 0.7334

Table 3 Allowable upper bounds of σ with different values of h and λ

h Methods λ = 2 λ = 3 λ = 4

0.10 [12] 0.4858 0.3239 0.2429
Corollary 3.1 0.5801 0.4865 0.3995

0.50 [12] 0.4292 0.2861 0.2146
Corollary 3.1 0.5226 0.3567 0.3531

1.00 [12] 0.3585 0.2390 0.1792
Corollary 3.1 0.4194 0.3059 0.2989

1.50 [12] 0.2878 0.1919 0.1439
Corollary 3.1 0.3513 0.3020 0.1825

2.00 [12] 0.2171 0.1447 0.1085
Corollary 3.1 0.2821 0.2732 0.1745

Figure 1 State trajectories of system (42) with different τ , σ and λ.
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Table 4 Allowable upper bounds of h1 for different h2 and σ with μ1 = 0.6 and μ2 = 0.2

σ h2 = 0.1 h2 = 0.3 h2 = 0.5

0.10 2.7000 2.0900 1.9050
0.15 2.4894 2.0471 1.8295
0.20 2.4089 1.9594 1.7840

Table 5 Allowable upper bounds of h2 for different h1 and σ with μ1 = 0.6 and μ2 = 0.2

σ h1 = 0.5 h1 = 0.8 h1 = 1.0

0.10 1.5139 1.4204 1.3704
0.15 1.4094 1.3684 1.3476
0.20 1.2365 1.1965 1.1505

Figure 2 State trajectories of system (1) with different σ . (a): State trajectories of system (1) with σ = 0.1.
(b): State trajectories of system (1) with σ = 0.2.

Example . Consider the neural networks () without Markovian jumping parameters

C =

[
 
 

]
, A =

[
– 
– –

]
,

∥∥f
(
t, x(t – σ ), x

(
t – h(t)

))∥∥≤ .
∥∥x
(
t – h(t)

)∥∥.

For this system, by solving the LMIs in Theorem ., the maximum value of upper delay
bound h and h can be obtained, which are listed in Tables  and . Figure  shows the
state trajectory for different σ with initial state [., .]T and [., –.]T , respectively.

Example . Consider the neural networks () with the parameters

C =

[
 
 .

]
, A =

[
– 
– –

]
, C =

[
. 
 .

]
, A =

[
– 
. –.

]
,

∥∥f
(
t, x(t – σ ), x

(
t – hqr(t)

))∥∥≤ .
∥∥x
(
t – h(t)

)∥∥.

Here, the Markov chains are generated by � =
[ – 

 –

]
, P =

[ – 
 –

]
, L =

[ – 
 –

]
, and � =

., which is shown in Figure . Let f = .[x(t – hqr(t)), x(t – hqr(t))]T , the time delay is
considered as h(t, δt = ) = +sin t, h(t, δt = ) = .+. cos t, h(t,�t = ) = .+. sin t,
and h(t,�t = ) = . + . cos t, we can obtain h(t) = . + . sin t and h(t) = . +
. cos t, therefore, h = , h = ., μ = . and μ = .. Figures - depict the states
trajectories of the system () with different values of σ , which indicates the sensitiveness
of neural networks due to the time delay in the leakage term.
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Figure 3 The Markov chain generated by � and � = 0.01.

Figure 4 State trajectories of system (1) with σ = 0.1.

Figure 5 State trajectories of system (1) with σ = 0.4.

Figure 6 State trajectories of system (1) with σ = 0.8.
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5 Conclusions
In this paper, based on the extended Wirtinger inequality and the reciprocally convex
method, the robust stability problem for Markovian jump neural networks with leakage
delay, two additive time-varying delays, and nonlinear perturbations have been investi-
gated. The Markovian jumping parameters in the connection weight matrices and each of
the two additive discrete delays are assumed to be different in the system model. Accord-
ingly, a weak infinitesimal operator acting on the Lyapunov-Krasovskii functional is first
proposed. The relationship between time-varying delays and their upper delay bounds is
efficiently utilized to estimate the time-derivative of the Lyapunov-Krasovskii functional,
which shows that more information of the lower and upper delay bounds of time-varying
delays can be used. By constructing a newly augmented Lyapunov-Krasovskii functional
and using the convex polyhedron method, several sufficient criteria are derived to guaran-
tee the stability of the proposed model for all admissible parameter uncertainties. Numer-
ical examples and their simulations are given to show the effectiveness and usefulness of
the proposed method. In future work, we will study the state estimation, H∞ performance,
and passivity analysis of the proposed model.

Appendix
We have

αi(t) =
[

xT (t) –
∫ t

t–σ

xT (s) dsCT
i ,
∫ t

t–σ

xT (s) ds, xT (t – σ ),
∫ t

t–h
xT (s) ds, xT (t – h)

]T

,

α(t) =
[
xT (t), ẋT (t)

]T , f(t, s) =
[

xT (s), ẋT (s),
∫ t

s
xT (u) du,

∫ t

s
ẋT (u) du

]T

,

f(t, s) =
[

xT (s), ẋT (s),
∫ t

s
ẋT (u) du

]T

, f(t, s) =
[

xT (s), ẋT (s),
∫ t–h

s
ẋT (u) du

]T

,

f(t, s) =
[

xT (s), ẋT (s),
∫ t–h

s
ẋT (u) ds

]T

, f(t, s) =
[

xT (s),
∫ t

s
ẋT (u) ds

]T

,

F = f
(
t, x(t – σ ), x

(
t – hqr(t)

))
, Ui =

[
Ui Ui

Ui Ui

]
,

Qk ∈ Rmn×mn =

⎡
⎢⎢⎢⎢⎢⎣

Qk Qk · · · Qkm

∗ Qk(m+) · · · Qk(m–)
...

...
. . .

...
∗ ∗ · · · Qk( m(m+)

 )

⎤
⎥⎥⎥⎥⎥⎦

(
k ∈ Z+),

Pi =

⎡
⎢⎢⎢⎣

Si Si Ui Ui

∗ Si Ui Ui

∗ ∗ Si Si

∗ ∗ ∗ Si

⎤
⎥⎥⎥⎦ (i = , , ), P =

⎡
⎢⎣

S T T

∗ S T

∗ ∗ S

⎤
⎥⎦ ,

�i =
[
e – eCT

i , e, e, e, e
]
,

�i =
[
–eCT

i + eAT
i + e, e – e, e, e – e, e

]
,

� = [e, e, n×n, n×n]R[e, e, n×n, n×n]T
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– [e, e, e, e – e]R[e, e, e, e – e]T + σ [e, e, n×n]R[e, e, n×n]T

– [e, e – e,σ e – e]R[e, e – e,σ e – e]T

+ e

(
σX + X + XT

 +
σ 


R

)
eT



+ σ eReT
 + e

(
σX – X – XT


)
eT

 + σ eXeT
 – eReT

,

� = Sym

{
[e, e – e, e,σ e – e]R[n×n, n×n, e, e]T

+ e
(
σX – X + XT


)
eT

 + e
(
σX + XT


)
eT



+ σ

[
e,σ e – e,

σ 


e – e

]
R[n×n, n×n, e]T + e

(
σX – XT


)
eT



}
,

� = [e, e, n×n, n×n](Q + Q + Q)[e, e, n×n, n×n]T

– [e, e, e, e – e]Q[e, e, e, e – e]T

– [e, e, e, e – e]Q[e, e, e, e – e]T

– [e, e, e, e – e]Q[e, e, e, e – e]T ,

� = [e, e, n×n]Q[e, e, n×n]T + [e, e, n×n]Q[e, e, n×n]T

+ [e, n×n](Q + Q + Q)[e, n×n]T – [e, e, e – e]Q[e, e, e – e]T

– [e, e, e – e]Q[e, e, e – e]T – ( – μ)[e, e – e]Q[e, e – e]T

– ( – μ)[e, e – e]Q[e, e – e]T – ( – μ)[e, e – e]Q[e, e – e]T ,

� = Sym
{(

[e, e – e, e, he – e]Q + [e, e – e, e, he – e]Q

+ [e, e – e, e, he – e]Q
)
[n×n, n×n, e, e]T

+ [e – e, e – e, he – e + e]Q[n×n, n×n, e]T

+ [e – e, e – e, he – e + e]Q[n×n, n×n, e]T},

� = Sym
{

e(Q – Q)eT
 + e(Q – Q)eT

 + e(Q – Q)eT

}

,

� = [e, e]
(
h

 S + h
S + hS

)
[e, e]T + e

(
hS + h

 S
)
eT

 + h
eSeT



–
π

h eSeT
 + Sym

{
π

h
eSeT



}
–

π


eSeT

 ,

� = –[e, e – e, e – e, e – e]P[e, e – e, e – e, e – e]T

– [e, e – e, e – e, e – e]P[e, e – e, e – e, e – e]T

– [e, e – e, e – e, e – e]P[e, e – e, e – e, e – e]T ,

� = e

(
h




S +
h




S +
h


S

)
eT

 – eSeT
 – eSeT

 – eSeT
,

� = εαeET
α EαeT

 + εβeET
β EβeT

 – εeeT
,

� = Sym
{

[eG + eG + eG + eG + eG + eG + eG]

× [
–eT

 – CieT
 + AieT

 + eT

]}

,
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� = Sym
{

e(Q + Q)eT

}

, � = Sym
{

e(Q + Q)eT

}

,

� = –[e – e, e – e, e – e]P[e – e, e – e, e – e]T

–
π

h


[e – e]S[e – e]T

+ Sym

{
π

h
(e – e)SeT



}
–

π


eSeT

 ,

� = –[e – e, e – e]

[
S T

∗ S

]
[e – e, e – e]T – [e – e, e – e]

×
[

S T

∗ S

]
[e – e, e – e]T ,

	miqr(t) = �iPiqr�
T
i + �iPiqr�

T
i +

N∑
j=

πij�jPjqr�
T
lj

+
N∑

k=

pqk�iPikr�
T
i +

N∑
k=

lrk�iliqk�
T
i

+
∑

k=

�k + �m + h(t)� + h(t)� (m = , ),

ξT (t) =
[

xT (t), ẋT (t), xT (t – σ ), ẋT (t – σ ), xT (t – h), ẋT (t – h), xT (t – h),

ẋT (t – h), xT (t – h), ẋT (t – h), xT(t – h(t)
)
, xT(t – h(t)

)
, xT(t – h(t)

)
,∫ t

t–σ

xT (s) ds,
∫ t

t–h

xT (s) ds,
∫ t

t–h

xT (s) ds,
∫ t

t–h
xT (s) ds,

∫ t

t–h(t)
xT (s) ds,

∫ t

t–h(t)
xT (s) ds,

∫ t

t–h(t)
xT (s) ds,

∫ t

t–σ

∫ t

s
xT (u) du ds,

∫ t

t–h

∫ t

s
xT (u) du ds,

∫ t

t–h

∫ t

s
xT (u) du ds,

∫ t

t–h

∫ t

s
xT (u) du ds,FT

]
.
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