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Abstract
In this paper, the concept of p-mean piecewise pseudo almost periodic for stochastic
processes is first introduced. Using the exponential dichotomy techniques and a fixed
point strategy with stochastic analysis theory, we establish the existence of p-mean
piecewise pseudo almost periodic mild solutions for a class of impulsive
nonautonomous partial stochastic evolution equations in Hilbert spaces. Moreover,
the exponential stability of p-mean piecewise pseudo almost periodic mild solutions
is investigated. Finally, an example is provided to illustrate the obtained theory.
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1 Introduction
The almost periodic functions plays an important role in describing the phenomena that
are similar to the periodic oscillations which can be observed frequently in many fields,
such as celestial mechanics, nonlinear vibration, electromagnetic theory, and so on (see
[]). The concept of pseudo almost periodic functions is a natural generalization of almost
periodic functions. The study of the existence of pseudo almost periodic solutions is one
of the most interesting topics in the qualitative theory of differential equations both due
to its mathematical interest as well as due to their applications in physics, mathematical
biology, and other areas [–]. In the real world, stochastic perturbation is unavoidable.
Therefore, we must move from deterministic problems to stochastic ones. The stochas-
tic differential equations with delays and without delays have been extensively studied in
the last decades (see [–]). Particularly, some authors focused on the existence of al-
most periodic or pseudo almost periodic solutions to stochastic differential equations in
Hilbert spaces [–]. Among them, Bezandry and Diagana [, ] studied the exis-
tence of square-mean almost periodic solutions nonautonomous stochastic differential
equations. In [, ], the authors introduced the concepts of p-mean pseudo almost pe-
riodicity, and studied the existence of p-mean pseudo almost periodic mild solutions to
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a nonautonomous semilinear stochastic differential equations. Diop et al. [] obtained
the existence, uniqueness and global attractiveness of an p-mean pseudo almost periodic
solution for stochastic evolution equation driven by a fractional Brownian motion.

The theory of impulsive partial differential equations has become an active area of in-
vestigation due to their applications in fields such as mechanics, electrical engineering,
medicine biology (see [–]). The existence, uniqueness and stability of almost periodic
solutions for impulsive differential equations have been considered in abstract spaces by
many authors. For example, Henríquez et al. [], Stamov et al. [, ] discussed the exis-
tence and uniqueness of piecewise almost periodic solutions for a class of abstract impul-
sive semilinear differential equations. Stamov [] established the existence and asymp-
totic stability of piecewise almost periodic solutions of impulsive differential equations
with time-varying delay. Liu and Zhang [] studied the existence and exponential stabil-
ity of piecewise almost periodic solutions to abstract impulsive differential equation. The
authors in [, ] introduced the concept of piecewise pseudo almost periodic functions
on a Banach space and established the existence, uniqueness and exponential stability of
piecewise pseudo almost periodic solutions to impulsive differential equations. Bainov
and Simeonov [] concerned with the asymptotic equivalence of impulsive differential
equations. However, besides impulse effects and delays, stochastic effects likewise exist
in real systems. In recent years, several interesting results on impulsive partial stochas-
tic systems have been reported in many publications [–] and the references therein.
Further, Zhang et al. [] obtained the existence and uniqueness of almost periodic solu-
tions for a class of impulsive stochastic differential equations with delay by mean of the
Banach contraction principle. In [], the authors investigated the existence and stabil-
ity of square-mean piecewise almost periodic solutions for nonlinear impulsive stochastic
differential equations by using Schauder fixed point theorem. In this paper, we consider
the existence and exponential stability of p-mean piecewise pseudo almost periodic mild
solutions to the following impulsive nonautonomous partial stochastic evolution equa-
tions:

dx(t) =
[
A(t)x(t) + g

(
t, x(t)

)]
dt + f

(
t, x(t)

)
dW (t), t ∈R, t �= ti, i ∈ Z, (.)

�x(ti) = x
(
t+
i
)

– x
(
t–
i
)

= Ii
(
x(ti)

)
, i ∈ Z, (.)

where A(t) : D(A(t)) ⊆ Lp(P,H) → Lp(P,H) is a family of densely defined closed linear op-
erators satisfying the so-called ‘Acquistapace-Terrani’ conditions, and W (t) is a two-sided
standard one-dimensional Brownian motion defined on the filtered probability space
(�,F ,P,Ft), where Ft = σ {W (u) – W (v); u, v ≤ t}. g , f , Ii, ti satisfy suitable conditions
which will be established later. x(t+

i ), x(t–
i ) represent the right-hand side and the left-hand

side limits of x(·) at ti, respectively.
The study of the asymptotic properties of mild solutions to partial differential equations

is one of the fundamental tasks of the analysis theory and finds its application in various
fields, such as almost periodicity, asymptotically almost periodic, pseudo almost periodic-
ity, almost automorphy, stability, and so on. There are several papers on the pseudo almost
periodicity of mild solutions for partial differential systems, stochastic partial differential
systems and impulsive partial differential systems in abstract spaces; see [–, , , ,
] and the references therein. On the other hand, the stochastic systems with impulse de-
serve a study because the system is a more general hybrid system, and that of can be more
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accurate description of the actual phenomenon in the real world. So it is natural to extend
the concept of pseudo almost periodicity of mild solutions to dynamical systems repre-
sented by these impulsive systems. To the authors knowledge, no results are available for
the existence and exponential stability of p-mean piecewise pseudo almost periodic mild
solutions for nonlinear impulsive stochastic system (.)-(.). The systems have variable
structures subject to stochastic abrupt changes, which may result from abrupt phenomena
such as stochastic failures and repairs of the components, changes in the interconnections
of subsystems, sudden environment changes, etc. Therefore, the system (.)-(.) involves
a wide area of applications in physics and mathematics. Motivated by the above consid-
eration, we will study these interesting problems, which are natural generalizations of the
concept of pseudo almost periodicity for stochastic differential equations well known in
the theory of infinite dimensional systems.

In this paper, we introduce and develop the notion of p-mean piecewise pseudo almost
periodic for stochastic processes, which generalizes in a natural fashion the concept of
piecewise almost periodic and p-mean almost periodic stochastic processes. As an ap-
plication, we study the existence and exponential stability of p-mean piecewise pseudo
almost periodic mild solution for the impulsive stochastic evolution equation (.)-(.)
with pseudo almost periodic coefficients. In order to obtain the existence of pseudo almost
periodic mild solutions for differential equations, most of the previous research on com-
position theorems for pseudo almost periodic functions was based upon a Lipschitz con-
dition. It is obvious that the conditions for contraction mapping principle are too strong.
In this paper we establish a new composition theorem for p-mean pseudo almost periodic
functions under conditions which are different from Lipschitz conditions. Then, using this
new composition theorem together with the Leray-Schauder nonlinear alternative and the
exponential dichotomy techniques with stochastic analysis theory, we get new existence
and exponential stability results. The well-known results that appeared in [–, , , ,
] are generalized to the impulsive stochastic systems settings and the case of piecewise
pseudo almost periodicity. Moreover, the results are also new for deterministic systems
with impulse.

The paper is organized as follows. In Section , we introduce some notations and neces-
sary preliminaries. In Section , we give the existence of p-mean piecewise pseudo almost
periodic mild solutions for (.)-(.). In Section , we establish the exponential stability
of p-mean piecewise pseudo almost periodic mild solutions for (.)-(.). In Section , an
interesting example is given to illustrate our results. Finally, concluding remarks are given
in Section .

2 Preliminaries
Throughout the paper, N, Z, R and R

+ stand for the set of natural numbers, integers, real
numbers, positive real numbers, respectively. We assume that (H,‖ · ‖), (K,‖ · ‖K) are real
separable Hilbert spaces and (�,F ,P) is supposed to be a filtered complete probability
space. Define Lp(P,H), for p ≥ , to be the space of all H-valued random variables x such
that E‖x‖p =

∫
�

‖x‖p dP < ∞. Then Lp(P,H) is a Banach space when it is equipped with
its natural norm ‖ · ‖p defined by ‖x‖p = (

∫
�

E‖x‖p dP)/p < ∞ for each x ∈ Lp(P,H). We
let L(K,H) be the space of all linear bounded operators from K into H, equipped with
the usual operator norm ‖ · ‖L(K,H); in particular, this is simply denoted by L(H) when
K = H. Furthermore, L

(K,H) denotes the space of all Q-Hilbert-Schmidt operators from
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K to H with the norm ‖ψ‖
L


= Tr(ψQψ∗) < ∞ for any ψ ∈ L(K,H). Let C(R, Lp(P,H)),

BC(R, Lp(P,H)) stand for the collection of all continuous functions from R into Lp(P,H),
the Banach space of all bounded continuous functions from R into Lp(P,H), equipped
with the sup norm, respectively.

Definition . ([]) A stochastic process x : R → Lp(P,H) is said to be continuous pro-
vided that, for any s ∈R,

lim
t→s

E
∥
∥x(t) – x(s)

∥
∥p = .

Definition . ([]) A stochastic process x : R → Lp(P,H) is said to be stochastically
bounded provided that

lim
N→∞ lim sup

t∈R

{
P
∥
∥x(t)

∥
∥ > N

}
= .

Let T be the set consisting of all real sequences {ti}i∈Z such that α = infi∈Z(ti+ – ti) >
, limi→∞ ti = ∞, and limi→–∞ ti = –∞. For {ti}i∈Z ∈ T, let PC(R, Lp(P,H)) be the space
consisting of all stochastically bounded piecewise continuous functions f : R → Lp(P,H)
such that f (·) is stochastically continuous at t for any t /∈ {ti}i∈Z and f (ti) = f (t–

i ) for all
i ∈ Z; let PC(R × Lp(P,K), Lp(P,H)) be the space formed by all stochastically piecewise
continuous functions f : R × Lp(P,K) → Lp(P,H) such that, for any x ∈ Lp(P,K), f (·, x) ∈
PC(R, Lp(P,H)) and for any t ∈R, f (t, ·) is stochastically continuous at x ∈ Lp(P,K).

Definition . ([]) A function f ∈ C(R, Lp(P,H)) is said to be p-mean almost periodic
if, for each ε > , there exists an l(ε) > , such that every interval J of length l(ε) con-
tains a number τ with the property that E‖f (t + τ ) – f (t)‖p < ε for all t ∈ R. Denote by
AP(R, Lp(P,H)) the set of such functions.

Definition . (Compare with []) A sequence {xn} is called p-mean almost periodic if,
for any ε > , there exists a relatively dense set of its ε-periods, i.e., there exists a natural
number l = l(ε), such that, for k ∈ Z, there is at least one number q in [k, k + l], for which
inequality E‖xn+q – xn‖p < ε holds for all n ∈ N. Denote by AP(Z, Lp(P,H)) the set of such
sequences.

Define l∞(Z, Lp(P,H)) = {x : Z → Lp(P,H) : ‖x‖ = supn∈Z(E‖x(n)‖p)/p < ∞}, and

PAP
(
Z, Lp(P,H)

)
=

{

x ∈ l∞
(
Z, Lp(P,H)

)
: lim

n→∞


n

n∑

j=–n

E
∥
∥x(n)

∥
∥p dt = 

}

.

Definition . A sequence {xn}n∈Z ∈ l∞(Z, X) is called p-mean pseudo almost peri-
odic if xn = x

n + x
n, where x

n ∈ AP(Z, Lp(P,H)), x
n ∈ PAP(Z, Lp(P,H)). Denote by

PAP(Z, Lp(P,H)) the set of such sequences.

Definition . (Compare with []) For {ti}i∈Z ∈ T, the function f ∈ PC(R, Lp(P,H)) is
said to be p-mean piecewise almost periodic if the following conditions are fulfilled:
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(i) {tj
i = ti+j – ti}, j ∈ Z, is equipotentially almost periodic, that is, for any ε > , there

exists a relatively dense set Qε of R such that for each τ ∈ Qε there is an integer
q ∈ Z such that |ti+q – ti – τ | < ε for all i ∈ Z.

(ii) For any ε > , there exists a positive number δ̃ = δ̃(ε) such that if the points t′ and t′′

belong to a same interval of continuity of ϕ and |t′ – t′′| < δ̃, then
E‖f (t′) – f (t′′)‖p < ε.

(iii) For every ε > , there exists a relatively dense set �̃(ε) in R such that if τ ∈ �̃(ε),
then

E
∥∥f (t + τ ) – f (t)

∥∥p < ε

for all t ∈R satisfying the condition |t – ti| > ε, i ∈ Z. The number τ is called
ε-translation number of f .

We denote by APT (R, Lp(P,H)) the collection of all the p-mean piecewise almost pe-
riodic functions. Obviously, the space APT (R, Lp(P,H)) endowed with the sup norm de-
fined by ‖f ‖∞ = supt∈R(E‖f (t)‖p)/p for any f ∈ APT (R, Lp(P,H)) is a Banach space. Let
UPC(R, Lp(P,H)) be the space of all stochastic functions f ∈ PC(R, Lp(P,H)) such that f
satisfies the condition (ii) in Definition ..

Definition . (Compare with []) The function f ∈ PC(R×Lp(P,K), Lp(P,H)) is said to
be p-mean piecewise almost periodic in t ∈R uniform in x ∈ Lp(P,K) if, for every compact
subset K ⊆ Lp(P,K), {f (·, x) : x ∈ K} is uniformly bounded, and given ε > , there exists a
relatively dense subset �ε such that

E
∥∥f (t + τ , x) – f (t, x)

∥∥p < ε

for all x ∈ K , τ ∈ �ε , and t ∈ R satisfying |t – ti| > ε. Denote by APT (R×Lp(P,K), Lp(P,H))
the set of all such functions.

Denote

PC
T
(
R, Lp(P,H)

)
=

{
f ∈ PC

(
R, Lp(P,H)

)
: lim

t→∞ E
∥
∥f (t)

∥
∥p = 

}
,

PAP
T
(
R, Lp(P,H)

)
=

{
f ∈ PC

(
R, Lp(P,H)

)
: lim

r→∞


r

∫ r

–r
E
∥∥f (t)

∥∥p dt = 
}

,

PAP
T
(
R× Lp(P,K), Lp(P,H)

)

=
{

f ∈ PC
(
R× Lp(P,K), Lp(P,H)

)
:

lim
r→∞


r

∫ r

–r
E
∥∥f (t, x)

∥∥p dt =  uniformly with respect to x ∈ K ,

where K is an arbitrary compact subset of Lp(P,K)
}

.

Definition . A function f ∈ PC(R, Lp(P,H)) is said to be p-mean piecewise pseudo
almost periodic if it can be decomposed as f = h + ϕ, where h ∈ APT (R, Lp(P,H)) and
ϕ ∈ PAP

T (R, Lp(P,H)). Denoted by PAPT (R, Lp(P,H)) the set of all such functions.
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PAPT (R, Lp(P,H)) is a Banach space with the sup norm ‖ · ‖∞.
Similar to [, ], one has the following.

Remark .
(i) PAP

T (R, Lp(P,H)) is a translation invariant set of PC(R, Lp(P,H)).
(ii) PC

T (R, Lp(P,H)) ⊂ PAP
T (R, Lp(P,H)).

Lemma . Let {fn}n∈N ⊂ PAP
T (R, Lp(P,H)) be a sequence of functions. If fn converges uni-

formly to f , then f ∈ PAP
T (R, Lp(P,H)).

One can refer to Lemma . in [] for the proof of Lemma ..

Definition . A function f ∈ PC(R × Lp(P,K), Lp(P,H)) is said to be p-mean piece-
wise pseudo almost periodic if it can be decomposed as f = h + ϕ, where h ∈ APT (R ×
Lp(P,K), Lp(P,H)) and ϕ ∈ PAP

T (R× Lp(P,K), Lp(P,H)). Denoted by PAPT (R× Lp(P,K),
Lp(P,H)) the set of all such functions.

We need the following composition of p-mean pseudo almost periodic processes.

Lemma . Assume f ∈ PAPT (R × Lp(P,K), Lp(P,H)). Assume that the following condi-
tions hold:

(i) {f (t, x) : t ∈R, x ∈ K} is bounded for every bounded subset K ⊂ Lp(P,K).
(ii) f (t, ·) is uniformly continuous in each bounded subset of Lp(P,K) uniformly in t ∈ R.

If φ(·) ∈ PAPT (R, Lp(P,K)) such that R(φ) ⊂ Lp(P,K), then f (·,φ(·)) ∈ PAPT (R, Lp(P,H)).

Lemma . Assume the sequence of vector-valued functions {Ii}i∈Z is pseudo almost peri-
odic, i.e., for any x ∈ Lp(P,H), {Ii(x), i ∈ Z} is a pseudo almost periodic sequence. Suppose
{Ii(x) : i ∈ Z, x ∈ K} is bounded for every bounded subset K ⊂ Lp(P,H), Ii(x) is uniformly
continuous in x ∈ Lp(P,H) uniformly in ∈ Z. If φ ∈ PAPT (R, Lp(P,H)) ∩ UPC(R, Lp(P,H))
such that R(φ) ⊂ Lp(P,K), then Ii(φ(ti)) is pseudo almost periodic.

One can refer to Lemmas ., . in [] for the proof of Lemmas . and ..
Next, we introduce a useful compactness criterion on PC(R, Lp(P,H)). Let h : R → R

+

be a continuous function such that h(t) ≥  for all t ∈ R and h(t) → ∞ as |t| → ∞. Define

PC
h
(
R, Lp(P,H)

)
=

{
f ∈ PC

(
R, Lp(P,H)

)
: lim|t|→∞

E‖f (t)‖p

h(t)
= 

}

endowed with the norm ‖f ‖h = supt∈R
E‖f (t)‖p

h(t) , it is a Banach space.
Similarly as the proof of Lemma . in [], one has the following.

Lemma . A set B ⊆ PC
h (R, Lp(P,H)) is relatively compact if and only if it verifies the

following conditions:
(i) lim|t|→∞ E‖f (t)‖p

h(t) =  uniformly for f ∈ B.
(ii) B(t) = {f (t) : f ∈ B} is relatively compact in Lp(P,H) for every t ∈R.

(iii) The set B is equicontinuous on each interval (ti, ti+) (i ∈ Z).

We also need the following concepts concerning evolution family and exponential di-
chotomy.
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Definition . ([]) A family of bounded linear operators {U(t, s) : t ≥ s, t, s ∈ R} on
Lp(P,H) associated with A(t) is said to be an evolution family of operators if the following
conditions hold:

(a) U(s, s) = I , U(t, s) = U(t, τ )U(τ , s) for t ≥ τ ≥ s and t, τ , s ∈R.
(b) (t, s) → U(t, s) ∈ L(Lp(P,H)) is strongly continuous for t > s.

Definition . ([]) An evolution family U is called hyperbolic (or has exponential di-
chotomy) if there are projections P(t), t ∈ R, uniformly bounded and strongly continuous
in t, and constants M, δ >  such that

(a) U(t, s)P(s) = P(t)U(t, s) for all t ≥ s;
(b) the restriction UQ(t, s) : Q(s)Lp(P,H) → Q(t)Lp(P,H) is invertible for all t ≥ s (and

we set UQ(s, t) = UQ(t, s)–);
(c) ‖U(t, s)P(s)‖ ≤ Me–δ(t–s) and ‖UQ(s, t)Q(t)‖ ≤ Me–δ(t–s) for all t ≥ s.

Here and below Q := I – P. If P(t) = I for t ∈R, then (U(t, s))t≥s is exponentially stable (see
[, ]).

Definition . ([]) If U is a hyperbolic evolution family, then

�(t, s) :=

{
U(t, s)P(s) if t ≥ s, t, s ∈R,
–UQ(t, s)Q(s) if t < s, t, s ∈R,

is called Green’s function corresponding to U and P(·).

Lemma . (Leray-Schauder nonlinear alternative []) Let X be a Banach space with
D ⊂ X closed and convex. Assume V is a relatively open subset of D with  ∈ V and  :
V → D is a compact map, then either

(i)  has a fixed point in V , or
(ii) there is a point x ∈ ∂V and λ ∈ (, ) with x ∈ λ(x).

3 Existence
In this section, we investigate the existence of p-mean piecewise pseudo almost periodic
mild solution for system (.)-(.). We first introduce the notion of mild solution to system
(.)-(.).

Definition . An Ft-progressively measurable process {x(t)}t∈R is called a mild solution
of system (.)-(.) if, for any t ∈R, t > s, s �= ti, i ∈ Z,

x(t) = U(t, s)x(s) +
∫ t

s
U(t, τ )g

(
τ , x(τ )

)
dτ

+
∫ t

s
U(t, τ )f

(
τ , x(τ )

)
dW (τ ) +

∑

s<ti<t
U(t, ti)Ii

(
x(ti)

)
. (.)

In order to obtain our main results, we make the following hypotheses:
(H) There exist constants λ > , θ ∈ ( π

 ,π ), K, K ≥ , and α,α ∈ (, ] with
α + α >  such that

�θ ∪ {} ⊂ ρ
(
A(t) – λ

)
,

∥
∥R

(
λ, A(t) – λ

)∥∥ ≤ K

 + |λ| ,
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and

∥
∥(

A(t) – λ
)
R
(
λ, A(t) – λ

)[
R
(
λ, A(t)

)
– R

(
λ, A(s)

)]∥∥ ≤ K|t – s|α |λ|–α

for t, s ∈ R, λ ∈ �θ := {λ ∈C \ {} : | argλ| ≤ θ}.
(H) R(λ, A(·)) ∈ AP(L(R, Lp(P,H))).
(H) The evolution family U(t, s) generated by A(t) has an exponential dichotomy with

constants M, δ > , dichotomy projections P(t), t ∈ R, and Green’s function �(t, s).
Moreover, U(t, s) is compact for t > s.

(H) For each x ∈ H, U(t + h, t)x → x as h → + uniformly for t ∈R.
(H) The functions g ∈ PAPT (R× Lp(P,K), Lp(P,H)),

f ∈ PAPT (R× Lp(P,K), Lp(P, L
)), and g(t, ·), f (t, ·) are uniformly continuous in

each bounded subset of Lp(P,K) uniformly in t ∈R; Ii is a pseudo almost periodic
sequence, Ii(x) is uniformly continuous in x ∈ Lp(P,K) uniformly in i ∈ Z.

(H) There exists a continuous nondecreasing function � : [,∞) → (,∞) such that

sup
t∈R

[
E
∥
∥g(t, x)

∥
∥p + E

∥
∥f (t, x)

∥
∥p

L


] ≤ �
(‖x‖p), x ∈ Lp(P,K),

and there exist continuous nondecreasing functions �̃i : [,∞) → (,∞), i ∈ Z,
such that

E
∥
∥Ii(x)

∥
∥p ≤ �̃i

(
E‖x‖p), x ∈ Lp(P,K).

(H) There exists a constant M∗ >  such that

M∗

N�(M∗) + N supi∈Z �̃i(M∗)
> ,

where for p > , N = p–Mp[ 
δp + Cp( p–

pδ
)

p–
p 

pδ
], N = p–Mp 

(–e–δα )p , and for
p = , N = M[ 

δ + 
δ

], N = M 
(–e–δα ) .

Remark . Assumption (H) is usually called the ‘Acquistapace-Terreni’ condition,
which was first introduced in [] and widely used to investigate nonautonomous evo-
lution equations in [–, ]. If (H) holds, then there exists a unique evolution family
{U(t, s), t ≥ s > –∞} on Lp(P,H).

Lemma . ([]) Assume that (H)-(H) hold. If U(·, ·) has an exponential dichotomy
with constants M, δ > , then for each ε >  and h >  there is a relatively dense set �ε,h

such that

∥
∥�(t + τ , s + τ ) – �(t, s)

∥
∥ ≤ εe– δ

 |t–s|, |t – s| > h, t, s ∈R, τ ∈ �ε,h.

We abbreviate this property by writing � ∈ AP(L(H)).

Lemma . (Compare with []) Assume that f ∈ APT (R, Lp(P,H)), the sequence {xi}i∈Z ∈
AP(Z, Lp(P,H)), and {tj

i}, j ∈ Z are equipotentially almost periodic. Then, for each ε > ,
there exist relatively dense sets �ε of R and �ε of Z such that
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(i) E‖f (t + τ ) – f (t)‖p < ε for all t ∈R, |t – ti| > ε, τ ∈ �ε and i ∈ Z.
(ii) ‖�(t + τ , s + τ ) – �(t, s)‖p < ε for all t, s ∈R, |t – s| > , |s – ti| > ε, |t – ti| > ε, τ ∈ �ε

and i ∈ Z.
(iii) E‖xi+q – xi‖p < ε for all q ∈ �ε and i ∈ Z.
(iv) E‖xq

i – τ‖p < ε for all q, τ ∈ �ε and i ∈ Z.

Also, we need to introduce a few preliminary and important results.

Lemma . Assume that (H)-(H) hold. If g ∈ PAPT (R, Lp(P,H)) and if G is the function
defined by

G(t) :=
∫ t

–∞
U(t, τ )P(τ )g(τ ) dτ –

∫ +∞

t
UQ(t, τ )Q(τ )g(τ ) dτ (.)

for each t ∈R, then G ∈ PAPT (R, Lp(P,H)).

Proof Since g ∈ PAPT (R, Lp(P,H)), there exist g ∈ APT (R, Lp(P,H)) and g ∈ PAP
T (R,

Lp(P,H)), such that g = g + g, then G(t) can be decomposed as

G(t) =
[∫ t

–∞
U(t, τ )P(τ )g(τ ) dτ –

∫ +∞

t
UQ(t, τ )Q(τ )g(τ ) dτ

]

+
[∫ t

–∞
U(t, τ )P(τ )g(τ ) dτ –

∫ +∞

t
UQ(t, τ )Q(τ )g(τ ) dτ

]

=: G(t) + G(t).

Next we show that G(t) ∈ APT (R, Lp(P,H)) and G(t) ∈ PAP
T (R, Lp(P,H)). Thus, the fol-

lowing verification procedure is divided into three steps.
Step . G ∈ UPC(R, Lp(P,H)).
Let t′, t′′ ∈ (ti, ti+), i ∈ Z, t′′ < t′. By (H), for any ε > , there exists  < ξ < ( ε

g̃
)/p such

that  < t′ – t′′ < ξ , we have

∥
∥U

(
t′, t′′) – I

∥
∥p ≤ δpε

g̃
,

∥
∥UQ

(
t′, t′′) – I

∥
∥p ≤ δpε

g̃
,

where g̃ = p–Mp‖g‖p
∞. Using Hölder’s inequality, we have

E
∥
∥G

(
t′) – G

(
t′′)∥∥p

≤ p–E
∥
∥∥
∥

∫ t′′

–∞

[
U

(
t′, t′′) – I

]
U

(
t′′, τ

)
P(τ )g(τ ) dτ

∥
∥∥
∥

p

+ p–E
∥
∥∥
∥

∫ t′

t′′
U

(
t′, τ

)
P(τ )g(τ ) dτ

∥
∥∥
∥

p

+ p–E
∥∥
∥∥

∫ +∞

t′′

[
UQ

(
t′, t′′) – I

]
UQ

(
t′′, τ

)
Q(τ )g(τ ) dτ

∥∥
∥∥

p

+ p–E
∥∥
∥∥

∫ t′

t′′
UQ

(
t′, τ

)
Q(τ )g(τ ) dτ

∥∥
∥∥

p

≤ p–Mp∥∥U
(
t′, t′′) – I

∥
∥p

(∫ t′′

–∞
e–δ(t′′–τ ) dτ

)p–(∫ t′′

–∞
e–δ(t′′–τ )E

∥
∥g(τ )

∥
∥p dτ

)
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+ p–Mp
(∫ t′

t′′
e–δ(t′–τ ) dτ

)p–(∫ t′

t′′
e–δ(t′–τ )E

∥∥g(τ )
∥∥p dτ

)

+ p–Mp∥∥UQ
(
t′, t′′) – I

∥∥p
(∫ +∞

t′′
e–δ(t′′–τ ) dτ

)p–(∫ +∞

t′′
e–δ(t′′–τ )E

∥∥g(τ )
∥∥p dτ

)

+ p–Mp
(∫ t′

t′′
e–δ(t′–τ ) dτ

)p–(∫ t′

t′′
e–δ(t′–τ )E

∥∥g(τ )
∥∥p dτ

)

≤ p–Mp∥∥U
(
t′, t′′) – I

∥∥p
(∫ t′′

–∞
e–δ(t′′–τ ) dτ

)p

sup
τ∈R

∥∥g(τ )
∥∥p

+ p–Mp
(∫ t′

t′′
e–δ(t–τ ) dτ

)p

sup
τ∈R

∥
∥g(τ )

∥
∥p

+ p–Mp∥∥UQ
(
t′, t′′) – I

∥∥p
(∫ +∞

t′′
eδ(t′′–τ ) dτ

)p

sup
τ∈R

∥∥g(τ )
∥∥p

+ p–Mp
(∫ t′

t′′
eδ(t–τ ) dτ

)p

sup
τ∈R

∥∥g(τ )
∥∥p

≤ p–Mp‖g‖p
∞

δpε

g̃

(∫ t′′

–∞
e–δ(t′′–τ ) dτ

)p

+ p–Mp‖g‖p
∞

[(
ε

g̃

)p]/p

+ p–Mp‖g‖p
∞

δpε

g̃

(∫ +∞

t′′
eδ(t′′–τ ) dτ

)p

+ p–Mp‖g‖p
∞

[(
ε

g̃

)p]/p

<
ε


+

ε


+

ε


+

ε


= ε.

Step . G ∈ APT (R, Lp(P,H)).
Let ti < t ≤ ti+. For ε > , let �ε be a relatively dense set of R formed by ε-periods of G.

For τ ′ ∈ �ε and  < η < min{ε,α/}, we have

E
∥
∥G

(
t + τ ′) – G(t)

∥
∥p

≤ p–E
∥
∥∥
∥

∫ t

–∞
U

(
t + τ ′, τ + τ ′)P

(
τ + τ ′)[g

(
τ + τ ′) – g(τ )

]
dτ

∥
∥∥
∥

p

+ p–E
∥∥
∥∥

∫ t

–∞

[
U

(
t + τ ′, τ + τ ′)P

(
τ + τ ′) – U(t, τ )P(τ )

]
g(τ ) dτ

∥∥
∥∥

p

+ p–E
∥∥
∥∥

∫ +∞

t
UQ

(
t + τ ′, τ + τ ′)Q

(
τ + τ ′)[g

(
τ + τ ′) – g(τ )

]
dτ

∥∥
∥∥

p

+ p–E
∥
∥∥∥

∫ +∞

t

[
UQ

(
t + τ ′, τ + τ ′)Q

(
τ + τ ′) – UQ(t, τ )Q(τ )

]
g(τ ) dτ

∥
∥∥∥

p

=
∑

k=

Jk .

Using Hölder’s inequality, it follows that

J ≤ p–Mp
(∫ t

–∞
e–δ(t–τ ) dτ

)p–(∫ t

–∞
e–δ(t–τ )E

∥∥g
(
τ + τ ′) – g(τ )

∥∥p dτ

)

≤ p–Mp
(∫ t

–∞
e–δ(t–τ ) dτ

)p–
[ i–∑

j=–∞

∫ tj+–η

tj+η

e–δ(t–τ )E
∥
∥g

(
τ + τ ′) – g(τ )

∥
∥p dτ
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+
i–∑

j=–∞

∫ tj+η

tj

e–δ(t–τ )E
∥
∥g

(
τ + τ ′) – g(τ )

∥
∥p dτ

+
i–∑

j=–∞

∫ tj+

tj+–η

e–δ(t–τ )E
∥∥g

(
τ + τ ′) – g(τ )

∥∥p dτ

+
∫ t

ti

e–δ(t–τ )E
∥
∥g

(
τ + τ ′) – g(τ )

∥
∥p dτ

]

.

Since g ∈ APT (R, Lp(P,H)), one has

E
∥
∥g(t + τ ) – g(t)

∥
∥p < ε

for all t ∈ [tj + η, tj+ – η], j ∈ Z, j ≤ i, and t – τ ≥ t – ti + ti – (tj+ – η) ≥ t – ti + α(i –  – j) + η.
Then

i–∑

j=–∞

∫ tj+–η

tj+η

e–δ(t–τ )E
∥∥g

(
τ + τ ′) – g(τ )

∥∥p dτ

≤ ε

i–∑

j=–∞

∫ tj+–η

tj+η

e–δ(t–τ ) dτ

≤ ε

δ

i–∑

j=–∞
e–δ(t–tj++η)

≤ ε

δ

i–∑

j=–∞
e–δα(i–j–)

≤ ε

δ( – e–δα)
,

i–∑

j=–∞

∫ tj+η

tj

e–δ(t–τ )E
∥∥g

(
τ + τ ′) – g(τ )

∥∥p dτ

≤ p– sup
s∈R

E
∥
∥g(τ )

∥
∥p

i–∑

j=–∞

∫ tj+η

tj

e–δ(t–τ ) dτ

≤ p–‖g‖p
∞εeδη

i–∑

j=–∞
e–δ(t–tj)

≤ p–‖g‖p
∞εeδηe–δ(t–ti)

i–∑

j=–∞
e–δα(i–j)

≤ p–‖g‖p
∞eδα/ε

 – e–δα
.

Similarly, one has

i–∑

j=–∞

∫ tj+

tj+–η

e–δ(t–τ )E
∥
∥g

(
τ + τ ′) – g(τ )

∥
∥p dτ ≤ M̃ε,

∫ t

ti

e–δ(t–τ )E
∥∥g

(
τ + τ ′) – g(τ )

∥∥p dτ ≤ M̃ε,
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where M̃, M̃ are some positive constants. Therefore, we get J ≤ N̄ε for N̄ > . Using
Lemma ., we have

J ≤ p–E
[∫ t–η

–∞

∥
∥[

U
(
t + τ ′, τ + τ ′)P

(
τ + τ ′) – U(t, τ )P(τ )

]
g(τ )

∥
∥dτ

]p

+ p–E
[∫ t

t–η

∥∥[
U

(
t + τ ′, τ + τ ′)P

(
τ + τ ′) – U(t, τ )P(τ )

]
g(τ )

∥∥dτ

]p

≤ p–εp
(∫ t–η

–∞
e– δ

 (t–τ ) dτ

)p–(∫ t–η

–∞
e– δ

 (t–τ )E
∥
∥g(τ )

∥
∥p dτ

)

+ p–(M)pηp sup
τ∈R

E
∥∥g(τ )

∥∥p

≤ p–
[(


δ

)p

+ (M)p
]
‖g‖p

∞εp.

Similar to the proof of J, J we have J ≤ N̄ε, J ≤ N̄ε
p for N̄, N̄ > . Hence, G ∈

APT (R, Lp(P,H)).
Step . G ∈ PAP

T (R, Lp(P,H)).
For r > , by Hölder’s inequality, we have


r

∫ r

–r
E
∥∥G(t)

∥∥p dt

≤ p– 
r

∫ r

–r
E
∥
∥∥
∥

∫ t

–∞
U(t, τ )P(τ )g(τ ) dτ

∥
∥∥
∥

p

dt

+ p– 
r

∫ r

–r
E
∥
∥∥
∥

∫ +∞

t
UQ(t, τ )Q(τ )g(τ ) dτ

∥
∥∥
∥

p

dt

= p– 
r

∫ r

–r
E
∥∥
∥∥

∫ +∞


U(t, t – τ )P(t – τ )g(t – τ ) dτ

∥∥
∥∥

p

dt

+ p– 
r

∫ r

–r
E
∥
∥∥
∥

∫ 

–∞
UQ(t, t – τ )Q(t – τ )g(t – τ ) dτ

∥
∥∥
∥

p

dt

≤ p–Mp 
r

∫ r

–r

(∫ +∞


e–δτ dτ

)p– ∫ ∞


e–δτ E

∥∥g(t – τ )
∥∥p dτ dt

+ p–Mp 
r

∫ r

–r

(∫ 

–∞
eδτ dτ

)p– ∫ 

–∞
eδτ E

∥
∥g(t – τ )

∥
∥p dτ dt

= p–Mp
(∫ +∞


e–δτ dτ

)p– ∫ ∞


e–δτ dτ


r

∫ r

–r
E
∥
∥g(t – τ )

∥
∥p dt

+ p–Mp
(∫ 

–∞
eδτ dτ

)p– ∫ 

–∞
eδτ dτ


r

∫ r

–r
E
∥
∥g(t – τ )

∥
∥p dt.

Since g ∈ PAP
T (R, Lp(P,H)), it follows that g(· – τ ) ∈ PAP

T (R, Lp(P,H)) for each s ∈ R by
Remark ., hence


r

∫ r

–r
E
∥∥g(t – τ )

∥∥p dt →  as r → ∞

for all s ∈ R. Using Lebesgue’s dominated convergence theorem, we have G ∈ PAP
T (R,

Lp(P,H)). This completes the proof. �
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Lemma . Assume that (H)-(H) hold. If f ∈ PAPT (R, Lp(P, L
)) and if F is the function

defined by

F(t) :=
∫ t

–∞
U(t, τ )P(τ )f (τ ) dW (τ ) –

∫ +∞

t
UQ(t, τ )Q(τ )f (τ ) dW (τ ) (.)

for each t ∈R, then F ∈ PAPT (R, Lp(P, L
)).

Proof Since f ∈ PAPT (R, Lp(P, L
)), there exist f ∈ APT (R, Lp(P, L

)) and f ∈ PAP
T (R,

Lp(P, L
)), such that f = f + f, then F(t) can be decomposed as

F(t) =
[∫ t

–∞
U(t, τ )P(τ )f(τ ) dW (τ ) –

∫ +∞

t
UQ(t, τ )Q(τ )f(τ ) dW (τ )

]

+
[∫ t

–∞
U(t, τ )P(τ )f(τ ) dW (τ ) –

∫ +∞

t
UQ(t, τ )Q(τ )f(τ ) dW (τ )

]

=: F(t) + F(t).

Next we show that F(t) ∈ APT (R, Lp(P,H)) and F(t) ∈ PAP
T (R, Lp(P,H)). Thus, the veri-

fication procedure is divided into the following three steps.
Step . F ∈ UPC(R, Lp(P,H)).
Let t′, t′′ ∈ (ti, ti+), i ∈ Z, t′′ < t′. By (H), for any ε > , there exists  < ξ < ( ε

f̃
)(p–)/p

such that  < t′ – t′′ < ξ , we have, for p > ,

∥
∥U

(
t′, t′′) – I

∥
∥p ≤ ( pδ

p– )(p–)/ pδ

 ε

f̃
,

∥
∥UQ

(
t′, t′′) – I

∥
∥p ≤ ( pδ

p– )(p–)/ pδ

 ε

f̃
,

where f̃ = p–MpCp‖f‖p
∞. Using Hölder’s inequality and the Ito integral [], we have

E
∥∥F

(
t′) – F

(
t′′)∥∥p

≤ p–E
∥∥
∥∥

∫ t′′

–∞

[
U

(
t′, t′′) – I

]
U

(
t′′, τ

)
P(τ )f(τ ) dW (τ )

∥∥
∥∥

p

+ p–E
∥∥
∥∥

∫ t′

t′′
U

(
t′, τ

)
P(τ )f(τ ) dW (τ )

∥∥
∥∥

p

+ p–E
∥
∥∥
∥

∫ +∞

t′′

[
UQ

(
t′, t′′) – I

]
UQ

(
t′′, τ

)
Q(τ )f(τ ) dW (τ )

∥
∥∥
∥

p

+ p–E
∥
∥∥
∥

∫ t′

t′′
UQ

(
t′, τ

)
Q(τ )f(τ ) dW (τ )

∥
∥∥
∥

p

≤ p–MpCpE
[∫ t′′

–∞
e–δ(t′′–τ )∥∥U

(
t′, t′′) – I

∥∥∥∥f(τ )
∥∥

L


dτ

]p/

+ p–MpCpE
[∫ t′

t′′
e–δ(t′–τ )∥∥f(τ )

∥∥
L


dτ

]p/

+ p–MpCpE
[∫ +∞

t′′
eδ(t′′–τ )∥∥UQ

(
t′, t′′) – I

∥
∥∥∥f(τ )

∥
∥

L


dτ

]p/

+ p–MpCpE
[∫ t′

t′′
eδ(t′–τ )∥∥f(τ )

∥
∥

L


dτ

]p/
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≤ p–MpCp
∥
∥U

(
t′, t′′) – I

∥
∥p

(∫ t′′

–∞
e– p

p– δ(t′′–τ ) dτ

) p–
p

×
(∫ t′′

–∞
e– p

 δ(t′′–τ ) dτ

)
sup
τ∈R

E
∥
∥f(τ )

∥
∥p

L


+ p–MpCp

(∫ t′

t′′
e– p

p– δ(t–τ ) dτ

) p–
p

(∫ t′

t′′
e– p

 δ(t–τ ) dτ

)
sup
τ∈R

E
∥∥f(τ )

∥∥p
L



+ p–MpCp
∥∥UQ

(
t′, t′′) – I

∥∥p
(∫ +∞

t′′
e

p
p– δ(t′′–τ ) dτ

) p–
p

×
(∫ +∞

t′′
e

p
 δ(t′′–τ ) dτ

)
sup
τ∈R

E
∥∥f(τ )

∥∥p
L



+ p–MpCp

(∫ t′

t′′
e

p
p– δ(t–τ ) dτ

) p–
p

(∫ t′

t′′
e

p
 δ(t–τ ) dτ

)
sup
τ∈R

E
∥
∥f(τ )

∥
∥p

L


≤ p–MpCp‖f‖p
∞

( pδ

p– )(p–)/p pδ

 ε

f̃

(∫ t′′

–∞
e– p

p– δ(t′′–τ ) dτ

) p–
p

×
(∫ t′′

–∞
e– p

 δ(t′′–τ ) dτ

)

+ p–MpCp‖f‖p
∞

[(
ε

f̃

) p
(p–)

] (p–)
p

+ p–MpCp‖f‖p
∞

( pδ

p– )(p–)/p pδ

 ε

f̃

(∫ +∞

t′′
e

p
p– δ(t′′–τ ) dτ

) p–
p

×
(∫ +∞

t′′
e

p
 δ(t′′–τ ) dτ

)

+ p–MpCp‖f‖p
∞

[(
ε

f̃

) p
(p–)

] (p–)
p

<
ε


+

ε


+

ε


+

ε


= ε.

For p = . Let ε > , there exists  < ξ < ε

f̃
such that  < t′ – t′′ < ξ , we have

∥∥U
(
t′, t′′) – I

∥∥ ≤ δε

f̃
,

∥∥UQ
(
t′, t′′) – I

∥∥ ≤ δε

f̃
,

where f̃ = M‖f‖∞. Similar to the above discussion, one has

E
∥∥F

(
t′) – F

(
t′′)∥∥

≤ M∥∥U
(
t′, t′′) – I

∥
∥

(∫ t′′

–∞
e–δ(t′′–τ ) dτ

)
sup
τ∈R

E
∥
∥f(τ )

∥
∥

L


+ M
(∫ t′

t′′
e–δ(t–s) ds

)
sup
τ∈R

E
∥
∥f(τ )

∥
∥

L


+ M∥∥UQ
(
t′, t′′) – I

∥∥
(∫ +∞

t′′
eδ(t′′–τ ) dτ

)
sup
τ∈R

E
∥∥f(τ )

∥∥
L
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+ M
(∫ t′

t′′
eδ(t–τ ) dτ

)
sup
τ∈R

E
∥∥f(τ )

∥∥
L



≤ M‖f‖
∞

δε

f̃

(∫ t′′

–∞
e–δ(t′′–τ ) dτ

)
+ Mp‖f‖

∞

(
ε

f̃

)

+ M‖f‖
∞

δε

f̃

(∫ +∞

t′′
eδ(t′′–τ ) dτ

)
+ Mp‖f‖

∞

(
ε

f̃

)

<
ε


+

ε


+

ε


+

ε


= ε.

Consequently, F ∈ UPC(R, Lp(P,H)).
Step . F ∈ APT (R, Lp(P,H)).
Let ti < t ≤ ti+. For ε > , let �ε be a relatively dense set of R formed by ε-periods of F .

For τ ′ ∈ �ε and  < η < min{ε,α/}, we have

E
∥
∥F

(
t + τ ′) – F(t)

∥
∥p

≤ p–E
∥∥
∥∥

∫ t

–∞
U

(
t + τ ′, τ + τ ′)P

(
τ + τ ′)[f

(
τ + τ ′) – f(τ )

]
dW (τ )

∥∥
∥∥

p

+ p–E
∥∥
∥∥

∫ t

–∞

[
U

(
t + τ ′, τ + τ ′)P

(
τ + τ ′) – U(t, τ )P(τ )

]
f(τ ) dW (τ )

∥∥
∥∥

p

+ p–E
∥∥
∥∥

∫ +∞

t
UQ

(
t + τ ′, τ + τ ′)Q

(
τ + τ ′)[f

(
τ + τ ′) – f(τ )

]
dW (τ )

∥∥
∥∥

p

+ p–E
∥∥
∥∥

∫ +∞

t

[
UQ

(
t + τ ′, τ + τ ′)Q

(
τ + τ ′) – UQ(t, τ )Q(τ )

]
f(τ ) dW (τ )

∥∥
∥∥

p

=
∑

k=

J̃k .

Using Hölder’s inequality and the Ito integral, we have, for p > ,

J̃ ≤ p–CpMpE
[∫ t

–∞
e–δ(t–τ )∥∥f

(
τ + τ ′) – f(τ )

∥∥
L


dτ

]p/

≤ p–CpMp
(∫ t

–∞
e– p

p– δ(t–τ ) dτ

) p–
p

×
[ i–∑

j=–∞

∫ tj+–η

tj+η

e– p
 δ(t–τ )E

∥∥f
(
τ + τ ′) – f(τ )

∥∥p
L


dτ

+
i–∑

j=–∞

∫ tj+η

tj

e– p
 δ(t–τ )E

∥
∥f

(
τ + τ ′) – f(τ )

∥
∥p

L


dτ

+
i–∑

j=–∞

∫ tj+

tj+–η

e– p
 δ(t–τ )E

∥
∥f

(
τ + τ ′) – f(τ )

∥
∥p

L


dτ

+
∫ t

ti

e– p
 δ(t–τ )E

∥∥f
(
τ + τ ′) – f(τ )

∥∥p
L


dτ

]

.

Since f ∈ APT (R, Lp(P, L
)), one has

E
∥∥f(t + τ ) – f(t)

∥∥p
L


< ε
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for all t ∈ [tj + η, tj+ – η], t – τ ≥ t – ti + ti – (tj+ – η) ≥ t – ti + α(i –  – j) + η, and j ∈ Z,
j ≤ i. Then

i–∑

j=–∞

∫ tj+–η

tj+η

e– p
 δ(t–τ )E

∥
∥f

(
τ + τ ′) – f(τ )

∥
∥p

L


dτ

≤ ε

i–∑

j=–∞

∫ tj+–η

tj+η

e– p
 δ(t–τ ) dτ

≤ 
δp

i–∑

j=–∞
e– p

 δ(t–tj++η)

≤ ε

δp

i–∑

j=–∞
e– p

 δα(i–j–)

≤ ε

δp( – e–δα)
,

i–∑

j=–∞

∫ tj+η

tj

e– p
 δ(t–τ )E

∥
∥f

(
τ + τ ′) – f(τ )

∥
∥p

L


dτ

≤ p– sup
s∈R

E
∥∥f(τ )

∥∥p
L



i–∑

j=–∞

∫ tj++η

tj

e– p
 δ(t–τ ) dτ

≤ p– sup
s∈R

E
∥∥f(τ )

∥∥p
L


εe

p
 δηe– p

 δ(t–ti)
i–∑

j=–∞
e– p

 δα(i–j)

≤ p– sup
s∈R

E
∥
∥f(s)

∥
∥p

L

εe

p
 δηe– p

 δ(t–ti)
i–∑

j=–∞
e– p

 δα(i–j)

≤ p–‖f‖p
∞eδα/ε

 – e– p
 δα

.

Similarly, one has

i–∑

j=–∞

∫ tj+

tj+–η

e– p
 δ(t–s)E

∥∥f
(
τ + τ ′) – f(τ )

∥∥p
L


ds ≤ M̃ε,

∫ t

ti

e– p
 δ(t–s)E

∥
∥f

(
τ + τ ′) – f(τ )

∥
∥p

L


ds ≤ M̃ε,

where M̃, M̃ are some positive constants. Therefore, we get J̃ ≤ Ñε for Ñ > . For p = ,
we have

J̃ ≤ MpE
∫ t

–∞
e–δ(t–τ )∥∥f

(
τ + τ ′) – f(τ )

∥
∥

L


dτ

≤ M

[ i–∑

j=–∞

∫ tj+–η

tj+η

e–δ(t–τ )E
∥
∥f

(
τ + τ ′) – f(τ )

∥
∥

L


dτ
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+
i–∑

j=–∞

∫ tj+η

tj

e–δ(t–τ )E
∥
∥f

(
τ + τ ′) – f(τ )

∥
∥

L


dτ

+
i–∑

j=–∞

∫ tj+

tj+–η

e–δ(t–τ )E
∥
∥f

(
τ + τ ′) – f(τ )

∥
∥

L


dτ

+
∫ t

ti

e–δ(t–τ )E
∥
∥f

(
τ + τ ′) – f(τ )

∥
∥

L


dτ

]

.

Similar to the above proof, we get J̃ ≤ Ñε for Ñ > .
Using Lemma ., we have, for p > ,

J̃ ≤ p–E
[∫ t–η

–∞

∥∥[
U

(
t + τ ′, τ + τ ′)P

(
τ + τ ′) – U(t, τ )P(τ )

]
f(τ )

∥∥dW (τ )
]p

+ p–E
[∫ t

t–η

∥∥[
U

(
t + τ ′, τ + τ ′)P

(
τ + τ ′) – U(t, τ )P(τ )

]
f(τ )

∥∥dW (τ )
]p

≤ p–Cpε
pE

[∫ t–η

–∞
e–δ(t–τ )∥∥f(τ )

∥∥
L


dτ

]p/

+ p–CpE
[∫ t

t–η

(M)∥∥f(τ )
∥
∥

L


dτ

]p/

≤ p–Cpε
p
(∫ t–η

–∞
e– p

p–
δ
 (t–τ ) dτ

) p–
p

(∫ t–η

–∞
e– δ

 (t–τ )E
∥∥f(τ )

∥∥p
L


dτ

)

+ p–Cp(M)pη
(p–)

p sup
τ∈R

E
∥
∥f(τ )

∥
∥p

L


≤ p–Cp

[(
(p – )

pδ

) p–
p 

pδ
εp– + (M)pε

p–
p

]
‖f‖p

∞ε.

For p = , we have

J̃ ≤ E
[∫ t–η

–∞

∥
∥[

U
(
t + τ ′, τ + τ ′)P

(
τ + τ ′) – U(t, τ )P(τ )

]
f(τ )

∥
∥dW (τ )

]

+ E
[∫ t

t–η

∥∥[
U

(
t + τ ′, τ + τ ′)P

(
τ + τ ′) – U(t, τ )P(τ )

]
f(τ )

∥∥dW (τ )
]

≤ ε
∫ t–η

–∞
e–δ(t–τ )E

∥
∥f(τ )

∥
∥

L


dτ + 
∫ t

t–η

(M)E
∥
∥f(τ )

∥
∥

L


dτ

≤ 
(

ε
∫ t–η

–∞
e–δ(t–τ ) dτ + (M)η

)
sup
τ∈R

E
∥∥f(τ )

∥∥
L



≤ 
[

ε

δ
+ (M)

]
‖f‖

∞ε.

Similar to the proof of J̃, J̃ we have J̃ ≤ Ñε, J̃ ≤ Ñε for Ñ, Ñ > . Hence, F ∈
APT (R, Lp(P,H)).

Step . F ∈ PAP
T (R, Lp(P,H)).
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For r > , by Hölder’s inequality and the Ito integral, we have, for p > ,


r

∫ r

–r
E
∥∥F(t)

∥∥p dt

≤ p– 
r

∫ r

–r
E
∥∥
∥∥

∫ t

–∞
U(t, τ )P(τ )f(τ ) dW (τ )

∥∥
∥∥

p

dt

+ p– 
r

∫ r

–r
E
∥
∥∥
∥

∫ +∞

t
UQ(t, τ )Q(τ )f(τ ) dW (τ )

∥
∥∥
∥

p

dt

= p– 
r

∫ r

–r
E
∥
∥∥
∥

∫ ∞


U(t, t – τ )P(t – τ )f(t – τ ) dW (s)

∥
∥∥
∥

p

dt

+ p– 
r

∫ r

–r
E
∥∥∥
∥

∫ 

–∞
UQ(t, t – τ )Q(t – τ )f(t – τ ) dW (s)

∥∥∥
∥

p

dt

≤ p–Cp


r

∫ r

–r
E
[∫ ∞


e–τ

∥
∥f(t – τ )

∥
∥

L


dτ

]p/

dt

+ p–Cp


r

∫ r

–r
E
[∫ 

–∞
eτ

∥
∥f(t – τ )

∥
∥

L


dτ

]p/

dt

≤ p–MpCp


r

∫ r

–r

(∫ ∞


e– p

p– δτ dτ

) p–
p

∫ ∞


e– p

 δsE
∥
∥f(t – τ )

∥
∥p

L


dτ dt

+ p–MpCp


r

∫ r

–r

(∫ 

–∞
e– p

p– δτ dτ

) p–
p

∫ 

–∞
e– p

 δsE
∥
∥f(t – τ )

∥
∥p

L


dτ dt

= p–MpCp

(∫ ∞


e– p–

p δτ dτ

) p–
p

∫ ∞


e– p

 δs ds


r

∫ r

–r
E
∥
∥f(t – τ )

∥
∥p

L


dt

+ p–MpCp

(∫ 

–∞
e– p–

p δτ dτ

) p–
p

∫ ∞


e– p

 δs ds


r

∫ r

–r
E
∥
∥f(t – τ )

∥
∥p

L


dt.

For p = , we have


r

∫ r

–r
E
∥
∥∥
∥

∫ t

–∞
U(t, τ )f(τ ) dW (τ )

∥
∥∥
∥



dt

+

r

∫ r

–r
E
∥∥
∥∥

∫ t

+∞
UQ(t, τ )f(τ ) dW (τ )

∥∥
∥∥



dt

≤ M 
r

∫ r

–r

∫ ∞


e–τ E

∥∥f(t – τ )
∥∥

L


dτ dt

+ M 
r

∫ r

–r

∫ 

–∞
eτ E

∥∥f(t – τ )
∥∥

L


dτ dt

= M
(∫ ∞


e–δτ dτ

)


r

∫ r

–r
E
∥
∥f(t – τ )

∥
∥p

L


dt

+ M
(∫ 

–∞
eδτ dτ

)


r

∫ r

–r
E
∥
∥f(t – τ )

∥
∥p

L


dt.

Since f ∈ PAP
T (R, Lp(P,H)), it follows that f(· – s) ∈ PAP

T (R, Lp(P,H)) for each s ∈ R by
Remark ., hence


r

∫ r

–r
E
∥∥
∥∥

∫ t

–∞
f(s) dW (s)

∥∥
∥∥

p

dt →  as r → ∞
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for all s ∈ R. Using Lebesgue’s dominated convergence theorem, we have F ∈ PAP
T (R,

Lp(P,H)). This completes the proof. �

Lemma . Assume that (H)-(H) hold. If γi ∈ PAP(Z, Lp(P,H)), i ∈ Z, and if γ̃i is the
function defined by

γ̃i(t) :=
∑

ti<t
U(t, ti)P(ti)γi –

∑

t<ti

UQ(t, ti)Q(ti)γi (.)

for each t ∈R, then γ̃i ∈ PAPT (R, Lp(P,H)).

Proof Since γi ∈ PAP(Z, Lp(P,H)), there exist γ,i ∈ AP(Z, Lp(P,H)) and γ,i ∈ PAP(Z,
Lp(P,H)), such that γi = γ,i + γ,i, then γ̃i(t) can be decomposed as

γ̃i(t) =
[∑

ti<t
U(t, ti)P(ti)γ,i –

∑

t<ti

UQ(t, ti)Q(ti)γ,i

]

+
[∑

ti<t
U(t, ti)P(ti)γ,i –

∑

t<ti

UQ(t, ti)Q(ti)γ,i

]

=: �,i(t) + �,i(t).

Next we show that �,i(t) ∈ APT (R, Lp(P,H)) and �,i(t) ∈ PAP
T (R, Lp(P,H)). Thus, the

verification procedure is divided into the following three steps.
Step . �,i ∈ UPC(R, Lp(P,H)).
Let t′, t′′ ∈ (ti, ti+), i ∈ Z, t′′ < t′. By (H), for any ε > , we have

∥
∥U

(
t′, t′′) – I

∥
∥p ≤ ( – e–δα)pε

γ̃  ,
∥
∥UQ

(
t′, t′′) – I

∥
∥p ≤ ( – e–δα)pε

γ̃  ,

where γ̃  = p–Mp‖γ,i‖p
∞. Using Hölder’s inequality, we have

E
∥∥�,i

(
t′) – �,i

(
t′′)∥∥p

≤ p–E
∥
∥∥
∥
∑

ti<t′′

[
U

(
t′, t′′) – I

]
U

(
t′′, ti

)
P(ti)γ,i

∥
∥∥
∥

p

+ p–E
∥
∥∥∥
∑

t′<ti

[
UQ

(
t′, t′′) – I

]
UQ

(
t′′, ti

)
Q(ti)γ,i

∥
∥∥∥

p

≤ p–Mp∥∥U
(
t′, t′′) – I

∥
∥p

(∑

ti<t′′
e–δ(t′′–ti)

)p–(∑

ti<t′′
e–δ(t′′–ti)E‖γ,i‖p

)

+ p–Mp∥∥UQ
(
t′, t′′) – I

∥∥p
(∑

t′<ti

eδ(t′′–ti)
)p–(∑

t′<ti

eδ(t′′–ti)E‖γ,i‖p
)

≤ p–Mp∥∥U
(
t′, t′′) – I

∥∥p
(∑

ti<t′′
e–δ(t′′–ti)

)p

sup
i∈Z

E‖γ,i‖p

+ p–Mp∥∥UQ
(
t′, t′′) – I

∥
∥p

(∑

t′′<ti

eδ(t′′–ti)
)p

sup
i∈Z

E‖γ,i‖p
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≤ p–Mp ( – e–δγ )pε

γ̃ 

(∑

ti<t′′
e–δ(t′′–ti)

)p

‖γ,i‖p
∞

+ p–Mp ( – e–δγ )pε

γ̃ 

(∑

t′<ti

eδ(t′′–ti)
)p

‖γ,i‖p
∞

<
ε


+

ε


= ε.

Consequently, �,i ∈ UPC(R, Lp(P,H)).
Step . �,i ∈ APT (R, Lp(P,H)).
For ε > , �ε be a relatively dense set of R formed by ε-periods of �,i. For τ ′ ∈ �ε and

 < η < min{ε,α/}, we have

E
∥
∥�,i

(
t + τ ′) – �,i(t)

∥
∥p

≤ p–E
∥∥∥
∥

∑

ti<t+τ ′
U

(
t + τ ′, ti

)
P(ti)γ,i –

∑

ti<t
U(t, ti)P(ti)γ,i

∥∥∥
∥

p

+ p–E
∥
∥∥
∥

∑

t+τ ′<ti

UQ
(
t + τ ′, ti

)
Q(ti)γ,i –

∑

t<ti

UQ(t, ti)Q(ti)γ,i

∥
∥∥
∥

p

≤ p–E
∥
∥∥
∥
∑

ti<t
U

(
t + τ ′, ti+q

)
P(ti+q)γ,i+q –

∑

ti<t
U

(
t + τ ′, ti+q

)
P(ti+q)γ,i

∥
∥∥
∥

p

+ p–E
∥∥
∥∥
∑

ti<t
U

(
t + τ ′, ti+q

)
P(ti+q)γ,i –

∑

ti<t
U(t, ti)P(ti)γ,i

∥∥
∥∥

p

+ p–E
∥
∥∥
∥
∑

t<ti

UQ
(
t + τ ′, ti+q

)
Q(ti+q)γ,i+q –

∑

t<ti

UQ
(
t + τ ′, ti+q

)
Q(ti+q)γ,i

∥
∥∥
∥

p

+ p–E
∥∥∥
∥
∑

ti<t
U

(
t + τ ′, ti+q

)
P(ti+q)γ,i –

∑

ti<t
U(t, ti)P(ti)γ,i

∥∥∥
∥

p

=
∑

k=

Ĵk .

For any ε > , by Lemma ., there exist relative dense sets of real numbers �ε and integers
Qε , for every τ ′ ∈ �ε , there exists at least one number q ∈ Qε such that ti < t ≤ ti+, τ ′ ∈ �ε ,
q ∈ Qε , |t – ti| > ε, |t – ti+| > ε, j ∈ Z, one has t +τ ′ > ti +ε +τ ′ > ti+q and ti+q+ > ti+ +τ ′ –ε >
t + τ ′, that is ti+q < t + τ ′ < ti+q+, such that |tq – τ | < ε, i ∈ Z and E‖γ,i+q – γ,i‖p < ε, q ∈ Qε ,
i ∈ Z. Then

Ĵ ≤ p–E
[∑

ti<t

∥
∥U

(
t + τ ′, ti+q

)
P(ti+q)

∥
∥‖γ,i+q – γ,i‖

]p

≤ p–MpE
[(∑

ti<t
e–δ(t–ti)

)p–(∑

ti<t
e–δ(t–ti)‖γ,i+q – γ,i‖p

)]

≤ p–Mp
(∑

ti<t
e–δ(t–ti)

)p

E‖γ,i+q – γ,i‖p

≤ p–Mpε

( – e–δγ )p
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and

Ĵ ≤ p–E
[∑

ti<t

∥
∥U

(
t + τ ′, ti+q

)
P(ti+q) – U(t, ti)P(ti)

∥
∥‖γ,i‖

]p

≤ p–εpE
[(∑

ti<t
e– δ

 (t–ti)
)p–(∑

ti<t
e– δ

 (t–ti)‖γ,i‖p
)]

≤ p–εp
(∑

ti<t
e– δ

 (t–ti)
)p

sup
i∈Z

E‖γ,i‖p

≤ p–εp

( – e– δ
 γ )p

sup
i∈Z

E‖γ,i‖p.

Similar to the proof of Ĵ, Ĵ we have Ĵ ≤ N̂ε, Ĵ ≤ N̂ε for N̂, N̂ > . Hence, �,i ∈
APT (R, Lp(P,H)).

Step . �,i ∈ PAP
T (R, Lp(P,H)).

For r > , we have


r

∫ r

–r
E
∥∥�,i(t)

∥∥p dt ≤ p– 
r

∫ r

–r
E
∥
∥∥
∥
∑

ti<t
U(t, ti)P(ti)γ,i

∥
∥∥
∥

p

dt

+ p– 
r

∫ r

–r
E
∥∥
∥∥
∑

t<ti

UQ(t, ti)Q(ti)γ,i

∥∥
∥∥

p

dt.

For a given i ∈ Z, define the function v(t) by v(t) = U(t, ti)P(ti)γ,i, ti < t ≤ ti+, then

lim
t→∞ E

∥
∥v(t)

∥
∥p = lim

t→∞ E
∥
∥U(t, ti)P(ti)γ,i

∥
∥p ≤ lim

t→∞ Mpe–pδ(t–ti) sup
i∈Z

E‖γ,i‖p = .

Thus v ∈ PC
T (R, Lp(P,H)) ⊂ PAP

T (R, Lp(P,H)). Define vj : R → Lp(P,H) by

vj(t) = U(t, ti–j)P(ti–j)γ,i–j, ti < t ≤ ti+, j ∈ N.

So vj ∈ PAP
T (R, Lp(P,H)). Moreover,

E
∥
∥vj(t)

∥
∥p = E

∥
∥U(t, ti–j)P(ti–j)γ,i–j

∥
∥p

≤ Mpe–pδ(t–ti–j) sup
i∈Z

E‖γ,i‖p

≤ Mpe–pδ(t–ti)e–pδαj sup
i∈Z

E‖γ,i‖p.

Therefore, the series
∑∞

j= vj is uniformly convergent on R. By Lemma ., one has

∑

ti<t
U(t, ti)P(ti)γ,i =

∞∑

j=

vj(t) ∈ PAP
T
(
R, Lp(P,H)

)
,

that is,

p– 
r

∫ r

–r
E
∥∥∥
∥
∑

ti<t
U(t, ti)P(ti)γ,i

∥∥∥
∥

p

dt →  as r → ∞.
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Similarly, we have

p– 
r

∫ r

–r
E
∥∥
∥∥
∑

ti<t
UQ(t, ti)Q(ti)γ,i

∥∥
∥∥

p

dt →  as r → ∞.

Hence, �,i ∈ PAP
T (R, Lp(P,H)) and, we get γ̃i ∈ PAPT (R, Lp(P,H)). This completes the

proof. �

Theorem . Assume that (H)-(H) are satisfied. Then system (.)-(.) has at least one
p-mean piecewise pseudo almost periodic mild solution on R.

Proof Consider the operator  : PAPT (R, Lp(P,H))∩UPC(R, Lp(P,H)) → PC(R, Lp(P,H))
defined by

(x)(t) =
[∫ t

–∞
U(t, τ )P(τ )g

(
τ , x(τ )

)
dτ +

∫ t

–∞
U(t, τ )P(τ )f

(
τ , x(τ )

)
dW (τ )

+
∑

ti<t
U(t, ti)P(ti)Ii(xi)

]
+

[
–

∫ +∞

t
UQ(t, τ )Q(τ )g

(
τ , x(τ )

)
dτ

–
∫ +∞

t
UQ(t, τ )Q(τ )f

(
τ , x(τ )

)
dW (τ ) –

∑

t<ti

UQ(t, ti)Q(ti)Ii(xi)
]

=: (x)(t) + (x)(t), t ∈R.

We next show that  has a fixed point in PAPT (R, Lp(P,H))∩UPC(R, Lp(P,H)) and divide
the proof into several steps.

Step . For every x ∈ PAPT (R, Lp(P,H)) ∩ UPC(R, Lp(P,H)), x ∈ PAPT (R, Lp(P,H)) ∩
UPC(R, Lp(P,H)).

Let x(·) ∈ PAPT (R, Lp(P,H)) ∩ UPC(R, Lp(P,H)), by (H) and Lemmas ., ., we de-
duce that g(·, x(·)), f (·, x(·)) ∈ PAPT (R, Lp(P,H)) and Ii(x(ti)) ∈ PAP(Z, Lp(P,H)) Similarly
as the proof of Lemmas .-., one has x ∈ PAPT (R, Lp(P,H)) ∩ UPC(R, Lp(P,H)).

Step .  maps bounded sets into bounded sets in PAPT (R, Lp(P,H))∩UPC(R, Lp(P,H)).
Indeed, let r∗ >  and x ∈ Br∗ = {x ∈ PAPT (R, Lp(P,H)) ∩ UPC(R, Lp(P,H)) : E‖x‖p ≤ r∗}.

It is enough to show that there exists a positive constant L̃ such that for each x ∈ Br∗ one
has E‖x‖p ≤ L̃. Let x ∈ Br∗ , and t ∈ R. By (H), Hölder’s inequality, and the Ito integral,
we have, for p > ,

E
∥∥(x)(t)

∥∥p

≤ p–E
∥
∥∥
∥

∫ t

–∞
U(t, τ )P(τ )g

(
τ , x(τ )

)
dτ

∥
∥∥
∥

p

+ p–E
∥
∥∥
∥

∫ t

–∞
U(t, τ )P(τ )f

(
τ , x(τ )

)
dW (τ )

∥
∥∥
∥

p

+ p–E
∥∥
∥∥
∑

ti<t
U(t, ti)P(ti)Ii

(
x(ti)

)
∥∥
∥∥

p

≤ p–Mp
(∫ t

–∞
e–δ(t–τ ) dτ

)p–(∫ t

–∞
e–δ(t–τ )E

∥
∥g

(
τ , x(τ )

)∥∥p dτ

)
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+ p–CpMpE
(∫ t

–∞
e–δ(t–τ )∥∥f

(
τ , x(τ )

)∥∥
L


dτ

)p/

+ p–MpE
[(∑

ti<t
e–δ(t–ti)

)p–(∑

ti<t
e–δ(t–ti)

∥
∥Ii

(
x(ti)

)∥∥p
)]

≤ p–Mp 
δp–

(∫ t

–∞
e–δ(t–τ )�

(
E
∥
∥x(τ )

∥
∥p)dτ

)

+ p–Mp
(∫ t

–∞
e– p

p– δ(t–τ ) dτ

) p–
p

(∫ t

–∞
e– p

 δ(t–τ )�
(
E
∥
∥x(τ )

∥
∥p)dτ

)

+ p–Mp 
( – e–δα)p–

(∑

ti<t
e–δ(t–ti)�̃i

(
E
∥∥x(ti)

∥∥p)
)

≤ p–Mp 
δp �

(
r∗) + p–Mp

(
p – 

pδ

) p–
p 

pδ
�

(
r∗)

+ p–Mp 
( – e–δα)p sup

i∈Z
�̃i

(
r∗) := L.

For p = , we have

E
∥
∥(x)(t)

∥
∥ ≤ M 

δ �
(
r∗) + M 

δ
�

(
r∗)

+ M 
( – e–δα) sup

i∈Z
�̃i

(
r∗) := L.

Take L = max{L,L}. Then, for each x ∈ Br∗ , we have E‖x‖p ≤ L. Similarly, for each
x ∈ Br∗ , we have E‖x‖p ≤L. Hence, for each x ∈ Br∗ , we get E‖x‖p ≤ L = L̃.

Step .  : PAPT (R, Lp(P,H)) ∩ UPC(R, Lp(P,H)) → PAPT (R, Lp(P,H)) ∩ UPC(R, Lp(P,
H)) is continuous.

Let {x(n)} ⊆ Br∗ with x(n) → x (n → ∞) in PAPT (R, Lp(P,H)) ∩ UPC(R, Lp(P,H)), then
there exists a bounded subset K ⊆ Lp(P,K) such that R(x) ⊆ K , R(xn) ⊆ K , n ∈ N. By the
assumption (H), for any ε > , there exists ξ >  such that x, y ∈ K and E‖x – y‖p < ξ

implies that

E
∥
∥g

(
τ , x(τ )

)
– g

(
τ , y(τ )

)∥∥p < ε for all t ∈R,

E
∥∥f

(
τ , x(τ )

)
– f

(
τ , y(τ )

)∥∥p
L


< ε for all t ∈R,

and

E
∥∥Ii(x) – Ii(y)

∥∥p < ε for all i ∈ Z.

For the above ξ there exists n such that E‖x(n)(t) – x(t)‖p < ε for n > n and t ∈ R, then,
for n > n, we have

E
∥∥g

(
τ , x(n)(τ )

)
– g

(
τ , x(τ )

)∥∥p < ε for all t ∈R,

E
∥
∥f

(
τ , x(n)(τ )

)
– f

(
τ , x(τ )

)∥∥p
L


< ε for all t ∈ R,
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and

E
∥∥Ii

(
x(n)) – Ii(x)

∥∥p < ε for all i ∈ Z.

Then, by Hölder’s inequality, we have, for p > ,

E
∥∥(

x(n))(t) – (x)(t)
∥∥p

H

≤ p–E
∥
∥∥
∥

∫ t

–∞
U(t, τ )P(τ )

[
g
(
τ , x(n)(τ )

)
– g

(
τ , x(τ )

)]
dτ

∥
∥∥
∥

p

+ p–E
∥
∥∥
∥

∫ t

–∞
U(t, τ )P(τ )

[
f
(
τ , x(n)(τ )

)
– f

(
τ , x(τ )

)]
dW (τ )

∥
∥∥
∥

p

+ p–E
∥∥
∥∥
∑

ti<t
U(t, ti)P(ti)

[
Ii
(
x(n)(ti)

)
– Ii

(
x(ti)

)]
∥∥
∥∥

p

≤ p–Mp
(∫ t

–∞
e–δ(t–τ ) dτ

)p–(∫ t

–∞
e–δ(t–τ )E

∥
∥g

(
τ , x(n)(τ )

)
– g

(
τ , x(τ )

)∥∥p dτ

)

+ p–CpMp
(∫ t

–∞
e–δ(t–τ )E

∥∥f
(
τ , x(n)(τ )

)
– f

(
τ , x(τ )

)∥∥
L


dτ

)p/

+ p–MpE
[(∑

ti<t
e–δ(t–ti)

)p–(∑

ti<t
e–δ(t–ti)

∥
∥Ii

(
x(n)(ti)

)
– Ii

(
x(ti)

)∥∥p
)]

≤ p–Mp
(∫ t

–∞
e–δ(t–τ )

)p

ε

+ p–CpMp
(∫ t

–∞
e– p

p– δ(t–τ ) dτ

) p–
p

(∫ t

–∞
e– p

 δ(t–τ ) dτ

)
ε

+ p–Mp 
( – e–δα)p–

(∑

ti<t
e–δ(t–ti)

)
ε

≤ p–Mp
[


δp + Cp

(
p – 

pδ

) p–
 

pδ
+


( – e–δα)p

]
ε.

For p = , we have

E
∥∥(

x(n))(t) – (x)(t)
∥∥ ≤ M

[

δ +


δ

+


( – e–δα)

]
ε.

Thus  is continuous. Similarly, we can show that  is continuous and hence  is con-
tinuous.

Step .  maps bounded sets into equicontinuous sets of PAPT (R, Lp(P,H)) ∩ UPC(R,
Lp(P,H)).

Let τ, τ ∈ (ti, ti+), i ∈ Z, τ < τ, and x ∈ Br∗ . Then, by (H)-(H), Hölder’s inequality,
and the Ito integral, we have, for p > ,

E
∥
∥(x)(τ) – (x)(τ)

∥
∥p

≤ p–E
∥∥
∥∥

∫ τ

–∞

[
U(τ, τ) – I

]
U(τ, τ )P(τ )g

(
τ , x(τ )

)
dτ

∥∥
∥∥

p
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+ p–E
∥∥
∥∥

∫ τ

τ

U(τ, τ )P(τ )g
(
τ , x(τ )

)
dτ

∥∥
∥∥

p

+ p–E
∥∥∥
∥

∫ τ

–∞

[
U(τ, τ) – I

]
U(τ, τ )P(τ )f

(
τ , x(τ )

)
dW (τ )

∥∥∥
∥

p

+ p–E
∥∥
∥∥

∫ τ

τ

U(τ, τ )P(τ )f
(
τ , x(τ )

)
dW (τ )

∥∥
∥∥

p

+ p–E
∥∥
∥∥
∑

ti<τ

[
U(τ, τ) – I

]
U(τ, ti)P(ti)Ii

(
x(ti)

)
∥∥
∥∥

p

≤ p–Mp∥∥U(τ, τ) – I
∥
∥p

(∫ τ

–∞
e–δ(τ–τ ) dτ

)p–

×
(∫ τ

–∞
e–δ(τ–τ )E

∥
∥g

(
τ , x(τ )

)∥∥p dτ

)

+ p–Mp
(∫ τ

τ

e–δ(τ–τ ) dτ

)p–(∫ τ

τ

e–δ(τ–τ )E
∥
∥g

(
τ , x(τ )

)∥∥p dτ

)

+ p–MpCpE
[∫ τ

–∞
e–δ(τ–τ )∥∥U(τ, τ) – I

∥
∥∥∥f

(
τ , x(τ )

)∥∥
L


dτ

]p/

+ p–MpCpE
[∫ τ

τ

e–δ(τ–τ )∥∥f
(
τ , x(τ )

)∥∥
L


dτ

]p/

+ p–Mp∥∥U(τ, τ) – I
∥∥p

(∑

ti<τ

e–δ(τ–ti)
)p–

×
(∑

ti<τ

e–δ(τ–ti)E
∥
∥Ii

(
x(ti)

)∥∥p
)

≤ p–Mp∥∥U(τ, τ) – I
∥
∥p

(∫ τ

–∞
e–δ(τ–τ ) dτ

)p–

×
(∫ τ

–∞
e–δ(τ–τ )�

(
E
∥∥x(τ )

∥∥p)dτ

)

+ p–Mp
(∫ τ

τ

e–δ(τ–τ ) dτ

)p–(∫ τ

τ

e–δ(τ–τ )�
(
E
∥∥x(τ )

∥∥p)dτ

)

+ p–MpCp
∥
∥U(τ, τ) – I

∥
∥p

(∫ τ

–∞
e– p

p– δ(τ–τ ) dτ

) p–
p

×
(∫ τ

–∞
e– p

 δ(τ–τ )�
(
E
∥∥x(τ )

∥∥p)dτ

)

+ p–MpCp

(∫ τ

τ

e– p
p– δ(τ–s) ds

) p–
p

(∫ τ

τ

e– p
 δ(τ–τ )�

(
E
∥∥x(τ )

∥∥p)dτ

)

+ p–Mp∥∥U(τ, τ) – I
∥
∥p

(∑

ti<τ

e–δ(τ–ti)
)p–

×
(∑

ti<τ

e–δ(τ–ti)�̃i
(
E
∥∥x(ti)

∥∥p)
)

≤ p–Mp∥∥U(τ, τ) – I
∥
∥p 

δp �
(
r∗)
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+ p–Mp
(∫ τ

τ

e–δ(τ–τ ) dτ

)p

�
(
r∗)

+ p–MpCp
∥
∥U(τ, τ) – I

∥
∥p

(
p – 

pδ

) p–
p 

pδ
�

(
r∗)

+ p–MpCp

(∫ τ

τ

e– p
p– δ(τ–τ ) dτ

) p–
p

(∫ τ

τ

e– p
 δ(τ–τ ) dτ

)
�

(
r∗)

+ p–Mp∥∥U(τ, τ) – I
∥
∥p 

( – e–δα)p sup
i∈Z

�̃i
(
r∗).

For p = , we have

E
∥∥(x)(τ) – (x)(τ)

∥∥

≤ M∥∥U(τ, τ) – I
∥∥ 

δ �
(
r∗) + M

(∫ τ

τ

e–δ(τ–τ ) dτ

)

�
(
r∗)

+ M∥∥U(τ, τ) – I
∥∥ 

δ
�

(
r∗) + M

(∫ τ

τ

e–δ(τ–τ ) dτ

)
�

(
r∗)

+ M∥∥U(τ, τ) – I
∥∥ 

( – e–δα) sup
i∈Z

�̃i
(
r∗).

The right-hand side of the above inequality is independent of x ∈ Br∗ and tends to zero as
τ → τ, since the compactness of U(t, τ ) for t – τ >  implies imply the continuity in the
uniform operator topology. Thus,  maps Br∗ into an equicontinuous family of functions.
Similarly, we can show that  maps Br∗ into an equicontinuous family of functions and
hence  maps Br∗ into an equicontinuous family of functions.

Step . �(t) = {(x)(t) : x ∈ Br∗} is relatively compact in Lp(P,H) for each t ∈R.
For each t ∈R, and let ε be a real number satisfying  < ε < . For x ∈ Br∗ , we define

(
ε

 x
)
(t) = U(t, t – ε)

[∫ t–ε

–∞
U(t – ε, τ )P(τ )g

(
τ , x(τ )

)
dτ

+
∫ t–ε

–∞
U(t – ε, τ )P(τ )f

(
τ , x(τ )

)
dW (τ )

+
∑

ti<t–ε

U(t – ε, ti)P(ti)Ii
(
x(ti)

)
]

.

Since U(t, τ ) (t – τ > ) is compact, then the set �ε
(t) = {(ε

 x)(t) : x ∈ Br∗} is relatively
compact in Lp(P,H) for each t ∈R. Moreover, for every x ∈ Br∗ , we have for p > ,

E
∥∥(x)(t) –

(
ε

 x
)
(t)

∥∥p

≤ p–E
∥
∥∥∥

∫ t

t–ε

U(t, τ )P(τ )g
(
τ , x(τ )

)
dτ

∥
∥∥∥

p

+ p–E
∥
∥∥
∥

∫ t

t–ε

U(t, τ )P(τ )f
(
τ , x(τ )

)
dW (τ )

∥
∥∥
∥

p

+ p–E
∥∥∥
∥

∑

t–ε<ti<t
U(t, ti)P(ti)Ii

(
x(ti)

)
∥∥∥
∥

p
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≤ p–Mp
(∫ t

t–ε

e–δ(t–τ ) dτ

)p–(∫ t

t–ε

e–δ(t–τ )E
∥∥g

(
τ , x(τ )

)∥∥p dτ

)

+ p–CpMpE
(∫ t

t–ε

e–δ(t–τ )∥∥f
(
τ , x(τ )

)∥∥
L


dτ

)p/

+ p–MpE
[( ∑

t–ε<ti<t
e–δ(t–ti)

)p–( ∑

t–ε<ti<t
e–δ(t–ti)

∥
∥Ii

(
x(ti)

)∥∥p
)]

≤ p–Mp
(∫ t

t–ε

e–δ(t–τ ) dτ

)p–(∫ t

t–ε

e–δ(t–τ )�
(
E
∥
∥x(τ )

∥
∥p)ds

)

+ p–CpMp
(∫ t

t–ε

e– p
p– δ(t–τ ) dτ

) p–
p

(∫ t

t–ε

e– p
 δ(t–τ )�

(
E
∥∥x(τ )

∥∥p)dτ

)

+ p–Mp
( ∑

t–ε<ti<t
e–δ(t–ti)

)p–( ∑

t–ε<ti<t
e–δ(t–ti)�̃i

(
E
∥
∥xi(ti)

∥
∥p)

)

≤ p–Mp
(∫ t

t–ε

e–δ(t–τ ) dτ

)p

�
(
r∗)

+ p–
(∫ t

t–ε

e– p
p– δ(t–τ ) dτ

) p–
p

(∫ t

t–ε

e– p
 δ(t–τ ) dτ

)
�

(
r∗)

+ p–Mp
( ∑

t–ε<ti<t
e–δ(t–ti)

)p

sup
i∈Z

�̃i
(
r∗).

For p = , we have

E
∥
∥(x)(t) –

(
ε

 x
)
(t)

∥
∥

≤ M
(∫ t

t–ε

e–δ(t–τ ) dτ

)

�
(
r∗)

+ M
(∫ t

t–ε

e–δ(t–τ ) dτ

)
�

(
r∗)

+ M
( ∑

t–ε<ti<t
e–δ(t–ti)

)

sup
i∈Z

�̃i
(
r∗).

Therefore, letting ε → , it follows that there are relatively compact sets �ε
(t) arbitrarily

close to �(t) = {(x)(t) : x ∈ Br∗} and hence �(t) is also relatively compact in Lp(P,H)
for each t ∈ R. Similarly, we can show that �(t) = {(x)(t) : x ∈ Br∗} is also relatively
compact in Lp(P,H) for each t ∈ R. Hence �(t) is relatively compact in Lp(P,H) for each
t ∈ R. Since {x : x ∈ Br∗} ⊂ PC

h (R, Lp(P,H)), then {x : x ∈ Br∗} is a relatively compact
set by Lemma ., then  is a compact operator.

Step . We now show that there exists an open set V ⊆ PAPT (R, Lp(P,H)) ∩ UPC(R,
Lp(P,H)) with x /∈ x for λ ∈ (, ) and x ∈ ∂V .

Let λ ∈ (, ) and let x ∈ Lp(P,H) be a possible solution of x = λ(x) for some  < λ < .
Thus, for each t ∈R,

x(t) = λ(x)(t)

=
[
λ

∫ t

–∞
U(t, τ )P(τ )g

(
τ , x(τ )

)
dτ + λ

∫ t

–∞
U(t, τ )P(τ )f

(
τ , x(τ )

)
dW (τ )
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+ λ
∑

ti<t
U(t, ti)P(ti)Ii

(
x(ti)

)]
+

[
–λ

∫ +∞

t
UQ(t, τ )Q(τ )g

(
τ , x(τ )

)
dτ

– λ

∫ +∞

t
UQ(t, τ )Q(τ )f

(
τ , x(τ )

)
dW (τ ) – λ

∑

t<ti

UQ(t, ti)Q(ti)Ii
(
x(ti)

)
]

.

Then, by (H), Hölder’s inequality, and the Ito integral, we have, for p > ,

E
∥
∥x(t)

∥
∥p ≤ p–Mp 

δp �
(

sup
s∈R

E‖x‖p
)

+ p–CpMp
(

p – 
pδ

) p–
p 

pδ
�

(
sup
s∈R

E‖x‖p
)

+ p–Mp 
( – e–δα)p �̃i

(
E
∥
∥x(ti)

∥
∥p).

For p = , we have

E
∥
∥x(t)

∥
∥ ≤ M 

δ �
(

sup
s∈R

E‖x‖
)

+ M 
δ

�
(

sup
s∈R

E‖x‖
)

+ M 
( – e–δα) �̃i

(
E
∥∥x(ti)

∥∥).

Taking the supremum over t, we have, for p > ,

sup
t∈R

E
∥∥x(t)

∥∥p ≤ p–Mp 
δp �

(
sup
s∈R

E
∥∥x(s)

∥∥p
)

+ p–CpMp
(

p – 
pδ

) p–
p 

pδ
�

(
sup
s∈R

E
∥∥x(s)

∥∥p
)

+ p–Mp 
( – e–δα)p �̃i

(
sup
s∈R

E
∥
∥x(s)

∥
∥p

)
.

For p = , we have

sup
t∈R

E
∥
∥x(t)

∥
∥ ≤ M 

δ �
(

sup
s∈R

E
∥
∥x(s)

∥
∥

)

+ M 
δ

�
(

sup
s∈R

E
∥∥x(s)

∥∥
)

+ M 
( – e–δα) �̃i

(
sup
s∈R

E
∥∥x(s)

∥∥
)

.

Therefore, we have, for p > ,

‖x‖p
∞

N�(‖x‖p
∞) + N supi∈Z �̃i(‖x‖p

∞)
≤ ,

where N = p–Mp[ 
δp + Cp( p–

pδ
)

p–
p 

pδ
], N = p–Mp 

(–e–δα )p . For the case of p = ,
take N = M[ 

δ + 
δ

], N = M 
(–e–δα ) . Then, by (H), there exists M∗ such that
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‖x‖p
∞ �= M∗. Set

V =
{

x ∈ PAPT
(
R, Lp(P,H)

) ∩ UPC
(
R, Lp(P,H)

)
: ‖x‖p

∞ < M∗}.

As a consequence of Steps -, it suffices to show that  : V → PAPT (R, Lp(P,H)) ∩
UPC(R, Lp(P,H)) is a compact map. From the choice of V , there is no x ∈ ∂V such that
x ∈ λx for λ ∈ (, ). By Lemma ., we deduce that  has a fixed point x ∈ V , such that
x = x, that is,

x(t) =
∫ t

–∞
U(t, τ )P(τ )g

(
τ , x(τ )

)
dτ +

∫ t

–∞
U(t, τ )P(τ )f

(
τ , x(τ )

)
dW (τ )

+
∑

ti<t
U(t, ti)P(ti)Ii(xi) –

∫ +∞

t
UQ(t, τ )Q(τ )g

(
τ , x(τ )

)
dτ

–
∫ +∞

t
UQ(t, τ )Q(τ )f

(
τ , x(τ )

)
dW (τ ) –

∑

t<ti

UQ(t, ti)Q(ti)Ii(xi), t ∈R.

Finally, to prove that x satisfies (.) for all t ≥ s, all s ∈R. For this purpose, we let

x(s) =
∫ s

–∞
U(s, τ )P(τ )g

(
τ , x(τ )

)
dτ –

∫ +∞

s
UQ(s, τ )Q(τ )h

(
τ , x(τ )

)
dτ

+
∫ s

–∞
U(s, τ )P(τ )f

(
τ , x(τ )

)
dW (τ ) –

∫ +∞

s
UQ(s, τ )Q(τ )f

(
τ , x(τ )

)
dW (τ )

+
∑

ti<s
U(s, ti)P(ti)Ii

(
x(ti)

)
–

∑

s<ti

UQ(s, ti)Q(ti)Ii
(
x(ti)

)
, s ∈R. (.)

Multiply both sides of (.) by U(t, s) for all t ≥ s, then

U(t, s)x(s) =
∫ s

–∞
U(t, τ )P(τ )g

(
τ , x(τ )

)
dτ –

∫ +∞

s
UQ(t, τ )Q(τ )g

(
τ , x(τ )

)
dτ

+
∫ s

–∞
U(t, τ )P(τ )f

(
τ , x(τ )

)
dW (τ )

–
∫ +∞

s
UQ(t, τ )Q(τ )f

(
τ , x(τ )

)
dW (τ )

+
∑

ti<s
U(t, ti)P(ti)Ii

(
x(ti)

)
–

∑

s<ti

UQ(t, ti)Q(ti)Ii
(
x(ti)

)

=
∫ t

–∞
U(t, τ )P(τ )g

(
τ , x(τ )

)
dτ –

∫ t

s
U(t, τ )P(τ )g

(
τ , x(τ )

)
dτ

–
∫ +∞

t
UQ(t, τ )Q(τ )g

(
τ , x(τ )

)
dτ +

∫ t

s
UQ(t, τ )Q(τ )g

(
τ , x(τ )

)
dτ

+
∫ t

–∞
U(t, τ )P(τ )f

(
τ , x(τ )

)
dW (τ ) –

∫ t

s
U(t, τ )P(τ )f

(
τ , x(τ )

)
dW (τ )

–
∫ +∞

t
UQ(t, τ )Q(τ )f

(
τ , x(τ )

)
dW (τ )

+
∫ t

s
UQ(t, τ )Q(τ )f

(
τ , x(τ )

)
dW (τ )
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+
∑

ti<t
U(t, ti)P(ti)Ii

(
x(ti)

)
–

∑

s<ti<t
U(t, ti)P(ti)Ii

(
x(ti)

)

–
∑

t<ti

UQ(t, ti)Q(ti)Ii
(
x(ti)

)
+

∑

s<t<ti

UQ(t, ti)Q(ti)Ii
(
x(ti)

)

= x(t) –
∫ t

s
U(t, τ )g

(
τ , x(τ )

)
dτ –

∫ t

s
U(t, τ )f

(
τ , x(τ )

)
dW (τ )

–
∑

s<ti<t
U(t, ti)Ii

(
x(ti)

)
.

Hence x is a piecewise pseudo almost periodic mild solution to the system (.)-(.). The
proof is complete. �

4 Exponential stability
In this section, we present the exponential stability of a piecewise pseudo almost periodic
solution of (.)-(.). To do this, we also need the following assumptions:

(B) There exist constants  < β < δ, l >  and a continuous function m : R → (,∞)
with m(t) ≤ le–βt , l > , such that

E
∥
∥g(t, x)

∥
∥p + E

∥
∥f (t, x)

∥
∥p

L

≤ l‖x‖p + m(t), t ∈ R, x ∈ Lp(P,K).

(B) There exists a constant ci > , i ∈ Z, such that

E
∥
∥Ii(x)

∥
∥p ≤ ciE‖x‖p, x ∈ Lp(P,K).

Theorem . Assume that assumptions of Theorem . hold and, in addition, hypotheses
(B), (B) are satisfied. Then the piecewise pseudo almost periodic mild solution of (.)-
(.) is exponentially stable, provided that

p–Mp
[(


δp–(δ – β)

+ Cp

(
p – 

pδ

) p–
p 

pδ – β

)
l

+


( – e–δα)p–( – e–(δ–β)α)
sup
i∈Z

ci

]
< 

for p > , and

Mp
[(


δ(δ – β)

+


δ – β

)
l +


( – e–δα)( – e–(δ–β)α)

sup
i∈Z

ci

]
< 

for p = .

Proof Let x(·) be a fixed point of  in PAPT (R, Lp(P,H)) ∩ UPC(R, Lp(P,H)). By Theo-
rem ., any fixed point of  is a mild solution of the system (.)-(.). We now can choose
a positive constant β such that  < β < δ, and

eβtE
∥∥x(t)

∥∥p ≤ p–eβtE
∥
∥∥
∥

∫ t

–∞
U(t, τ )P(τ )g

(
τ , x(τ )

)
dτ

∥
∥∥
∥

p

+ p–eβtE
∥∥
∥∥

∫ +∞

t
UQ(t, τ )Q(τ )g

(
τ , x(τ )

)
dτ

∥∥
∥∥

p
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+ p–eβtE
∥∥
∥∥

∫ t

–∞
U(t, τ )P(τ )f

(
τ , x(τ )

)
dW (τ )

∥∥
∥∥

p

+ p–eβtE
∥∥
∥∥

∫ +∞

t
UQ(t, τ )Q(τ )f

(
τ , x(τ )

)
dW (τ )

∥∥
∥∥

p

+ p–eβtE
∥
∥∥
∥
∑

ti<t
U(t, ti)P(ti)Ii

(
x(ti)

)
∥
∥∥
∥

p

+ p–eβtE
∥
∥∥
∥
∑

t<ti

UQ(t, ti)Q(ti)Ii
(
x(ti)

)
∥
∥∥
∥

p

=
∑

j=

νj.

By (B) and Hölder’s inequality, we have

ν ≤ p–Mpeβt
(∫ t

–∞
e–δ(t–τ ) dτ

)p–(∫ t

–∞
e–δ(t–τ )E

∥∥g
(
τ , x(τ )

)∥∥p dτ

)

≤ p–Mp 
δp– eβt

(∫ t

–∞
e–δ(t–τ )[lE

∥
∥x(τ )

∥
∥p + m(τ )

]
dτ

)

≤ p–Mp 
δp–

(∫ t

–∞
e–(δ–β)(t–τ )[leβτ E

∥∥x(τ )
∥∥p + l

]
dτ

)

≤ p–Mp 
δp–(δ – β)

[
l sup

τ∈R
eβτ E

∥
∥x(τ )

∥
∥p + l

]
.

Similarly, we have

ν ≤ p–Mp 
δp–(δ – β)

[
l sup

τ∈R
eβτ E

∥
∥x(τ )

∥
∥p + l

]
.

By (B), Hölder’s inequality, and the Ito integral, we have

ν ≤ p–CpMpeβtE
(∫ t

–∞
e–δ(t–τ )∥∥f

(
τ , x(τ )

)∥∥
L


dτ

)p/

≤ p–CpMpeβt
(∫ t

–∞
e– p

p– δ(t–τ ) dτ

) p–
p

(∫ t

–∞
e– p

 δ(t–τ )[lE
∥
∥x(τ )

∥
∥p + m(τ )

]
dτ

)

≤ p–CpMp
(

p – 
pδ

) p–
p

(∫ t

–∞
e–( pδ

 –β)(t–τ )[leβτ E
∥∥x(τ )

∥∥p + l
]

dτ

)

≤ p–CpMp
(

p – 
pδ

) p–
p 

pδ – β

[
l sup

τ∈R
eβτ E

∥∥x(τ )
∥∥p + l

]
.

Similarly, we have

ν = p–CpMp
(

p – 
pδ

) p–
p 

pδ – β

[
l sup

τ∈R
eβτ E

∥∥x(τ )
∥∥p + l

]
.

For p = , we have

ν,ν = M 
δ – β

[
l sup

τ∈R
eβτ E

∥∥x(τ )
∥∥ + l

]
.
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By (B) and Hölder’s inequality, we have

ν ≤ p–MpeβtE
[(∑

ti<t
e–δ(t–ti)

)p–(∑

ti<t
e–δ(t–ti)

∥
∥Ii

(
x(ti)

)∥∥p
)]

≤ p–Mp 
( – e–δα)p– eβt

(∑

ti<t
e–δ(t–ti)

[
ciE

∥∥x(ti)
∥∥p]

)

≤ p–Mp 
( – e–δα)p

(∑

ti<t
e–(δ–β)(t–ti)

[
cieβti E

∥∥x(ti)
∥∥p]

)

≤ p–Mp 
( – e–δα)p–( – e–(δ–β)α)

[
sup
i∈Z

cieβti E
∥∥x(ti)

∥∥p
]

.

Similarly, we have

ν = p–Mp 
( – e–δα)p–( – e–(δ–β)α)

[
sup
i∈Z

cieβti E
∥
∥x(ti)

∥
∥p

]
.

Thus, from the above inequality, it follows that

eβtE
∥∥x(t)

∥∥p ≤ L∗ sup
τ∈R

eβτ E
∥∥x(τ )

∥∥p + L.

Since L∗ < , we have

sup
t∈R

eβtE
∥
∥x(t)

∥
∥p ≤ L

 – L∗ ,

where

L∗ = p–Mp
[(


δp–(δ – β)

+ Cp

(
p – 

pδ

) p–
p 

pδ – β

)
l

+


( – e–δα)p–( – e–(δ–β)α)
sup
i∈Z

ci

]
,

L = p–Mp
[


δp–(δ – β)

+ Cp

(
p – 

pδ

) p–
p 

pδ – β

]
l

for p > , and

L∗ = Mp
[(


δ(δ – β)

+


δ – β

)
l +


( – e–δα)( – e–(δ–β)α)

sup
i∈Z

ci

]
,

L = M
[


δ(δ – β)

+


δ – β

]
l

for p = . Then we get E‖x(t)‖p ≤ L
–L∗ e–βt , which implies that the piecewise pseudo almost

periodic mild solution of (.)-(.) is exponentially stable. The proof is completed. �
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5 Applications
Consider following impulsive partial stochastic differential equations of the form

dz(t, x) =
∂

∂x z(t, x) dt + (– + sin t + sinπ t)z(t, x) dt + a(t) sin
(
z(t, x)

)
dt

+ a(t) sin
(
z(t, x)

)
dW (t), t ∈R, t �= ti, i ∈ Z, x ∈ [,π ], (.)

�z(ti, x) = βi sin
(
z(ti, x)

)
, i ∈ Z, x ∈ [,π ], (.)

z(t, ) = z(t,π ) = , t ∈R, (.)

where W (t) is a two-sided standard one-dimensional Brownian motion defined on the
filtered probability space (�,F ,P,Ft). In this system, ai ∈ PAPT (R,R), i = , , and βi ∈
PAP(Z,R), ti = i + 

 | sin i + sin
√

i|, {tj
i}, i ∈ Z, j ∈ Z are equipotentially almost periodic

(see []), and α = infi∈Z(ti+ – ti) > , one can refer to [] for more details.
Let H = L([,π ]) with the norm ‖ · ‖ and define the operators A : A(D) ⊂ H → H

by Av = v′′ with the domain D(A) := {v ∈ H : v′′ ∈ H, v() = v(π ) = }. It is well known
that A is the infinitesimal generator of an analytic compact semigroup T(t) on H and
‖T(t)‖ ≤ e–t for t ≥ . Furthermore, A has a discrete spectrum with eigenvalues of the
form –n, n ∈ N and normalized eigenfunctions given by vn(ξ ) := ( 

π
) 

 sin(nξ ). Moreover,
T(t)v =

∑∞
n= e–nt〈v, vn〉vn for v ∈H.

Define a family of linear operators A(t) by

{
D(A(t)) = D(A),
A(t)v(ξ ) = (A –  + sin t + sinπ t)v(ξ ), ξ ∈ [,π ], v ∈ D(A).

Then the A(t) generate an evolution family (U(t, s))t≥s such that

U(t, s)v(ξ ) = T(t – s)e
∫ t

s (–+sin τ+sinπτ ) dτ v(ξ ).

Hence ‖U(t, s)‖ ≤ e–(t–s) for t ≥ s. If (n – ) +  ≤ – + sin t + sinπ t ≤ n –  for all t ∈ R,
and for some n ∈N. We can define P(t) : H →H by

P(t)v =
∞∑

k=n

〈v, vk〉vk .

Then

U(t, s)P(s)v =
∞∑

k=n

〈v, vk〉e
∫ t

s (–+sin τ+sinπτ ) dτ T(t – s)vk

=
∞∑

k=n

e–k(t–s)+
∫ t

s (–+sin τ+sinπτ ) dτ 〈v, vk〉vk ,

which implies that

∥∥U(t, s)P(s)v
∥∥ ≤ e–n(t–s)+

∫ t
s (–+sin τ+sinπτ ) dτ‖v‖.
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Since –n(t – s) +
∫ t

s (– + sin τ + sinπτ ) dτ ≤ –(t – s), we have

∥
∥U(t, s)P(s)

∥
∥ ≤ e–(t–s), s ≤ t.

On the other hand, if Q(t) = I – P(t), then

U(t, s)Q(s)v =
n–∑

k=

ek(t–s)–
∫ t

s (–+sin τ+sinπτ ) dτ 〈v, vk〉vk ,

which implies that

UQ(t, s)Q(s)v =
(
U(t, s)

)–Q(s)v =
n–∑

k=

e–k(t–s)+
∫ t

s (–+sin τ+sinπτ ) dτ 〈v, vk〉vk

and

∥
∥UQ(t, s)Q(s)v

∥
∥ ≤ e(n–)(t–s)–

∫ t
s (–+sin τ+sinπτ ) dτ‖v‖.

Since –(n – )(t – s) +
∫ t

s (– + sin τ + sinπτ ) dτ ≥ –(t – s), we have

∥
∥UQ(t, s)Q(s)

∥
∥ ≤ e–(t–s), s ≤ t.

Furthermore, we have

∥
∥R

(
λ, A(t + τ )

)
– R

(
λ, A(t)

)∥∥

=
∥∥R

(
λ –

(
– + sin(t + τ ) + sinπ (t + τ )

)
, A

)
– R

(
λ – (– + sin t + sinπ t), A

)∥∥

≤ ∥∥(
– + sin(t + τ ) + sinπ (t + τ )

)
– b(t)

∥∥∥∥R
(
λ –

(
– + sin(t + τ ) + sinπ (t + τ )

)
, A

)∥∥

× ∥∥R
(
λ – (– + sin t + sinπ t), A

)∥∥, t, τ ∈R.

Since – + sin t + sinπ t is almost periodic, R(λ, A(·)) ∈ AP(L(R, Lp(P,H))). Hence A(t) sat-
isfy (H)-(H) with M = , δ = .

Set z(t)(x) = z(t, x) for t ∈R, x ∈ [,π ]. Taking

g(t,ψ)(x) = a(t) sin
(
ψ(x)

)
,

f (t,ψ)(x) = a(t) sin
(
ψ(x)

)
,

and

Ii(ψ)(x) = βi sin
(
ψ(x)

)
, i ∈ Z.

Then equations (.)-(.) can be written in the abstract form as the system (.)-(.).
Since ai ∈ PAPT (R,R), i = , , we deduce that g, f ∈ PAPT (R× Lp(P,H), Lp(P,H)), and

E
∥
∥g(t,ψ)

∥
∥p + E

∥
∥f (t,ψ)

∥
∥p

= E
[(∫ π



∣
∣a(t) sin

(
ψ(x)

)∣∣ dx
)/]p
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+ E
[(∫ π



∣
∣a(t) sin

(
ψ(x)

)∣∣ dx
)/]p

≤ [∣∣a(t)
∣
∣p +

∣
∣a(t)

∣
∣p]‖ψ‖p ≤ L̃‖ψ‖p

for all t ∈ R, ψ ∈ Lp(P,H), where L̃ = supt∈R(max{|a(t)|p, |a(t)|p}). Similarly, βi ∈
PAP(Z,R) implies that Ii ∈ PAP(Z, Lp(P,H)), i ∈ Z, and

E
∥∥Ii(ψ)

∥∥p = E
[(∫ π



∣∣βi sin
(
ψ(x)

)∣∣ dx
)/]p

≤ L̃i‖ψ‖, i ∈ Z,

for all ψ ∈ Lp(P,H), where L̃i = |βi|p, i ∈ Z. Suppose that the assumption (H) in Section 
holds. Then it satisfies all the assumptions given in Theorem .. Therefore, the system
(.)-(.) has an p-mean piecewise pseudo almost periodic mild solution on R.

In the above example, we can take

g(t,ψ)(x) =
[
sin t + sin π

√
t + ρσ (t)

]
sin

(
ψ(x)

)
,

f (t,ψ)(x) =
[
sin t + sin π

√
t + ρσ (t)

]
sin

(
ψ(x)

)
,

and

Ii(ψ) =
[
sin i + sin π

√
i + ςiσ (i)

]
sin

(
ψ(x)

)
, i ∈ Z,

where σ ∈ UPC(R,R) is defined by

σ (t) =

{
 for t < ,
e–ρt for t ≥ 

for ρk > , k = , , , ςi > , i ∈ Z. Obviously, [sin t + sin π
√

t + σ (t)] sin(ψ) ∈ PAPT (R×
Lp(P,H), Lp(P,H)) and [sin i + sin π

√
i + σ (i)] sin(ψ) ∈ PAP(Z, Lp(P,H)), i ∈ Z, where

[sin t + sin π
√

t] sin(ψ) is the almost periodic component and limr→∞ 
r

∫ r
–r σ (t) dt = .

Moreover, E‖g(t,ψ)‖p + E‖f (t,ψ)‖p ≤ l̃‖ψ‖p and E‖Ii(ψ)‖p ≤ l̃i‖ψ‖p, i ∈ Z, for all t ∈ R,
ψ ∈ Lp(P,H), where l̃ = ( + ρ)p + ( + ρ)p and l̃i = ( + ςi)p, i ∈ Z. On the other hand, we
can see that

E
∥∥g(t,ψ)

∥∥p + E
∥∥f (t,ψ)

∥∥p ≤ l̂‖ψ‖p + l̂e–pρt

for all t ∈ R, ψ ∈ Lp(P,H), where l̂ = (p–), l̂ = p–πp/(ρp
 + ρ

p
 ). Further, we can impose

some suitable conditions on the above-defined functions to verify the assumptions on
Theorem ., Hence, the system (.)-(.) has an p-mean piecewise exponentially stable
pseudo almost periodic mild solution.

6 Conclusion
In this paper, we studied the p-mean piecewise pseudo almost periodic periodicity for
a class of impulsive nonautonomous partial stochastic evolution equations in Hilbert
spaces. More precisely, by using the exponential dichotomy techniques, stochastic analy-
sis theory, and Leray-Schauder nonlinear alternative combined with the new composition
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theorem, we discussed the existence and exponential stability of p-mean piecewise pseudo
almost periodic mild solutions for these equations. The conditions are formulated and
proved under which the nonlinear terms and the jump operators satisfy the non-Lipschitz
condition with the sense of the pseudo almost periodic. Finally, an example is provided to
illustrate the obtained theory.

There are two direct issues which require further study. First, we will investigate the
existence and exponential stability of p-mean piecewise pseudo almost periodic mild so-
lutions for impulsive partial stochastic functional differential equations with infinite delay
in Hilbert spaces. Second, we will devote our efforts to the study of the existence and ex-
ponential stability of p-mean piecewise weighted pseudo almost periodic mild solutions
of impulsive partial stochastic differential equations.
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