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Abstract
This paper investigates the existence of the unique solution for a Hadamard fractional
integral boundary value problem of a Hadamard fractional integro-differential
equation with the monotone iterative technique. Two examples to illustrate our result
are given.
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1 Introduction
Fractional differential equations are becoming more and more popular recently in several
journals and books due to their applications in a number of fields such as physics, bio-
physics, mechanical systems, electrical-analytical, and thermal systems [–]. For some
recent development of this topic, see for example [–] and the references therein.

In  [], Hadamard presented a concept of fractional derivatives, which is different
from Caputo and Riemann-Liouville type fractional derivatives and involves a logarithmic
function of an arbitrary exponent in the integral kernel. It is significant that the study of
Hadamard type fractional differential equations is still in its infancy and deserves further
study. A detailed presentation of Hadamard fractional derivative is available in [] and
[–].

As was pointed out in [], Hadamard’s construction is more appropriate for problems
on half axes. In this situation, we consider the following Hadamard fractional integro-
differential equations with Hadamard fractional integral boundary conditions on an infi-
nite interval:

{
HDγ u(t) + f (t, u(t), HIqu(t)) = ,  < γ < , t ∈ (, +∞),
u() = u′() = , HDγ –u(∞) =

∑m
i= λi

HIβi u(η),
(.)

where HDγ denotes Hadamard fractional derivative of order γ , η ∈ (,∞), and H I(·) is
the Hadamard fractional integral, q,βi >  (i = , , . . . , m),λi ≥  (i = , , . . . , m) are given
constants and γ , η, βi, λi satisfy �(γ ) >

∑m
i=

λi�(γ )
�(γ +βi)

(logη)γ +βi–.
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We recall that the monotone iterative technique represents a powerful tool for seeking
the solution of a nonlinear problem. For more details as regards the application of this
method in fractional differential equations, see [–] and the references therein.

We organize the rest of our manuscript as follows: In Section , we show some useful
preliminaries and the key lemmas that are used in subsequent part of the manuscript.
Then, in Section , the main results and proofs are provided. Section , exhibits two ex-
amples to illustrate our main results.

2 Preliminaries
Below, we will present some useful definitions and related lemmas.

Define

E =
{

u ∈ C
(
[,∞),R

)
: sup

t∈[,∞)

|u(t)|
 + (log t)γ – < ∞

}
, (.)

then E denotes a Banach space equipped with norm ‖u‖E = supt∈[,∞)
|u(t)|

+(log t)γ – .
Denote

� = �(γ ) –
m∑

i=

λi�(γ )
�(γ + βi)

(logη)γ +βi–; (.)

obviously � > .

Definition . [] For a function g , the Hadamard fractional integral of order γ has the
following form:

HIγ g(t) =


�(γ )

∫ t



(
log

t
s

)γ – g(s)
s

ds, γ > ,

provided the integral exists.

Definition . [] The Hadamard fractional derivative of fractional order γ for a function
g : [,∞) →R has the following form:

HDγ g(t) =


�(n – γ )

(
t

d
dt

)n ∫ t



(
log

t
s

)n–γ – g(s)
s

ds, n –  < γ < n, n = [γ ] + ,

where [γ ] means the integer part of the real number γ and log(·) = loge(·).

Lemma . [] If a,γ ,β >  then

HIγ
a

(
log

(
t
a

)β–)
(x) =

�(β)
�(β + γ )

(
log

x
a

)β+γ –

.

Lemma . [] If a,γ ,β >  then

HDγ
a

(
log

(
t
a

)β–)
(x) =

�(β)
�(β – γ )

(
log

x
a

)β–γ –

.



Wang et al. Advances in Difference Equations  (2016) 2016:299 Page 3 of 11

Lemma . [] Given γ >  and x ∈ C[,∞)∩L[,∞), then the solution of the Hadamard
fractional differential equation HDγ x(t) =  is

x(t) =
n∑

i=

ci(log t)γ –i (.)

and

HIγ HDγ x(t) = x(t) +
n∑

i=

ci(log t)γ –i (.)

where ci ∈R, i = , , . . . , n, and n –  < γ < n.

Lemma . Let h ∈ C[,∞) with  <
∫ ∞

 h(s) ds
s < ∞, then the Hadamard fractional inte-

gral boundary value problem

{
HDγ u(t) + h(t) = ,  < γ < , t ∈ (, +∞),
u() = u′() = , H Dγ –u(∞) =

∑m
i= λi

HIβi u(η),
(.)

has the unique solution

u(t) =
∫ ∞


G(t, s)h(s)

ds
s

, (.)

where

G(t, s) = g(t, s) +
m∑

i=

λi(log t)γ –

��(γ + βi)
gi(η, s), (.)

and

g(t, s) =


�(γ )

⎧⎨
⎩(log t)γ – – (log( t

s ))γ –,  ≤ s ≤ t < ∞,

(log t)γ –,  ≤ t ≤ s < ∞,
(.)

gi(η, s) =

⎧⎨
⎩(logη)γ +βi– – (log( η

s ))γ +βi–,  ≤ s ≤ η < ∞,

(logη)γ +βi–,  ≤ η ≤ s < ∞.
(.)

Proof We apply the Hadamard fractional integral of order γ to

HDγ u(t) + h(t) = ,

and we conclude that

u(t) = c(log t)γ – + c(log t)γ – + c(log t)γ – –


�(γ )

∫ t



(
log

t
s

)γ –

h(s)
ds
s

, (.)

where c, c, c ∈R.
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Using the fact that u() = u′() = , we conclude that c = c = . Thus,

u(t) = c(log t)γ – –


�(γ )

∫ t



(
log

t
s

)γ –

h(s)
ds
s

. (.)

Lemma . implies that

HDγ –u(t) = c�(γ ) –
∫ t


h(s)

ds
s

. (.)

Thus, the condition

HDγ –(∞) =
m∑

i=

λi
HIβi u(η)

leads to

c =

�

(∫ ∞


h(s)

ds
s

–
m∑

i=

λi

�(γ + βi)

∫ η



(
log

η

s

)γ +βi–

h(s)
ds
s

)
, (.)

where � is defined by (.). Substituting c = c =  and (.) into (.), we get the unique
solution of the Hadamard fractional integral boundary value problem (.)

u(t) =
(log t)γ –

�

(∫ ∞


h(s)

ds
s

–
m∑

i=

λi

�(γ + βi)

∫ η



(
log

η

s

)γ +βi–

h(s)
ds
s

)

–


�(γ )

∫ t



(
log

t
s

)γ –

h(s)
ds
s

=
∫ ∞


g(t, s)h(s)

ds
s

+
m∑

i=

λi(log t)γ –

��(γ + βi)

∫ ∞


gi(η, s)h(s)

ds
s

=
∫ ∞


G(t, s)h(s)

ds
s

. (.)

The proof is finished. �

Lemma . The Green’s function G(t, s) defined by (.) has the following properties:

(A): G(t, s) is continuous and G(t, s) ≥  for (t, s) ∈ [,∞) × [,∞).
(A): G(t,s)

+(log t)γ – ≤ 
�(γ ) +

∑m
i=

λigi(η,s)
��(γ +βi)

for all s, t ∈ [,∞).

Proof Since (A) it is easy to prove, we do not present it but only prove the property (A).
For ∀s, t ∈ [,∞),

G(t, s)
 + (log t)γ – =


 + (log t)γ –

[
g(t, s) +

m∑
i=

λi(log t)γ –gi(η, s)
��(γ + βi)

]
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≤ 
�(γ )

+
m∑

i=

λi(log t)γ –gi(η, s)
��(γ + βi)( + (log t)γ –)

≤ 
�(γ )

+
m∑

i=

λigi(η, s)
��(γ + βi)

. �

We present the following conditions for the sake of convenience:

(C): There exist two positive functions p(t) and q(t) such that

� =
∫ ∞



[
 + (log t)γ –][p(t) +

q(t)(log t)q

�(q)

]
dt
t

< ∞,

∣∣f (t, u, v) – f (t, u, v)
∣∣ ≤ p(t)|u – u| + q(t)|v – v|, t ∈ [,∞), u, v, u, v ∈R.

(C):

λ =
∫ ∞



∣∣f (t, , )
∣∣dt

t
< ∞.

Lemma . If (C), (C) hold, then for any u ∈ E

∫ ∞



∣∣f (t, u(t), HIqu(t)
∣∣dt

t
≤ �‖u‖E + λ. (.)

Proof For any u ∈ E, taking u = , then HIqu = . Thus, by condition (C) we have

∣∣f (t, u(t), HIqu(t)
)∣∣ ≤ p(t)

∣∣u(t)
∣∣ + q(t)

∣∣H Iqu(t)
∣∣ +

∣∣f (t, , )
∣∣

≤ p(t)
[
 + (log t)γ –] |u(t)|

 + (log t)γ –

+ q(t)


�(q)

∫ t



(
log

t
s

)q– |u(s)|
s

ds +
∣∣f (t, , )

∣∣
≤ p(t)

[
 + (log t)γ –]‖u‖E

+ q(t)
 + (log t)γ –

�(q)

×
∫ t



(log t
s )q–

s
|u(s)|

 + (log s)γ –
 + (log s)γ –

 + (log t)γ – ds

+
∣∣f (t, , )

∣∣
≤ p(t)

[
 + (log t)γ –]‖u‖E

+ q(t)
 + (log t)γ –

�(q)
‖u‖E

∫ t



(log t)q–

s
ds +

∣∣f (t, , )
∣∣

≤ p(t)
[
 + (log t)γ –]‖u‖E + q(t)

 + (log t)γ –

�(q)
(log t)q‖u‖E

+
∣∣f (t, , )

∣∣, (.)
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from which, combined with (C) and (C), we can obtain

∫ ∞



∣∣f (t, u(t), HIqu(t)
)∣∣dt

t
≤

∫ ∞


p(t)

[
 + (log t)γ –]‖u‖E

dt
t

+
∫ ∞


q(t)

 + (log t)γ –

�(q)
(log t)q‖u‖E

dt
t

+
∫ ∞



∣∣f (t, , )
∣∣dt

t

= �‖u‖E + λ. (.)

The proof is done. �

3 Main results
Theorem . Suppose that the conditions (C) and (C) hold. Let

w = �

(


�(γ )
+

m∑
i=

λigi(η, s)
��(γ + βi)

)
< . (.)

Then the Hadamard fractional integral boundary value problem (.) admits an unique
solution ũ(t) in E. In addition, there exists a monotone iterative sequence un(t) such that
un(t) → ũ(t) (n → ∞) uniformly on any finite sub-interval of [,∞), where

un(t) =
∫ ∞


G(t, s)f

(
s, un–(s), HIqun–(s)

)ds
s

. (.)

Furthermore, there exists an error estimate for the approximating sequence

‖un – ũ‖E ≤ wn

 – w
‖u – u‖E (n = , , . . .). (.)

Proof Define the operator T by

(Tu)(t) =
∫ ∞


G(t, s)f

(
s, u(s), HIqu(s)

)ds
s

. (.)

By Lemma ., the Hadamard fractional integral boundary value problem (.) possesses
a solution u iff u is a solution of u = Tu.

First, for any t ∈ [,∞), by Lemma . and Lemma ., we have

|(Tu)(t)|
 + (log t)γ – ≤

∫ ∞



G(t, s)
 + (log t)γ –

∣∣f (s, u(s), HIqu(s)
)∣∣ds

s

≤
(


�(γ )

+
m∑

i=

λigi(η, s)
��(γ + βi)

)[
�‖u‖E + λ

]

= w‖u‖E + k. (.)

This means

‖Tu‖E ≤ w‖u‖E + k, ∀t ∈ [,∞), (.)
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where w is defined in (.) and

k = λ

(


�(γ )
+

m∑
i=

λigi(η, s)
��(γ + βi)

)
. (.)

In addition, for any u, u ∈ E, we have

|(Tu)(t) – (Tu)(t)|
 + (log t)γ – ≤

∫ ∞



G(t, s)
 + (log t)γ –

∣∣f (s, u(s), HIqu(s) – f
(
s, u(s), HIqu(s)

)∣∣ds
s

≤
∫ ∞



G(t, s)
 + (log t)γ –

[
p(s)

∣∣u(s) – u(s)
∣∣+ q(s)

∣∣HIqu(s) – HIqu(s)
∣∣]ds

s

≤
∫ ∞



G(t, s)
 + (log t)γ – p(s)

[
 + (log s)γ –] |u(s) – u(s)|

 + (log s)γ – ds

+
∫ ∞



G(t, s)
 + (log t)γ – q(s)

∣∣HIqu(s) – HIqu(s)
∣∣ds

s

≤
∫ ∞



G(t, s)
 + (log t)γ – p(s)

[
 + (log s)γ –]‖u – u‖E ds

+
∫ ∞



G(t, s)
 + (log t)γ – q(s)

[ + (log s)γ –](log s)γ

�(γ )
‖u – u‖E

ds
s

≤
(


�(γ )

+
m∑

i=

λigi(η, s)
��(γ + βi)

)

×
∫ ∞


‖u – u‖E

[
 + (log s)γ –][p(s) +

q(s)(log s)γ

�(γ )

]
ds
s

≤
(


�(γ )

+
m∑

i=

λigi(η, s)
��(γ + βi)

)
�‖u – u‖E

= w‖u – u‖E . (.)

Then we get

‖Tu – Tu‖E ≤ w‖u – u‖E , ∀u, u ∈ E. (.)

Through the Banach fixed point theorem, we can ensure that T has a unique fixed point ũ
in E. That is, (.) admits a unique solution ũ in E. In addition, for any u ∈ E, ‖un – ũ‖E → 
as n → ∞, where un = Tun– (n = , , . . .).

From (.), we have

‖un – un–‖E ≤ wn–‖u – u‖E (.)

and

‖un – uj‖E ≤ ‖un – un–‖E + ‖un– – un–‖E + · · · + ‖uj+ – uj‖E

≤ wn( – wn–j)
 – w

‖u – u‖E . (.)
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Letting n → ∞ on both sides of (.), we conclude that

‖un – ũ‖E ≤ wn

 – w
‖u – u‖E . (.)

�

4 Example
Example . In the following we discuss the Hadamard fractional integral boundary value
problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

HD 
 u(t) + e–t t

+(log t)



cos(t

+u(t)) + 
√

πe–t t

[+(log t)

 ](log t)




arctan(HI 
 u(t)) = ,

u() = u′() = , H D 
 u(+∞) = λ

H Iβ u(η),

(.)

where γ = 
 , m = , q = 

 , and λ, β, η satisfy (λ ≥ ,β > ,η > )

 <
�( 

 + β)

�( 
 + β) – λ(logη) 

 +β
<

e√π


(.)

(see Figure ).
For example, we can take λ = 

 ,β = 
 ,η = 

 ,

∣∣f (t, u, HI

 u(t)

)
– f

(
t, u, H I


 u(t)

)∣∣
≤ e–tt

 + (log t) 


∣∣cos
(
t + u(t)

)
– cos

(
t + u(t)

)∣∣
+


√

πe–tt

[ + (log t) 
 ](log t) 



∣∣arctan
(HI


 u(t)

)
– arctan

(HI

 u(t)

)∣∣

Figure 1 Set of λ1 ≥ 0,β1 > 0,η > 1 such that 0 <
�( 1

2 +β1)

3�( 1
2 +β1)–4λ1(logη)

3
2 +β1

< e3√
π

2 .
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≤ e–tt
 + (log t) 



∣∣u(t) – u(t)
∣∣

+

√

πe–tt

[ + (log t) 
 ](log t) 



∣∣HI

 u(t) – HI


 u(t)

∣∣.

Since p(t) = e–t t

+(log t)



and q(t) = 
√

πe–t t

[+(log t)

 ](log t)




, we can show that

� =
∫ ∞



[
 + (log t)



][ e–tt

 + (log t) 


+

√

πe–tt(log t) 


[ + (log t) 
 ](log t) 

 �( 
 )

]
dt
t

=


e < ∞,

λ =
∫ ∞



∣∣f (t, , )
∣∣dt

t
=

∫ ∞


e–t dt =


e < ∞.

Then (C) and (C) hold. At last, by a simple computation, we have

� = �(γ ) –
λ�(γ )

�(γ + β)
(logη)γ +β– =


√

π


–

√
πλ(logη) 

 +β

�( 
 + β)

>


e > ,

w = �

(


�(γ )
+

λg(η, s)
��(γ + βi)

)
=


e√π

(
�( 

 + β)

�( 
 + β) – λ(logη) 

 +β

)
< .

As a result, the conditions of Theorem . hold. Thus, the conclusion of Theorem .
implies that (.) possesses a unique solution.

Example . Let us discuss the following Hadamard fractional integral boundary value
problem:

{
HD


 u(t) + f (t, u(t), HI


 u(t)) = ,

u() = u′() = , H D

 u(+∞) =

∑
i= λi

HIβi u(η),
(.)

here

f
(
t, u(t), HI


 u(t)

)
=

sin(t + u(t))

( + t)[ + (log t) 
 ]

+
HI 

 u(t) – sin(HI 
 u(t)) cos(HI 

 u(t))

( + t)[ + (log t) 
 ](log t) 


.

Take γ = 
 , m = , q = 

 , η = 
 , λ = 

 , β = 
 , λ =

√
π

 , β = 
 , λ = , and β = 

 .
The function f satisfies the inequality

∣∣f (t, u, HI

 u(t)

)
– f

(
t, u, HI


 u(t)

)∣∣
≤ 

( + t)[ + (log t) 
 ]

∣∣u(t) – u(t)
∣∣

+


( + t)[ + (log t) 
 ](log t) 



∣∣HI

 u(t) – HI


 u(t)

∣∣.
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Since p(t) = 

(+t)[+(log t)

 ]

and q(t) = 

(+t)[+(log t)

 ](log t)




, we can show that

� =
∫ ∞



[
 + (log t)



]

×
[



( + t)[ + (log t) 
 ]

+
(log t) 



�( 
 )( + t)[ + (log t) 

 ](log t) 


]
dt
t

<
π


< ∞,

λ =
∫ ∞



∣∣f (t, , )
∣∣dt

t
<

∫ ∞




( + t)

dt =
π


< ∞.

Then (C) and (C) hold. At last, by a simple computation, we have

� = �

(



)
–

∑
i=

λi�( 
 )

�( 
 + βi)

(logη)

 +βi– ≈ . > ,

w = �

(


�( 
 )

+
∑

i=

λigi(η, s)
��( 

 + βi)

)
≈ . < .

Thus, by the application of Theorem . the Hadamard fractional integral boundary value
problem (.) admits an unique solution.
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