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1 Introduction and statement of main results
The interest in the second-order difference systems

⎧
⎨

⎩

�u(t – ) + ∇F(t, u(t)) = , t ∈ Z[, T],

u() = u(T),
()

has been aroused, where �u(t) = u(t + ) – u(t), �u(t) = �(�u(t)), ∇F(t, x) = ∂F(t,x)
∂x , T

is a positive integer, and Z and R denote the set of integers and the set of real numbers,
respectively, and Z[a, b] = {a, a + , . . . , b}, for a, b ∈ Z and a ≤ b. Assume that F(t, x) is
T-periodic in t for all x ∈ RN and F(t, x) ∈ C(Z× RN , R).

In , Yu and Guo [–] established a variational structure and variational methods
to study discrete Hamiltonian systems and obtain the solvability condition of a periodic
solution for discrete systems, based on operator theory. Since then more and more authors
have contributed to study second-order discrete Hamiltonian systems, with an effective
tool named the critical point theory, and one obtained many interesting results [–].
In [], with operator theory, Xue and Tang constructed a variational setting unlike the
one in [] to study the second-order superquadratic discrete Hamiltonian systems () and
obtained the existence of periodic solutions. This result generalized the one in []. In [],
Xue and Tang obtained the existence of one periodic solution of systems () under the
hypothesis there exist M > , M >  and  ≤ α <  such that

∣
∣∇F(t, x)

∣
∣ ≤ M|x|α + M,
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for all (t, x) ∈ Z[, T] × RN , and the condition

|x|–α

T∑

t=

F(t, x) → +∞ as |x| → ∞.

Subsequently, in [], Yan, Wu and Tang extended these results in [] to the case that
F(t, x) is Ti-periodic in xi and obtained the existence of multiple periodic solutions, where
xi is the ith component of x = (x, x, . . . , xN ), i ∈ [, N]. Especially in [], Che and Xue
obtained the existence of infinitely many periodic solutions for systems in the case that:

(F) there exist f , g : Z[, T] → R+ and α ∈ [, ) such that

∣
∣∇F(t, x)

∣
∣ ≤ f (t)|x|α + g(t) for all (t, x) ∈ Z[, T] × RN ,

and a suitable oscillating behaviour at infinity,
(F) lim infr→∞ supx∈RN ,|x|=r |x|–α

∑T
t= F(t, x) = –∞,

(H) lim supr→∞ infx∈RN ,|x|=r
∑T

t= F(t, x) = +∞.
Consequently, it is natural to ask if infinitely many solutions still exist when α = . With

the fact that α = , (F) and (F), respectively, change to the linearly bounded gradient
condition:

(F′) there exist f , g : Z[, T] → R+ such that

∣
∣∇F(t, x)

∣
∣ ≤ f (t)|x| + g(t) for all (t, x) ∈ Z[, T] × RN ,

and the condition
(F′) lim infr→∞ supx∈RN ,|x|=r |x|– ∑T

t= F(t, x) = –∞.
However, similarly to what was pointed in [], (F′) does not hold if

∑T
t= f (t) is

bounded. Therefore, it is necessary to improve condition (F′). Inspired by [, , ], in
this paper, we will use minmax methods to further study systems () under the following
assumptions:

(H) there exist f , g : Z[, T] → R+ with
∑T

t= f (t) < λ
 such that

∣
∣∇F(t, x)

∣
∣ ≤ f (t)|x| + g(t) for all (t, x) ∈ Z[, T] × RN ,

(H) lim infr→+∞ supx∈RN ,|x|=r |x|– ∑T
t= F(t, x) < – 

∑T
t= f (t)
λ

,
where λk =  –  cos kπ

T satisfy the eigenvalue problem

–�u(t – ) = λku(t), k ∈ Z

[

,
[

T


]]

,

and we note

 = λ < λ < · · · < λ[ T
 ] ≤ .

The main result on the existence of infinitely many periodic solutions of systems () is
obtained. The details are described.
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Theorem . Under the hypotheses of (H), (H), and (H):
(a) discrete systems () have a sequence {un} of solutions such that {un} is a critical point

of the functional ϕ and ϕ(un) → +∞ as n → ∞;
(b) discrete systems () have a sequence {u∗

n} of solutions such that {u∗
n} is a local

minimizer of ϕ and ϕ(u∗
n) → –∞ as n → ∞,

where the variational functional ϕ is

ϕ(u) =



T∑

t=

∣
∣�u(t)

∣
∣ –

T∑

t=

F
(
t, u(t)

)
,

on Hilbert space HT defined by

HT =
{

u : Z → RN |u(t) = u(t + T), t ∈ Z
}

,

with the inner product and the norm, respectively, written as

〈u, v〉 =
T∑

t=

(
u(t), v(t)

)
, ∀u, v ∈ HT

and

‖u‖ =

( T∑

t=

∣
∣u(t)

∣
∣

) 


.

Remark . As pointed out in [], the nonlinearity potential F does not need the symme-
try condition in the paper. Moreover, Theorem . is a complement to and development of
Theorem . in [] corresponding to α = .

2 Proof of main result
For all u ∈ HT , ‖u‖∞ = supt∈Z[,T] |u(t)| is defined. It is obvious that

‖u‖∞ ≤ ‖u‖ =

( T∑

t=

∣
∣u(t)

∣
∣

) 


. ()

By the definition of HT , HT is finite dimensional. By (H), one gets ϕ ∈ C(HT , R) and

〈
ϕ′(u), v

〉
=

T∑

t=

(�u(t),�v(t)
)

–
T∑

t=

(∇F
(
t, u(t)

)
, v(t)

)
,

for all u, v ∈ HT .
Subsequently, an important lemma in [] is shown for the reader’s convenience. The

lemma is constructed in a variational setting, with the operator theory, unlike the one
in []. Details can be found in [].

Lemma  ([]) Let Nk be a subspace of HT written as

Nk :=
{

u ∈ HT |–�u(t – ) = λku(t)
}

,

where λk =  –  cos kπ
T , k ∈ Z[, [ T

 ]]. Then one has the results as follows:
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(i) Nk ⊥ Nj, k �= j, k, j ∈ Z[, [ T
 ]].

(ii) HT =
⊕[T/]

k= Nk .
Let V = N and W = N⊥

 =
⊕[T/]

k= Nk . Via Lemma  in [], we have

HT = N ⊕ N⊥
 = V ⊕ W

and

T∑

t=

∣
∣�u(t)

∣
∣ ≥ λ‖u‖, ∀u ∈ W = N⊥

 . ()

From the definition of N, one gets u(t) = u() = C ∈ RN , for all u ∈ N and t ∈ Z[, T]. By
Lemma , one rewrites u as u = ū + ũ ∈ V ⊕ W = N ⊕ N⊥

 , where

ū =

T

T∑

t=

u(t).

From the fact that

‖u‖ =

( T∑

t=

∣
∣u(t)

∣
∣

) 


=

( T∑

t=

∣
∣ū + ũ(t)

∣
∣

) 


=

( T∑

t=

〈ū + ũ, ū + ũ〉
) 



=

( T∑

t=

(|ū| +
∣
∣ũ(t)

∣
∣)

) 


=
(
T |ū| + ‖ũ‖) 

 ,

one has

‖u‖ ≤ √
T + 

(|ū| + ‖ũ‖) 
 and ‖u‖ ≥ (|ū| + ‖ũ‖) 

 .

Thus one obtains that ‖u‖ → ∞ if and only if (|ū| + ‖ũ‖) 
 → ∞.

Proof of Theorem . The proof of Theorem . relies on a minimax theorem (Corol-
lary .) in []. We complete the proof with a series of statements below.

Step , we claim that ϕ is coercive in the subspace W .
Due to (H), there exists a constant C satisfying the following inequality:

∣
∣F(t, x)

∣
∣ ≤

∣
∣
∣
∣

∫ 



(∇F(t, sx), x
)

ds
∣
∣
∣
∣ +

∣
∣F(t, )

∣
∣

≤
∫ 



∣
∣∇F(t, sx)

∣
∣|x|ds + C ≤ f (t)


|x| + g(t)|x| + C ()
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for all t ∈ Z[, T] and x ∈ RN . Hence, using the Hölder inequality, (), (), and (), for all
u ∈ W , one derives

ϕ(u) =



T∑

t=

∣
∣�u(t)

∣
∣ –

T∑

t=

F(t, u)

≥ 

λ‖u‖ –

T∑

t=

(



f (t)
∣
∣u(t)

∣
∣ + g(t)

∣
∣u(t)

∣
∣ + C

)

≥ 

λ‖u‖ – ‖u‖

∞
T∑

t=




f (t) – ‖u‖∞
T∑

t=

g(t) – CT

≥ 

λ‖u‖ – ‖u‖ 



T∑

t=

f (t) – ‖u‖
T∑

t=

g(t) – CT

=

(


λ –




T∑

t=

f (t)

)

‖u‖ – ‖u‖
T∑

t=

g(t) – CT .

Combining this with the fact
∑T

t= f (t) < 
λ, one deduces lim‖u‖→+∞ ϕ(u) = +∞.

Step , we claim that there are positive sequences {an}, {bm} satisfying
(c) limn→∞ an = +∞ and limn→∞ supu∈V ,‖u‖=an ϕ(u) = –∞,
(d) limm→∞ bm = +∞ and limm→∞ infu∈Hbm ϕ(u) = +∞,

where Hbm = {u ∈ V ,‖u‖ = bm} ⊕ W .
The detailed proof of (c) can be founded in []. On the other hand, by (H), one can

take a constant

a >

λ

.

Thus one gets

lim inf
r→∞ sup

x∈RN ,|x|=r
|x|–

T∑

t=

F(t, x) < –
a


T∑

t=

f (t). ()

For any u ∈ Hbm , rewritten u = ũ + ū, where ũ ∈ W and ū ∈ V , by the Hölder inequality,
(H), and (H), one has

∣
∣
∣
∣
∣

T∑

t=

(
F
(
t, u(t)

)
– F(t, ū)

)
∣
∣
∣
∣
∣

≤
T∑

t=

∫ 



∣
∣
(∇F

(
t, ū + sũ(t)

)
, ũ(t)

)∣
∣ds

≤
T∑

t=

∫ 



(
f (t)

∣
∣ū + sũ(t)

∣
∣ + g(t)

) · ∣∣ũ(t)
∣
∣ds

≤
T∑

t=

f (t)
(

|ū| +


∣
∣ũ(t)

∣
∣

)
∣
∣ũ(t)

∣
∣ +

T∑

t=

g(t)
∣
∣ũ(t)

∣
∣
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≤ |ū|
( T∑

t=

f (t)

) 

( T∑

t=

∣
∣ũ(t)

∣
∣

) 


+


‖ũ‖

∞
T∑

t=

f (t) + ‖ũ‖∞
T∑

t=

g(t)

≤ 
a

‖ũ‖ +
a


T∑

t=

f (t)|ū| +



T∑

t=

f (t)‖ũ‖ + ‖ũ‖
T∑

t=

g(t)

≤
(


a

+



T∑

t=

f (t)

)

‖ũ‖ +
a


T∑

t=

f (t)|ū| + ‖ũ‖
T∑

t=

g(t). ()

Hence, for all u ∈ Hbm , it follows from inequalities () and () that

ϕ(u) =



T∑

t=

∣
∣�u(t)

∣
∣ –

T∑

t=

F
(
t, u(t)

)

=



T∑

t=

∣
∣�ũ(t)

∣
∣ –

T∑

t=

(
F
(
t, u(t)

)
– F(t, ū)

)
–

T∑

t=

F(t, ū)

≥ 

λ‖ũ‖ –

(


a
+




T∑

t=

f (t)

)

‖ũ‖ –
a


T∑

t=

f (t)|ū|

– ‖ũ‖
T∑

t=

g(t) –
T∑

t=

F(t, ū)

=

(
λ


–


a

–



T∑

t=

f (t)

)

‖ũ‖ – ‖ũ‖
T∑

t=

g(t)

– |ū|
(∑T

t= F(t, ū)
|ū| +

a


T∑

t=

f (t)

)

. ()

By
∑T

t= f (t) < λ
 and a > 

λ
,

λ


–


a

–



T∑

t=

f (t) > 

is verified. By (), (), and the fact ‖u‖ → ∞ if and only if (|ū| + ‖ũ‖) 
 → ∞, the con-

clusion (d) is achieved.
Now we have a family of maps �n expressed as

�n =
{
γ ∈ C(Ban , HT )|γ |∂Ban = Id |∂Ban

}

and minimax values cn formulated as

cn = inf
γ∈�n

max
u∈Ban

ϕ
(
γ (u)

)

for each n, where Ban is a ball in V and an is the radius of Ban . One gets

γ (Ban ) ∩ W �= ∅

for any γ ∈ �n from Theorem . in [].
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Step , we claim that, for sufficiently large n, there exist sequences {γk} ⊂ �n and {νk} in
HT , respectively, satisfying

max
u∈Ban

ϕ
(
γk(u)

) → cn,

ϕ(νk) → cn, ϕ′(νk) → , dist
(
νk ,γk(Ban )

) →  as k → ∞. ()

By Step , we know ϕ(u) → +∞ as ‖u‖ → +∞, u ∈ W . Therefore there exists a constant
C satisfying

max
u∈Ban

ϕ
(
γ (u)

) ≥ inf
u∈W

ϕ(u) ≥ C.

Furthermore, one has

cn ≥ inf
u∈W

ϕ(u) ≥ C,

for sufficiently large n. By the fact γ (Ban )∩W �= ∅ and the conclusion of Step , one obtains

cn > max
u∈∂Ban

ϕ(u)

for sufficiently large n. Therefore, for a fixed n, this claim is proved from Theorem . and
Corollary . in [].

Step , we draw the conclusion that the sequence {νk} is bounded in HT .
For sufficiently large k, by (), one has

cn ≤ max
u∈Ban

ϕ
(
γk(u)

) ≤ cn + .

We choose wk ∈ γk(Ban ) satisfying

‖νk – wk‖ ≤ . ()

From the conclusion (d) of Step , for a fixed n, a sufficiently large m exists, rendering the
formula

bm > an and inf
u∈Hbm

ϕ(u) > cn + .

These inequalities imply that γk(Ban ) ∩ Hbm = ∅ for each k. We now write wk = w̄k + w̃k ,
where w̄k ∈ V and w̃k ∈ W . Then one has

‖w̄k‖ < bm ()

for each k. Moreover, by (), (), (), and (), one gets

 + cn ≥ ϕ(wk) =



T∑

t=

∣
∣�wk(t)

∣
∣ –

T∑

t=

F
(
t, wk(t)

)

≥ 

λ‖w̃k‖ –

T∑

t=

(



f (t)
∣
∣wk(t)

∣
∣ + g(t)

∣
∣wk(t)

∣
∣ + C

)
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≥ 

λ‖w̃k‖ –

T∑

t=

f (t)
[|w̄k| +

∣
∣w̃k(t)

∣
∣] –

T∑

t=

g(t)
(|w̄k| +

∣
∣w̃k(t)

∣
∣
)

– CT

≥ 

λ‖w̃k‖ – ‖w̃k‖

∞
T∑

t=

f (t) – ‖w̄k‖
T∑

t=

f (t)

– ‖w̃k‖∞
T∑

t=

g(t) – ‖w̄k‖
T∑

t=

g(t) – CT

≥ 

λ‖w̃k‖ – ‖w̃k‖

T∑

t=

f (t) – b
m

T∑

t=

f (t)

– ‖w̃k‖
T∑

t=

g(t) – bm

T∑

t=

g(t) – CT

=

(
λ


–

T∑

t=

f (t)

)

‖w̃k‖ – ‖w̃k‖
T∑

t=

g(t) – b
m

T∑

t=

f (t) – bm

T∑

t=

g(t) – CT . ()

We can combine equation () and the fact that
∑T

t= f (t) < λ
 , ‖w̃k‖ is bounded. Thus, by

combining () and the fact that ‖wk‖ = (T |w̄k| + ‖w̃k‖) 
 , {wk} is bounded. Then {νk} is

bounded in HT via (). The conclusion is proved.
Step , we claim that cn is a critical value of ϕ.
Since {νk} is bounded and HT is finite dimensional space, {νk} contains a convergent

subsequence that is still denoted as {νk} for convenience, meeting

lim
k→∞

νk = un.

Then, by (), one has

ϕ(un) = cn and ϕ′(un) = .

Thus ϕ has a critical point un.
We prove part (a) of Theorem .. One chooses sufficiently large n satisfying an > bm,

then one has γ (Ban ) ∩ Hbm �= ∅ for any γ ∈ �n. It follows that

max
u∈Ban

ϕ
(
γ (u)

) ≥ inf
u∈Hbm

ϕ(u).

With this and the conclusion (d) of Step ,

lim
n→∞ cn = +∞

is implied. Part (a) of Theorem . is proved.
A follow-up is to prove part (b) in Theorem .. For a given m, let Pm be a subset of HT ,

where

Pm =
{

u = ū + ũ ∈ HT |ū ∈ V ,‖ū‖ ≤ bm, ũ ∈ W
}

.
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For all u ∈ Pm, similar to (), one obtains

ϕ(u) =



T∑

t=

∣
∣�u(t)

∣
∣ –

T∑

t=

F
(
t, u(t)

)

≥ 

λ‖ũ‖ –

T∑

t=

(



f (t)
∣
∣u(t)

∣
∣ + g(t)

∣
∣u(t)

∣
∣ + C

)

≥
(

λ


–

T∑

t=

f (t)

)

‖ũ‖ – ‖ũ‖
T∑

t=

g(t) – b
m

T∑

t=

f (t) – bm

T∑

t=

g(t) – CT . ()

Due to (), ϕ is bounded below on Pm. Take

μm = inf
u∈Pm

ϕ(u)

and a sequence {uk} ⊂ Pm, satisfying

ϕ(uk) → μm as k → ∞.

Similar to the proof of the boundedness of {wk} in Step , {uk} is bounded in HT via ().
Then {uk} contains a convergent subsequence that is still denoted {uk} for convenience,
satisfying

uk ⇀ u∗
m weakly in HT , as k → ∞.

Noting that Pm is convex and closed in HT , one has u∗
m ∈ Pm. Moreover, in view of the

weakly lower semi-continuity of ϕ, one has

μm = lim
k→∞

ϕ(uk) ≥ ϕ
(
u∗

m
)

and

μm = ϕ
(
u∗

m
)
.

Next, we draw the conclusion that u∗
m is an interior point of Pm. Thus u∗

m is a critical
point of ϕ.

Taking

u∗
m = ū∗

m + ũ∗
m,

where ū∗
m ∈ V , ũ∗

m ∈ W . If an < bm, one has ∂Ban ⊂ Pm, which implies that

ϕ
(
u∗

m
)

= inf
u∈Pm

ϕ(u) ≤ sup
u∈∂Ban

ϕ(u).

From the inequality above and the result (d) of Step , one gets

ϕ
(
u∗

m
) → –∞ as m → ∞.
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By the conclusion of Step , one has ū∗
m �= bm for large m. From this one deduces that u∗

m

is an interior point of Pm and u∗
m is a critical point of ϕ. Then, the proof of Theorem . is

completed. �
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