
Li et al. Advances in Difference Equations  (2016) 2016:301 
DOI 10.1186/s13662-016-1028-7

R E S E A R C H Open Access

The controllability for the internally
controlled 1-D wave equation via a finite
difference method
Juntao Li1,2, Yuhan Zheng1 and Guojie Zheng1*

*Correspondence:
guojiezheng@yeah.net
1College of Mathematics and
Information Science, Henan Normal
University, Xinxiang, 453007, P.R.
China
Full list of author information is
available at the end of the article

Abstract
In this paper, we study the controllability of the semi-discrete internally controlled 1-D
wave equation by using the finite difference method. In the discrete setting of the
finite difference method, we derive the observability inequality and get the exact
controllability for the semi-discrete internally controlled wave equation in the
one-dimensional case. Then we also analyze whether the uniform observability
inequality holds for the adjoint system as h → 0.
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1 Introduction
In this paper, we discuss the topic related to the controllability for the space semi-
discretizations of the internally controlled one-dimensional wave equation. Let us first
introduce certain notations and state the controlled system as studied in this paper. Let
ω = (a, b) be an open and nonempty subset of (, ), χω represent the characteristic func-
tion of ω. The controlled wave equation is represented as follows:

⎧
⎪⎨

⎪⎩

∂tty(x, t) – ∂xxy(x, t) = χωu(x, t), (x, t) ∈ (, ) × (, T),
y(, t) = y(, t) = , t ∈ (, T),
y(x, ) = y(x), ∂ty(x, ) = y(x), x ∈ (, ),

(.)

where T > , the initial value (y, y) belongs to H
(, ) × L(, ) and u(·) is a control

function taken from the space L(, T ; L(, )).
Problem (.) is said to be exactly controllable from the initial value (y, y) ∈ H

(, ) ×
L(, ) in time T if there exists a control function u(·) ∈ L(, T ; L(, )), such that the
solution of (.) satisfies (y(T), ∂ty(T)) = (, ). The problem of the controllability of wave
equations has also been the object of numerous studies. Extensive related references can
be found in [–] and the rich work cited therein.

In this work, we shall mainly focus on the issue of how the controllability property can
be achieved under the numerical approximation schemes. Now, we will introduce the nu-
merical project by using the finite difference method. Given N ∈N, we define h = 

N+ . We
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consider the nodal points

x = ; xj = jh, j = , . . . , N ; xN+ = ,

which divides [, ] into N +  subintervals Ij = [xj, xj+], j = , , . . . , N . We suppose that the
nodal points xk+, . . . , xk+p ∈ ω, and x, . . . , xk , xk+p+, . . . , xN ∈ (, ) \ ω, for some k, p ∈ N

with k + p ≤ N .
Now, we consider the following finite difference semi-discretization of (.):

⎧
⎪⎨

⎪⎩

y′′
j (t) – 

h [yj+(t) + yj–(t) – yj(t)] = (χωu)j(t), t ∈ (, T),
y(t) = yN+(t) = , t ∈ (, T),
yj() = y

j , y′
j() = y

j , j = , . . . , N ,
(.)

where

(χωu)j(t) =

{
u(xj, t), if xj ∈ ω,
, if xj ∈ (, ) \ ω.

The conditions y(t) = yN+(t) = , t ∈ (, T), are the Dirichlet boundary conditions in
semi-discrete case. Next, we shall rewrite equation (.) by vectors. Let

�yh(t) =
(
y(t), . . . , yN (t)

)T ,

�y
h =

(
y(x), . . . , y(xN )

)T ,

�y
h =

(
y(x), . . . , y(xN )

)T ,

and

�uh(t) =
(
u(t), . . . , uN (t)

)T .

Define the two N × N matrices

Ah =


h

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 – · · ·  
–  · · ·  
...

...
...

...
...

  · · ·  –
  · · · – 

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

Bh =

⎡

⎢
⎢
⎣

Ok×k · · · O
... Ip×p

...
O · · · O(N–k–p)×(N–k–p)

⎤

⎥
⎥
⎦ ,
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where Ip×p is a p × p identity matrix, and p, k ∈ N, which are mentioned above (.). The
system (.) can be rewritten as follows:

⎧
⎪⎨

⎪⎩

�y′′
h(t) + Ah�yh(t) = Bh�uh(t), t ∈ (, T),

y(t) = yN+(t) = , t ∈ (, T),
�yh() = �y

h, �y′
h() = �y

h,
(.)

where ′ denotes derivation with respect to time. In fact, system (.) is in the form of linear
ordinary differential equations for an unknown vector function �y(t)h = (y(t), . . . , yN (t))T ,
with the boundary conditions y(t) = yN+(t) = , and �uh(t) plays the role of control func-
tion. The adjoint system for system (.) can be represented as

⎧
⎪⎨

⎪⎩

�φ′′
h (t) + Ah �φh(t) = , t ∈ (, T),

φ(t) = φN+(t) = , t ∈ (, T),
�φh() = �φh

, �φ′
h() = �φh

 ,
(.)

where the initial date �φh
 = (φ

 , . . . ,φ
N )T , and �φh

 = (φ
 , . . . ,φ

N )T . It is easy to check that
φ

 = φ
N+ =  and φ

 = φ
N+ =  are the compatibility conditions. Throughout the paper,

we suppose that the compatibility conditions hold for any initial value.
Taking the boundary conditions φ(t) = φN+(t) = , ∀t ∈ [, T], for the solution of (.)

we define the energy of the semi-discrete system (.) as

Eh(t) =
h


N∑

i=

(
∣
∣φ′

i(t)
∣
∣ +

∣
∣
∣
∣
φi+(t) – φi(t)

h

∣
∣
∣
∣

)

, ∀t ∈ [, T].

Since Bh is a symmetric matrix, the observability inequality of (.) can be formulated as:
To find a constant C(T , h) such that (see [–])

Eh() ≤ C(T , h)
∫ T



∥
∥Bh �φh(t)

∥
∥
RN dt, (.)

where

Eh() =
h


N∑

i=

(
∣
∣φ

i
∣
∣ +

∣
∣
∣
∣
φ

i+ – φ
i

h

∣
∣
∣
∣

)

.

Remark . The energy Eh(t) is conserved for the solution of (.). Namely, for any h > 
and solution �φh(t) of (.), we have (see [])

Eh(t) = Eh(), for any t ∈ [, T].

In this paper, we will study whether the inequality (.) for adjoint system (.) holds.
We are also interested in whether the constant C(T , h) is bounded as h → . The main
results of the paper are presented as follows.

Theorem . For any T > , the observability estimate (.) for the adjoint system (.)
holds.
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Remark . Theorem . shows that the semi-discrete system (.) or (.) is controllable
for any time T > .

Theorem . For any T > , we have

sup
solution of (.)

Eh()
∫ T

 ‖Bh �φh(t)‖
RN dt

→ +∞, as h → . (.)

To the best of our knowledge, Infante and Zuazua made the first study of this topic
in []. They studied a controllability result for the semi-discrete -D wave equation with
boundary control. However, the uniform controllability for the semi-discrete systems in
[] cannot be derived as the discretization parameter h → . The main differences be-
tween [] and our paper are as follows. In [], the authors focused on a one-dimensional
boundary controlled wave equation, and we mainly study the internally controlled -D
wave equation. In this case, the controller is more complicated than the case with con-
troller on boundary. Regarding other works on this subject, we mention [, , ] and [].

The paper is organized as follows: Section  briefly describes some preliminary results
on the finite difference scheme. The proofs of Theorem . and Theorem . are provided
in Section .

2 The finite difference scheme
In this section, we will discuss the numerical project by the finite difference method. We
consider the numerical problem for (.) in the state space R

N with the usual Euclidean
norm and inner product denoted by ‖ · ‖RN and 〈·, ·〉RN , respectively. To this end, we first
introduce some properties for the eigenvalues and eigenvectors of the matrix Ah. The
spectrum for Ah can be explicitly computed in this case (see []). The eigenvalues λi(h)
(i = , . . . , N ) satisfy

λi(h) =

h sin

(
iπh



)

, (.)

and the corresponding unit eigenvectors in R
N are

�wh
i =

(
wh

i,, . . . , wh
i,N
)T , and wh

i,j =
√


N + 

sin(iπ jh), j = , . . . , N . (.)

Clearly, the family of eigenvectors

{�wh
 , �wh

, . . . , �wh
N
}

forms an orthonormal basis of RN . (.)

Indeed, we can easily get the following properties for these eigenvectors.

Lemma .
(i) For any eigenvector w = (w, w, . . . , wN )T with eigenvalue λ(h) of matrix Ah, the

following identity holds:

N∑

j=

∣
∣
∣
∣
wj – wj+

h

∣
∣
∣
∣



= λ(h)
N∑

j=

|wj|, (.)

where w = wN+ = .
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(ii) If wk = (wk,, wk,, . . . , wk,N )T and wl = (wl,, wl,, . . . , wl,N )T are eigenvectors associated
to eigenvalue λk , λl , and λk �= λl , then we have

N∑

j=

(wk,j – wk,j+)(wl,j – wl,j+) = , (.)

where wk, = wk,N+ = , and wl, = wl,N+ = .

This lemma is quoted from [].

Lemma . Assume N is large enough so that ω contains at least two consecutive nodal
points. Then

Bh �wh
i �= , for all i = , , . . . , N .

Proof Since there are more than two consecutive nodal points in ω = (a, b), we let l(h)
denote the first natural number such that l(h)h ∈ (a, b), and m(h) denote the last natural
number such that m(h)h ∈ (a, b). Then we have

Bh �wh
i =

(
, . . . , , wh

i,l(h), . . . , wh
i,m(h), , . . . , 

)T . (.)

Here,

wh
i,l(h) =

√


N + 
sin
(
iπ l(h)h

)
=
√


N + 

sin

(
il(h)π
N + 

)

,

and

wh
i,l(h)+ =

√


N + 
sin
(
iπ
(
l(h) + 

)
h
)

=
√


N + 

sin

(
i(l(h) + )π

N + 

)

could not be zero at the same time. Thus, we complete the proof of the lemma. �

Especially, we can get the following property for the eigenvectors for the matrix Ah,
which will play a key role in the proof of the main results.

Proposition . Assume N is large enough so that ω contains at least two consecutive
nodal points. Then there exists a positive constant L which is independent on h such that

∥
∥Bh �wh

i
∥
∥
RN > L

holds for the unit eigenvector �wh
i (i = , . . . , N ) of the matrix Ah.

Proof First of all, we claim that there exists a positive number M which is independent on
r such that

∫ b

a
sin(rπ t) dt > M, for r = , , . . . .



Li et al. Advances in Difference Equations  (2016) 2016:301 Page 6 of 12

To this end, we calculate the following integrations:

∫ b

a
sin(rπ t) dt =

b – a


–
sin(rπb) – sin(rπa)

rπ

→ b – a


, as r → ∞. (.)

On the one hand, there exists a positive number N depending only on b – a, such that

∫ b

a
sin(rπ t) dt >

b – a


, as r > N.

On the other hand, there exists a positive number M depending only on N, such that

∫ b

a
sin(rπ t) dt > M, as  < r ≤ N.

Taking M = min{ b–a
 , M}, we see that the claim is correct.

After directly calculating, we obtain

∥
∥Bh �wh

i
∥
∥
RN =

∑

jh∈(a,b)


N + 

[
sin(iπ jh)

]

=
∑

jh∈(a,b)


N + 

 – cos(iπ jh)


=
∑

jh∈(a,b)


N + 

–


N + 
∑

jh∈(a,b)

cos(iπ jh). (.)

Let l(h) denote the first natural number such that l(h)h ∈ (a, b), and m(h) denote the last
natural number such that m(h)h ∈ (a, b). Obviously, we have

l(h) =
[

a
h

]

+ 

and

m(h) =

{
[ b

h ], if b
h /∈ N,

b
h – , if b

h ∈ N.

Note that


N + 

∑

jh∈(a,b)

cos(iπ jh) =


(N + )
sin([m(h) + ]iπh) – sin([l(h) – ]iπh)

sin(iπh)
. (.)

Hence, there exists a natural number I depending only on b – a, such that 
i < b–a

 , as i > I.
From the theory of classic analysis, we have


π

≤ sin x
x

≤ , as x ∈
(

,
π



]

,
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i.e.,

sin x ≥ 
π

x, as x ∈
(

,
π



]

.

Combining the above inequality with (.), we see that

∣
∣
∣
∣


N + 

∑

jh∈(a,b)

cos(iπ jh)
∣
∣
∣
∣≤


(N + )


iπh

=


iπ
<

b – a


, (.)

If  < i ≤ I, then

∑

jh∈(a,b)


N + 

[
sin(iπ jh)

] → 
∫ b

a
sin(iπ t) dt,

for i = , , . . . , I, as N → ∞, and

∑

jh∈(a,b)


N + 

=
m(h) – l(h)

N + 
→ b – a, as N → ∞.

Thus, there exists a positive number N > I depending only on a, b and b – a, such that

∑

jh∈(a,b)


N + 

>
b – a


(.)

and

∑

jh∈(a,b)


N + 

[
sin(iπ jh)

] > M, (.)

for i = , , . . . , I, when N > N.
Case I: N > N, N ≥ i > I. From (.), (.), and (.), we can easily see that

∥
∥Bh �wh

i
∥
∥
RN =

∑

jh∈(a,b)


N + 

–


N + 
∑

jh∈(a,b)

cos(iπ jh) >
b – a


.

Case II: N > N,  < i ≤ I. According to (.), we can derive

∥
∥Bh �wh

i
∥
∥
RN =

∑

jh∈(a,b)


N + 

[
sin(iπ jh)

] > M.

Case III: N ≤ N. According to Lemma ., there exists a positive constant L, which is
independent on h, such that

∥
∥Bh �wh

i
∥
∥
RN > L,

for any unit eigenvector �wh
i (i = , . . . , N ).

In summary, taking L = min{ b–a
 , M

 , L}, we can complete the proof of this conclusion. �
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Remark . This theorem gives a fundamental property for the unit eigenvectors �wh
i

(i = , . . . , N ) of the discrete Laplacian operator. It shows that the energy for these unit
eigenvectors have an uniform lower boundary, which is positive and not dependent on h,
in a nonempty and open subset ω ⊂ (, ).

Now, we need to introduce certain notations. Let Xh
 denote the space RN equipped with

the norm ‖ · ‖

‖u‖ = h
N∑

j=

|uj|, for any u = (u, u, . . . , uN )T ∈R
N .

Let Xh
 denote the space R

N equipped with the norm ‖ · ‖,

‖u‖ = h
N∑

j=

∣
∣
∣
∣
uj – uj+

h

∣
∣
∣
∣



, for any u = (u, u, . . . , uN )T ∈R
N ,

where u = uN+ = . According to the definitions of the discrete norms, the energy can be
represented as Eh(t) = 

 (‖ �φ′
h(t)‖ + ‖ �φh(t)‖), where �φh(t) is the solution of equation (.).

Lemma . For any vector u = (u, u, . . . , uN )T ∈R
N , we have the following inequality:

λ(h)‖u‖ ≤ ‖u‖.

This lemma can easily be deduced from Lemma ..

Remark .
(i) According to Lemma ., it is easy to find that the spaces Xh

 and Xh
 are both

Banach spaces. In fact, Xh
 and Xh

 can be regarded as the discrete version of the
space L(, ) and H

(, ), respectively. Thus, Lemma . can be regarded as the
discrete version of Poincaré’s inequality.

(ii) Since R
N ×R

N is a finite dimensional space, thus all norms of this space are
equivalent. In particular, there exist positive numbers C, C, such that

C
∥
∥(z, z)

∥
∥

Xh
×Xh


≤ ∥
∥(z, z)

∥
∥
RN ×RN ≤ C

∥
∥(z, z)

∥
∥

Xh
×Xh


(.)

hold for any (z, z) ∈R
N ×R

N .

3 The proof of Theorem 1.1 and Theorem 1.2
3.1 The proof of Theorem 1.1

Proof First of all, we will prove that there exists a positive constant C(T , h) such that the
inequality

∥
∥
( �φh

, �φh

)∥
∥
RN ×RN ≤ C(T , h)

∫ T



∥
∥Bh �φh(t)

∥
∥
RN dt (.)

holds, where �φh(t) is the solution of (.) with initial data ( �φh
, �φh

 ).
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Let T > . We first define a function F : RN ×R
N →R as

F
( �φh

, �φh

)

=
∫ T



∥
∥Bh �φh(t)

∥
∥
RN dt,

where �φh(t) is the solution of (.) with initial data ( �φh
, �φh

 ). Obviously, F is continuous.
Now, we will prove that

min
{

F
( �φh

, �φh

)
;
∥
∥
( �φh

, �φh

)∥
∥
RN ×RN = 

}≥ L(h, T) (.)

holds for certain positive constant L(h, T) only depending on h and T .
Suppose that there exists an unit vector ( �ϕh

, �ϕh
 ) in R

N × R
N such that F( �ϕh

, �ϕh
 ) = .

Since ‖( �ϕh
, �ϕh

 )‖RN ×RN = , �ϕh
 and �ϕh

 could not be zero at the same time. Without loss of
generality, we assume that �ϕh

 �= . According to (.), we have

�ϕh
 =

N∑

j=

ϕ
j
 �wh

j

and

�ϕh
 =

N∑

j=

ϕ
j
 �wh

j ,

where
∑N

j= |ϕj
| = ‖�ϕh

‖
RN �= . Solving (.), we can deduce that

�φh(t) =
N∑

j=

βj(t)�wh
j , (.)

where βj(t) = ϕ
j
 cos(

√
λj(h)t) + ϕ

j
√

λj(h)
sin(

√
λj(h)t).

From the definition of the function F and the assumption that F( �ϕh
, �ϕh

 ) = , we have

 = F
( �ϕh

, �ϕh

)

=
∫ T



∥
∥Bh �φh(t)

∥
∥
RN dt =

∫ T



N∑

j=

∣
∣βj(t)Bh �wh

j
∣
∣ dt.

Thus,

N∑

j=

βj(t)Bh �wh
j = , for any t ∈ [, T]. (.)

It follows from Lemma . or Proposition . that Bh �wh
j �=  for any j = , , . . . , N . It is

obvious that the rank of subspace spanned by {Bh �wh
 , . . . , Bh �wh

N } is less than N . Therefore,
we can assume that Bh �wh

 , . . . , Bh �wh
α , with  ≤ α < N , are linear independent in R

N , and

span
{

Bh �wh
 , . . . , Bh �wh

α

}
= span

{
Bh �wh

 , . . . , Bh �wh
N
}

.
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Hence,

Bh �wh
q =

α∑

j=

bqjBh �wh
j , for any q = α + , . . . , N .

For any q = α + , . . . , N , there exists at least one scalar bqj(q) ( ≤ j(q) ≤ α) such that
bqj(q) �= . This, together with (.), indicates that

 =
α∑

j=

βj(t)Bh �wh
j +

N∑

q=α+

βq(t)

(
α∑

j=

bqjBh �wh
j

)

=
α∑

j=

(

βj(t) +
N∑

q=α+

βq(t)bqj

)

Bh �wh
j , for any t ∈ [, T]. (.)

According to the linear independence of {Bh �wh
j }αj=, we can deduce that

βj(t) +
N∑

q=α+

βq(t)bqj = , for any j = , , . . . ,α, and for any t ∈ [, T]. (.)

Taking t = , we get

ϕ
j
 +

N∑

q=α+

ϕ
q
bqj = , for any j = , , . . . ,α.

Differentiating (.) twice and taking t = , we have

λj(h)ϕj
 +

N∑

q=α+

λq(h)ϕq
bqj = , for any j = , , . . . ,α.

By induction, we obtain

λm
j (h)ϕj

 +
N∑

q=α+

λm
q (h)ϕq

bqj = , for any j = , , . . . ,α, and m ∈N
+. (.)

It follows from (.) that {λj(h)}N
j= are different from each other. Thus, we can deduce that

ϕ
j
 = , for any j = , , . . . ,α, (.)

and

ϕ
q
bqj = , for any q = α + , . . . , N , and j = , , . . . ,α.

Taking j = j(q), we have

ϕ
q
 = , for any q = α + , . . . , N .
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This, together with (.), leads to a contradiction to the assumption that �ϕh
 �= . Thus, (.)

holds. Note that (.) implies F(μυ,μυ) = μF(μυ,μυ) for every (υ,υ) ∈ R
N × R

N

and μ ∈ R. Thus, it is obvious that inequality (.) leads to (.).
From (.) with (.), it is easy to obtain the observability inequality (.) of the semi-

discrete system (.). This completes the proof of this theorem. �

3.2 The proof of Theorem 1.2

Proof Given the initial data �φh
 = �wh

N , and �φh
 = , the solution of equation (.) can be

represented as

�φh(t) = cos
(√

λj(h)t
)�wh

N .

By Lemma ., one shows that

Eh() =
h


N∑

i=

∣
∣
∣
∣
wN ,i+ – wN ,i

h

∣
∣
∣
∣



=
h

λN (h), (.)

where wN , = wN ,N+ = . Then

∫ T



∥
∥Bh �φh(t)

∥
∥
RN dt =

∫ T



∣
∣cos

(√
λN (h)t

)
Bh �wh

N
∣
∣ dt (.)

=
∥
∥Bh �wh

N
∥
∥
RN

∫ T



∣
∣cos

(√
λN (h)t

)∣
∣ dt ≤ T . (.)

It follows from (.) and (.) that

Eh()
∫ T

 ‖Bh �φh(t)‖
RN dt

≥
h
 λN (h)

T
=

hλN (h)
T

. (.)

By (.), we derive that

hλN (h)
T

=
 sin( πNh

 )
Th

→ ∞, as h → . (.)

This completes the proof of this theorem. �
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