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Abstract
We aim to investigate the MSM-fractional calculus operators, Caputo-type
MSM-fractional differential operator, and pathway fractional integral operator of the
generalized k-Mittag-Leffler function. We also investigate certain statistical
distribution associated with the generalized k-Mittag-Leffler function. Certain
particular cases of the derived results are considered and indicated to further reduce
to some known results.
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1 Introduction and preliminaries
Throughout this paper, let C, R, R+, Z–

 , and N be the sets of complex numbers, real num-
bers, positive real numbers, nonpositive integers, and positive integers, respectively, and
let R+

 := R
+ ∪ {}.

Díaz and Pariguan [] found that the expression

(x)n,k := x(x + k)(x + k) · · · (x + (n – )k
)

(.)

has appeared repeatedly in a variety of contexts such as combinatorics of creation, anni-
hilation operators, and perturbative computation of Feynman integrals. Motivated by this
observation, they [] used the Gauss form of the gamma function (see [], Eq. (), p.) to
introduce the so-called k-gamma function

�k(z) = lim
n→∞

n!kn(nk)
z
k –

(z)n,k

(
k ∈R

+; z ∈ C \ kZ–

)
. (.)

Starting from this definition, they [] presented a number of properties for the k-gamma
function. We recall some of them:

�k(z + k) = z�k(z) and �k(k) = ; (.)
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the Euler integral form:

�k(z) =
∫ ∞


tz–e– tk

k dt
(
k ∈R

+;�(z) > 
)
; (.)

the k-Pochhammer symbol (λ)n,k defined (for λ,ν ∈C; k ∈R) by

(λ)ν,k :=
�k(λ + νk)

�k(λ)
(
λ ∈C \ {})

=

⎧
⎨

⎩
 (ν = ),

λ(λ + k) · · · (λ + (n – )k) (ν = n ∈N);
(.)

from (.), it is easy to find the following relationship between the gamma function � and
the k-gamma function �k :

�k(z) = k
z
k –�

(
z
k

)
. (.)

In a number of subsequent works including [], the k-gamma function and
k-Pochhammer symbol have been used to extend and investigate such special func-
tions and integral operators as (for example) the k-beta function, k-zeta function,
k-hypergeometric function, k-Mittag-Letter functions, k-Wright function, and
k-analogue of the Riemann-Liouvile fractional integral operator.

In , the Swedish mathematician Gosta Mittag-Leffler [] (see also []) introduced
and investigated the so-called Mittag-Leffler function

Eα(z) :=
∞∑

n=

zn

�(αn + )
(
z ∈C;α ∈R

+

)
. (.)

Since then, the Mittag-Leffler function Eα (.) has been extended in a number of ways
and, together with its extensions, applied in various research areas such as engineering
and (in particular) statistics. The Mittag-Leffler functions and related distributions were
given in []. Further, Mathai and Haubold [] established connections among generalized
Mittag-Leffler functions, pathway model, Tsallis statistics, superstatistics and power law,
and the corresponding entropy measures. A statistical perspective of Mittag-Leffler func-
tions and matrix-variate analogues was given by Mathai, who presented the involved re-
sults in terms of statistical densities, which are useful in statistical distribution theory and
stochastic processes. Also, various pathways were investigated from the exponential and
gamma densities to the Mittag-Leffler densities and then from the Mittag-Leffler densities
to the Lèvi and Linnik densities []. Lin [] proved that the Mittag-Leffler distributions be-
long to the class of distributions with completely monotone derivatives. The fundamental
properties of the Mittag-Leffler distributions and their extensions, including the tail be-
havior of distribution and explicit expressions for moments of all orders and for the density
functions, are also given.

Here, for an easier reference, we give a brief history of some chosen extensions of the
Mittag-Leffler function Eα (.). Wiman [] presented the following generalization Eα,β
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of Eα :

Eα,β (z) :=
∞∑

n=

zn

�(αn + β)
(
α,β ∈C; min

{�(α),�(β)
}

> 
)
. (.)

Prabhakar [] introduced the function Eγ

α,β in the following form:

Eγ

α,β (z) =
∞∑

n=

(γ )n

n!�(αn + β)
zn (

α,β ,γ ∈ C; min
{�(α),�(β),�(γ )

}
> 

)
. (.)

Another generalization of the Mittag-Leffler function Eα was given by Shukla and Prajap-
ati []:

Eγ ,q
α,β (z) =

∞∑

n=

(γ )qn

n!�(αn + β)
zn

(
α,β ,γ ∈ C; min

{�(α),�(β),�(γ )
}

> ; q ∈ (, ) ∪N
)
. (.)

We also recall the following two extensions of the Mittag-Leffler function (see [],
Eqs. (.) and (.)):

Eη,δ,q
α,β ,p(z) =

∞∑

n=

(η)qn

�(αn + β)(δ)pn
zn

(
p, q ∈R

+; min
{�(α),�(β),�(η),�(δ)

}
> 

)
; (.)

Eμ,ρ,η,q
α,β ,ν,σ ,δ,p(z) =

∞∑

n=

(μ)ρn(η)qn

�(αn + β)(ν)σn(δ)pn
zn

(
p, q ∈R

+; q ≤ �(α) + p;

min
{�(α),�(β),�(η),�(δ),�(μ),�(ν),�(ρ),�(σ )

}
> 

)
. (.)

For more generalizations of the Mittag-Leffler functions, we refer the reader, for exam-
ple, to [–, ].

The Fox-Wright hypergeometric function p�q(z) is given by the series

p�q(z) = p�q

[
(ai,αi),p

(bj,βj),q

∣
∣∣
∣z

]

=
∏q

j= �(βj)
∏p

i= �(αi)

∞∑

k=

∏p
i= �(ai + αik)

∏q
j= �(bj + βjk)

zk

k!
, (.)

where ai, bj ∈ C and αi,βj ∈ R (i = , , . . . , p; j = , , . . . , q). Asymptotic behavior of this
function for large values of the argument of z ∈C was studied in [], and under the con-
dition

q∑

j=

βj –
p∑

i=

αi > –, (.)

was found in [, ]. Properties of this generalized Wright function were investigated
in [] (see also [, ]).
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The generalized hypergeometric function pFq is defined as follows []:

pFq

[
(ap);
(bq);

z

]

=
∞∑

n=

∏p
j=(aj)n

∏q
j=(bj)n

zn

n!
(
p ≤ q, z ∈C; p = q + , |z| < 

)
, (.)

which obviously is a particular case of the Fox-Wright hypergeometric function p�q(z)
(.) when αi =  = βj (i = , , . . . , p; j = , , . . . , q).

Let λ, λ′, ξ , ξ ′, γ ∈C with �(γ ) >  and x ∈R
+. Then the generalized fractional integral

operators involving the Appell functions F are defined as follows:

(
Iλ,λ′ ,ξ ,ξ ′ ,γ

,+ f
)
(x) =

x–λ

�(γ )

∫ x


(x – t)γ –t–λ′

F

(
λ,λ′, ξ , ξ ′;γ ;  –

t
x

,  –
x
t

)
f (t) dt (.)

and

(
Iλ,λ′ ,ξ ,ξ ′ ,γ

– f
)
(x) =

x–λ′

�(γ )

∫ ∞

x
(t – x)γ –t–λF

(
λ,λ′, ξ , ξ ′;γ ;  –

t
x

,  –
x
t

)
f (t) dt. (.)

The generalized fractional integral operators of types (.) and (.) have been intro-
duced by Marichev [] and later extended and studied by Saigo and Maeda []. These
operators are known as the Marichev-Saigo-Maeda operators (MSM-operators). Recently,
Mondal and Nisar [] have investigated the Marichev-Saigo-Maeda fractional integral
operators involving generalized Bessel functions (see also []).

The corresponding fractional differential operators have their respective forms:

(
Dλ,λ′ ,ξ ,ξ ′,γ

+ f
)
(x) =

(
d

dx

)[�(γ )]+(
I–λ′ ,–λ,–ξ ′+[�(γ )]+,–ξ ,–γ +[�(γ )]+

+ f
)
(x) (.)

and

(
Dλ,λ′ ,ξ ,ξ ′,γ

– f
)
(x) =

(
–

d
dx

)[�(γ )]+(
I–λ′ ,–λ,–ξ ′,–ξ+[�(γ )]+,–γ +[�(γ )]+

– f
)
(x). (.)

The fractional integral operators have many interesting applications in various fields in-
cluding (for example) a certain class of complex analytic functions (see []). For some
basic results on fractional calculus, we refer to [–, ].

The following four results will be required (for the first and second, see [, ]; for the
third and fourth, see []).

Lemma . Let λ, λ′, ξ , ξ ′, γ , ρ ∈ C be such that �(γ ) >  and

�(ρ) > max
{

,�(
λ + λ

′
+ ξ – γ

)
,�(

λ′ – ξ ′)}.

Then

(
Iλ,λ′ ,ξ ,ξ ′ ,γ

,+ tρ–)(x)

=
�(ρ)�(ρ + γ – λ – λ′ – ξ )�(ρ + ξ ′ – λ′)

�(ρ + ξ ′)�(ρ + γ – λ – λ′)�(ρ + γ – λ′ – ξ )
xρ–λ–λ′+γ –. (.)
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Lemma . Let λ, λ′, ξ , ξ ′, γ , ρ ∈C be such that �(γ ) >  and

�(ρ) > max
{�(ξ ),�(

–λ – λ′ + γ
)
,�(

–λ – ξ ′ + γ
)}

.

Then

(
Iλ,λ′ ,ξ ,ξ ′ ,γ

– t–ρ
)
(x)

=
�(–ξ + ρ)�(λ + λ′ – γ + ρ)�(λ + ξ ′ – γ + ρ)

�(ρ)�(λ – ξ + ρ)�(λ + λ′ + ξ ′ – γ + ρ)
x–λ–λ′+γ –ρ . (.)

Lemma . Let λ, δ, γ , ρ ∈C with �(λ) >  and �(ρ) > max{,�(δ – γ )}. Then

(
Iλ,δ,γ

+ tρ–)(x) =
�(ρ)�(ρ + γ – δ)

�(ρ – δ)�(ρ + λ + γ )
xρ–δ–. (.)

In particular,

(
Iλ,γ

+ tρ–)(x) =
�(ρ + γ )

�(ρ + λ + γ )
xρ– (�(λ) > ,�(ρ) > max

{
, –�(γ )

})
(.)

and

(
Iλ

+tρ–)(x) =
�(ρ)

�(ρ + λ)
xρ– (

min
{�(λ),�(ρ)

}
> 

)
. (.)

Lemma . Let λ, δ, γ , ρ ∈C with �(λ) >  and �(ρ) <  + min{�(δ),�(γ )}. Then

(
Iλ,δ,γ

– tρ–)(x) =
�(δ – ρ + )�(γ – ρ + )

�( – ρ)�(λ + δ + γ – ρ + )
xρ–δ–. (.)

In particular,

(
Iλ,γ

– tρ–)(x) =
�(γ – ρ + )

�(λ + γ – ρ + )
xρ– (�(λ) > ,�(ρ) <  + �(γ )

)
(.)

and

(
Iλ

–tρ–)(x) =
�( – ρ)

�(λ – ρ + )
xρ– (�(λ) > ,�(ρ) < 

)
. (.)

As mentioned before, k-extensions of the Mittag-Leffler functions have been given and
investigated particularly in view of statistics. In this paper, we aim to investigate the MSM-
fractional calculus operators, Caputo-type MSM-fractional differential operator, and that
pathway fractional integral operator of the generalized k-Mittag-Leffler function (.). We
also investigate certain statistical distribution associated with the generalized k-Mittag-
Leffler function (.), in which certain particular cases of the derived results are considered
and indicated to further reduce to some known results.
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2 k-Mittag-Leffler functions
Here we introduce k-Mittag-Leffler functions and their extensions. The simplest k-
extensions of the Mittag-Leffler functions (.) and (.) can be given by

Ek,α(z) :=
∞∑

n=

zn

�k(αn + )
(
k ∈R

+;α ∈R
+

)

(.)

and

Ek,α,β(z) :=
∞∑

n=

zn

�k(αn + β)
(
k ∈R

+; min
{�(α),�(β)

}
> 

)
, (.)

respectively (see, e.g., [], Eq. ()). Dorrego and Cerutti [] introduced the k-Mittag-
Leffler function

Eη

k,α,β(z) :=
∞∑

n=o

(η)n,k

�k(αn + β)
zn

n!
(
k ∈R

+;α,β ,η ∈C; min
{�(α),�(β)

}
> 

)
(.)

and investigated some properties associated with the definition itself and the Riemann-
Liouville fractional calculus operators. Saxena et al. [] extended the k-Mittag-Leffler
function (.) slightly as follows:

Eη,τ
k,α,β(z) :=

∞∑

n=o

(η)nτ ,k

�k(αn + β)
zn

n!
(
k ∈R

+;α,β ,η, τ ∈C; min
{�(α),�(β)

}
> 

)
. (.)

They derived its Euler transform, Laplace transform, Whittaker transform, and fractional
Fourier transform of order α ( < α ≤ ). Daiya and Ram [] investigated the statistical
density of the k-Mittag-Leffler function (.). Gupta and Parihar [] defined a further
extension of the k-Mittag-Leffler functions,

Eη,δ,q
k,α,β ,p(z) :=

∞∑

n=

(η)qn,k

�k(αn + β)(δ)pn.k
zn

(
k, p, q ∈R

+;α,β ,η, δ ∈C; min
{�(α),�(β),�(η),�(δ)

}
> ; q ≤ �(α) + p

)
, (.)

presented its properties, including differentiation, the fractional Fourier transform,
Laplace transform, and k-Beta transform, and determined the k-Riemann-Liouville frac-
tional integral and differentiation.

3 MSM fractional integral representations of (2.5)
Here we present MSM fractional integral representations of the generalized k-Mittag-
Leffler function (.) and consider some particular cases.
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Theorem  Let λ, λ′, ξ , ξ ′, γ , ρ , α, β , η, δ ∈C with �(γ ) >  and

�(ρ) > max
{

,�(
λ + λ′ + ξ – γ

)
,�(

λ′ – ξ ′)}.

Also, let k, p, q, x ∈R
+. Then

(
Iλ,λ′ ,ξ ,ξ ′ ,γ

,+ tρ–Eη,δ,q
k,α,β ,p(t)

)
(x) =

�(δ/k)
�(η/k)

xρ–λ–λ′+γ –

k
β
k –

× �

[
( η

k , q), (ρ, ), (ρ + γ – λ – λ′ – ξ , ),
( β

k , α
k ), ( δ

k , p), (ρ + ξ ′, ), (ρ + γ – λ – λ′, ),

(ρ + ξ ′ – λ′, ), (, );
(ρ + γ – λ′ – ξ , );

kq–p– α
k x

]
. (.)

Proof Let L be the left-hand side of (.). Then, using (.), we have

L =

(

Iλ,λ′ ,ξ ,ξ ′ ,γ
,+ tρ–

∞∑

n=

(η)nq,k

�k(αn + β)
tn

(δ)pn,k

)

(x).

Interchanging the summation and integration, which is verified under the conditions in
this theorem, we get

L =
∞∑

n=

(η)nq,k

�k(αn + β)(δ)pn,k

(
Iλ,λ′ ,ξ ,ξ ′,γ

,+ tρ+n–)(x).

Applying Lemma ., we obtain

L =
∞∑

n=

(η)nq,k

�k(αn + β)(δ)pn,k

× �(ρ + n)�(ρ + γ – λ – λ′ – ξ + n)�(ρ + ξ ′ – λ′ + n)
�(ρ + ξ ′ + n)�(ρ + γ – λ – λ′ + n)�(ρ + γ – λ′ – ξ + n)

× xρ+n–λ–λ′+γ –.

Now, using relations (.) and (.), we get

L = xρ–λ–λ′+γ –

×
∞∑

n=

knq�( η

k + nq)�( δ
k )

�( η

k )k
αn+β

k –�( αn+β

k )�( δ
k + np)knp

× �(ρ + n)�(ρ + γ – λ – λ′ – ξ + n)�(ρ + ξ ′ – λ′ + n)�(n + )
�(ρ + ξ ′ + n)�(ρ + γ – λ – λ′ + n)�(ρ + γ – λ′ – ξ + n)

xn

n!
,

which, in view of (.), leads to the right-hand side of (.). This completes the proof. �

Corollary . Let λ, ξ , γ , ρ , α, β , η, δ ∈C with �(γ ) >  and

�(ρ) > max
{

,�(ξ – γ )
}

.
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Also, let k, p, q, x ∈R
+. Then

(
Iλ,ξ ,γ

,+ tρ–Eη,δ,q
k,α,β ,p(t)

)
(x)

=
�(δ/k)
�(η/k)

xρ–ξ–

k
β
k –

× �

[
( η

k , q), (ρ + γ – ξ , ), (ρ, ), (, );
( β

k , α
k ), ( δ

k , p), (ρ – ξ , ), (ρ + γ + λ, );
kq–p– α

k x
]

. (.)

Theorem  Let λ, λ′, ξ , ξ ′, γ , ρ , α, β , η, δ ∈C be such that �(λ) >  and

�(ρ) > max
{�(ξ ),�(

–λ – λ′ + γ
)
,�(

–λ – ξ ′ + γ
)}

.

Also, let k, p, q ∈R
+. Then

(
Iλ,λ′ ,ξ ,ξ ′ ,γ

– tρ–Eη,δ,q
k,α,β ,p(t)

)
(x) =

�(δ/k)
�(η/k)

x–λ–λ′+γ –ρ

k
β
k –

× �

[
( η

k , q), (–ξ + ρ, ), (λ + λ′ – γ + ρ, ),
( β

k , α
k ), ( δ

k , p), (ρ, ), (λ – ξ + ρ, ),

(λ + ξ ′ – γ + ρ, ), (, );
(λ + λ′ + ξ ′ – γ + ρ, );

kq–p– α
k x

]
. (.)

Proof We can establish (.) by a similar argument as in the proof of (.), using Lemma .
instead of Lemma .. We omit the details. �

Corollary . Let λ, ξ , γ , ρ , α, β , η, δ ∈C be such that �(λ) >  and

�(ρ) > max
{�(–ξ ),�(–γ )

}
.

Also, let k, p, q ∈R
+. Then

(
Iλ,ξ ,γ

– tρ–Eη,δ,q
k,α,β ,p(t)

)
(x)

=
�(δ/k)
�(η/k)

xρ–ξ–

k
β
k – 

× �

[
( η

k , q), (ξ – ρ + , ), (γ – ρ + , ), (, );
( β

k , α
k ), ( δ

k , p), ( – ρ, ), (λ + ξ + γ – ρ + , );
kq–p– α

k x
]

. (.)

4 MSM-fractional differential operator of (2.5)
Here we derive the Marichev-Saigo-Maeda fractional differentiation of the generalized
k-Mittag-Leffler function (.). The following lemmas will be required (see []).

Lemma . Let λ, λ′, ξ , ξ ′, γ , ρ ∈C be such that

�(ρ) > max
{

,�(–λ + ξ ),�(
–λ – λ′ – ξ ′ + γ

)}
.
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Then

(
Dλ,λ′ ,ξ ,ξ ′,γ

+ tρ–)(x) =
�(ρ)�(–ξ + λ + ρ)�(λ + λ′ + ξ ′ – γ + ρ)

�(–ξ + ρ)�(λ + λ′ – γ + ρ)�(λ + ξ ′ – γ + ρ)
xλ+λ′–γ +ρ–. (.)

Lemma . Let λ, λ′, ξ , ξ ′, γ , ρ ∈C be such that

�(ρ) > max
{�(

–ξ ′),�(
λ′ + ξ – γ

)
,�(

λ + λ′ – γ
)

+
[�(γ )

]
+ 

}
.

Then

(
Dλ,λ′ ,ξ ,ξ ′,γ

– t–ρ
)
(x) =

�(ξ ′ + ρ)�(–λ – λ′ + γ + ρ)�(–λ′ – ξ + γ + ρ)
�(ρ)�(–λ′ + ξ ′ + ρ)�(–λ – λ′ – ξ + γ + ρ)

xλ+λ′–γ –ρ . (.)

Theorem  Let λ, λ′, ξ , ξ ′, γ , ρ , α, β , η, δ ∈C be such that

�(ρ) > max
{

,�(–λ + ξ ),�(
–λ – λ′ – ξ ′ + γ

)}
.

Also, let k, p, q ∈R+. Then

(
Dλ,λ′ ,ξ ,ξ ′,γ

+ tρ–Eη,δ,q
k,α,β ,p(t)

)
(x) =

�(δ/k)
�(η/k)

xλ+λ′–γ +ρ–

k
β
k –

× �

[
( η

k , q), (ρ, ), (–ξ + λ + ρ, ),
( β

k , α
k ), ( δ

k , p), (–ξ + ρ, ), (λ + λ′ – γ + ρ, ),

(λ + λ′ + ξ ′ – γ + ρ, ), (, );
(λ + ξ ′ – γ + ρ, );

kq–p– α
k x

]
. (.)

Proof Let L be the left-hand side of (.). Taking the MSM differential operator on (.)
and interchanging the differentiation and summation, which is verified under the condi-
tions in this theorem, we have

L =
∞∑

n=

(η)nq,k

�k(αn + β)(δ)pn,k

(
Dλ,λ′ ,ξ ,ξ ′,γ

+ tρ+n–)(x).

Using (.), (.), and Lemma ., we get

L =
∞∑

n=

knq�( η

k + nq)�( δ
k )

�( η

k )k
αn+β

k –�( αn+β

k )�( δ
k + np)knp

× �(ρ + n)�(–ξ + λ – ρ + n)�(λ + λ′ + ξ ′ – γ + ρ + n)
�(–ξ – ρ + n)�(λ + λ′ – γ + ρ + n)�(λ + ξ ′ – γ + ρ + n)

× xλ+λ′–γ +ρ+n–,

which, in view of (.), is equal to the right-hand side of (.). �

Theorem  Let λ, λ′, ξ , ξ ′, γ , ρ , α, β , η, δ ∈C be such that

�(ρ) > max
{�(

–ξ ′),�(
λ′ + ξ – γ

)
,�(

λ + λ′ – γ
)

+
[�(γ )

]
+ 

}
.
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Also, let k, p, q ∈R
+. Then

(
Dλ,λ′ ,ξ ,ξ ′,γ

– t–ρEη,δ,q
k,α,β ,p(t)

)
(x) =

xλ+λ′–γ –ρ

k
β
k –

�(δ/k)
�(η/k)

× �

[
( η

k , q), (ξ ′ + ρ, ), (–λ – λ′ + γ + ρ, ),
( β

k , α
k ), ( δ

k , p), (ρ, ), (–λ′ + ξ ′ + ρ, ),

(–λ – ξ + γ + ρ, ), (, );
(–λ – λ′ – ξ + γ + ρ, );

kq–p– α
k x

]
. (.)

Proof The proof runs parallel to that of Theorem , using Lemma . instead of Lem-
ma .. We omit the details. �

Remark . The results in Theorems  to  can be easily reduced to yield some cor-
responding formulas involving simpler factional calculus operators such as the Erdélyi-
Kober fractional calculus operators.

5 Caputo-type MSM fractional differentiation of (2.5)
Rao et al. [] introduced the Caputo-type fractional derivatives that have the Gauss hy-
pergeometric function in the kernel. The left- and right-hand sided Caputo fractional dif-
ferential operators associated with the Gauss hypergeometric function are defined, re-
spectively, by

(cDλ,ξ ,γ
+ f

)
(x) =

(
I–λ+[Re(λ)]+,–ξ–[Re(λ)]–,λ+γ –[Re(λ)]–

+ f ([Re(λ)]+))(x)

and

(cDλ,ξ ,γ
– f

)
(x) = (–)[Re(λ)]+(I–λ+[Re(λ)]+,–ξ–[Re(λ)]–,λ+γ

– f ([Re(λ)]+))(x),

where λ, ξ , γ ∈C with �(λ) >  and x ∈R
+.

The left- and right-hand sided Caputo-type MSM fractional differential operators asso-
ciated with the Appell function F are defined, respectively, by

(cDλ,λ′ ,ξ ,ξ ′ ,γ
+ f

)
(x) =

(
I–λ′ ,–λ,–ξ ′+[�(γ )]+,–ξ ,–γ +[�(γ )]+

+ f ([�(γ )]+))(x)

and

(cDλ,λ′ ,ξ ,ξ ′ ,γ
– f

)
(x) = (–)[�(γ )]+(I–λ′ ,–λ,–ξ ′,–ξ+[�(γ )]+,–γ +[Re(γ )]+

– f ([�(λ)]+))(x),

where λ, λ′, ξ , ξ ′, γ , ρ ∈ C with �(γ ) >  and x ∈R
+.

In this section, we investigate the Caputo-type MSM fractional differential operator of
the generalized k-Mittag-Leffler function (.). The following lemmas will be required
(see []).

Lemma . Let λ, λ′, ξ , ξ ′, γ , ρ ∈ C and m = [�(γ )] +  with

�(ρ) – m > max
{

,�(–λ + ξ ),�(
–λ – λ′ – ξ ′ + γ

)}
.



Nisar et al. Advances in Difference Equations  (2016) 2016:304 Page 11 of 17

Then

(cDλ,λ′ ,ξ ,ξ ′ ,γ
+ tρ–)(x) =

�(ρ)�(λ – ξ + ρ – m)�(λ + λ′ + ξ ′ – γ + ρ – m)
�(–ξ + ρ – m)�(λ + λ′ – γ + ρ)�(λ + ξ ′ – γ + ρ – m)

× xλ+λ′–γ +ρ+. (.)

Lemma . Let λ, λ′, ξ , ξ ′, γ , ρ ∈ C and m = [�(γ )] +  with

�(ρ) + m > max
{�(

–ξ ′),�(
λ′ + ξ – γ

)
,�(

λ + λ′ – γ
)

+
[�(γ )

]
+ 

}
.

Then

(cDλ,λ′ ,ξ ,ξ ′ ,γ
– t–ρ

)
(x) =

�(ξ ′ + ρ + m)�(–λ – λ′ + γ + ρ)�(–λ′ – ξ + γ + ρ + m)
�(ρ)�(–λ′ + ξ ′ + ρ + m)�(–λ – λ′ – ξ + γ + ρ + m)

× xλ+λ′–γ –ρ . (.)

Theorem  Let λ, λ′, ξ , ξ ′, γ , ρ , α, β , γ , η, δ ∈C and m = [�(γ )] +  with

�(ρ) – m > max
{

,�(–λ + ξ ),�(
–λ – λ′ – ξ ′ + γ

)}
.

Also, let k, p, q ∈R
+. Then

(cDλ,λ′ ,ξ ,ξ ′ ,γ
+ tρ–Eη,δ,q

k,α,β ,p(t)
)
(x) =

xλ+λ′–γ +ρ+

k
β
k –

�(δ/k)
�(η/k)

× �

[
( η

k , q), (ρ, ), (λ – ξ + ρ – m, ),
( β

k , α
k ), ( δ

k , p), (–ξ – m + ρ, ), (λ + λ′ – γ + ρ, ),

(λ + λ′ + ξ ′ – γ + ρ – m, ), (, );
(λ + ξ ′ – γ + ρ – m, );

kq–p– α
k x

]
. (.)

Proof Let L be the left-hand side of (.). Then using (.) and interchanging the order
of summation and differentiation, which is verified under the conditions in this theorem,
we have

L =
∞∑

n=

(η)nq,k

�k(αn + β)(δ)pn,k

(cDλ,λ′ ,δ,δ′ ,γ
+ tρ+n–).

Applying Lemma . together with (.) and (.), we get

L =
∞∑

n=

knq�( η

k + nq)�( δ
k )

�( η

k )k
αn+β

k –�( αn+β

k )�( δ
k + np)knp

× �(ρ + n)�(λ – ξ + ρ + n – m)�(λ + λ′ + ξ ′ – γ + ρ + n – m)
�(–ξ + ρ + n – m)�(λ + λ′ – γ + ρ + n)�(λ + ξ ′ – γ + ρ + n – m)

× xλ+λ′–γ +ρ++n,

which, in view of (.), leads to the right-hand side of (.). �
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Theorem  Let λ, λ′, ξ , ξ ′, γ , ρ , α, β , γ , η, δ ∈C and m = [�(γ )] +  with

�(ρ) + m > max
{�(

–ξ ′),�(
λ + λ′ – γ

)
+ m

}
.

Also, let k, p, q ∈R
+. Then

(cDλ,λ′ ,ξ ,ξ ′ ,γ
– t–ρEη,δ,q

k,α,β ,p(t)
)
(x) =

xλ+λ′–γ +ρ

k
β
k –

�(δ/k)
�(η/k)

× �

[
( η

k , q), (ξ ′ + ρ + m, ), (–λ – λ′ + γ + ρ, ),
( β

k , α
k ), ( δ

k , p), (ρ, ), (–λ′ + ξ ′ + ρ + m, ),

(–λ′ – ξ + γ + ρ + m, ), (, );
(–λ – λ′ – ξ + γ + ρ + m, );

kq–p– α
k

x

]
. (.)

Proof We establish the result by a similar argument as in the proof of Theorem , using
Lemma . instead of Lemma .. We omit the details. �

Remark . The results in Theorems  and  can be easily specialized to yield the corre-
sponding formulas involving simpler Caputo-type fractional derivatives with (.) such as
the left-hand-sided generalized Caputo fractional differentiation cDλ,ξ ,γ

+ f , the left-hand-
sided Caputo-type Erdelyi-Kober fractional differentiation cD+

γ ,λf , the right-hand-sided
generalized Caputo fractional differentiation cDλ,ξ ,γ

– f , and the right-hand-sided Caputo-
type Erdélyi-Kober fractional differentiation cD–

γ ,λf (see, e.g., []).

6 Pathway integral representation of (2.5)
Recently, Nair [] introduced the pathway fractional integral operator by using the path-
way idea of Mathai [], developed further by Mathai and Haubold [] and defined as
follows (cf. []).

Let f ∈ L(a, b), η ∈C with �(η), a ∈R
+, and σ <  be the pathway parameter. Then

(
P(η,σ )

+ f
)
(x) := xη

∫ [ x
a(–σ ) ]



[
 –

a( – σ )t
x

] η
–σ

f (t) dt. (.)

For a real scalar σ , the pathway model for scalar random variables is represented by the
following probability density function (p.d.f.):

f (x) = c|x|υ–[ – a( – σ )|x|ξ ] λ
–σ ,

provided that x ∈ R, v, ξ ∈ R
+, λ ∈ R

+
,  – a( – σ )|x|ξ > . Here c is the normalizing con-

stant, and σ is called the pathway parameter.

For σ > , (.) can be written as follows:

(
P(η,σ )

+ f
)
(x) = xη

∫ [ x
–a(–σ ) ]



[
 +

a(σ – )t
x

] η
–(σ–)

f (t) dt, (.)

and

f (x) = c|x|υ–[ + a(σ – )|x|ξ ]– λ
(σ–) , (.)
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provided that x ∈ R, v, ξ ∈R
+, λ ∈R

+
.

Moreover, as σ → –, the operator (.) reduces to the Laplace integral transform, and
when σ =  and a = , replacing η by η – , the operator (.) reduces to the Riemann-
Liouville fractional integral operator. For more details on the pathway model and its par-
ticular cases, the interested reader may refer to the recent works [, , ].

It is observed that the pathway fractional integral operator (.) can lead to other inter-
esting examples of fractional calculus operators regarding some probability density func-
tions and applications in statistics. Recently, Nisar et al. [] studied the pathway frac-
tional integral operator associated with the Struve function of the first kind [] and the
k-Mittag-Leffler function.

Here we investigate the pathway integral operator of the generalized k-Mittag-Leffler
function (.).

Theorem  Let ρ , γ , β , η ∈ C with min{�(ρ),�(β),�(η)} >  and �( γ

–σ
) > –. Also, let

k, w,σ ∈R with σ < , p, q ∈R
+, and δ ∈C \Z–

 . Then

P(γ ,σ )
+

[
t

β
k –Eη,δ,q

k,ρ,β ,p
(
wt

ρ
k
)]

(x) = xγ + β
k k(+ γ

–σ ) �( + γ

–σ
)

[a( – σ )]
β
k

× Eη,δ,q
k,ρ,β+k(+ γ

–σ )k,p

[
w

(
x

a( – σ )

) ρ
k
]

. (.)

Proof Let L be the left-hand side of (.). Using (.) and interchanging the order of
the integration and summation, which is verified under the conditions in this theorem, we
get

L = xγ

∞∑

n=

(η)nq,k

�k(αn + β)(δ)pn,k

∫ x
a(–σ )



[
 –

a( – σ )t
x

] γ
–σ

t
β
k + ρ

k – dt.

Evaluating the inner integral using the beta function (see, e.g., [], p.), we get

L = xγ

∞∑

n=

(η)nq,k

�k(αn + β)(δ)pn,k

(
x

a( – σ )

) ρ
k n+ β

k �( + γ

–σ
)�( ρ

k n + β

k )
�( ρ

k n + β

k +  + γ

–σ
)

=
xγ + β

k �( + γ

–σ
)

[a( – σ )]
β
k

∞∑

n=

(η)nq,k[w( x
a(–σ ) )

ρ
k ]n

�( ρ

k n + β

k +  + γ

–σ
)(δ)pn,k

k– ρ
k n�( ρ

k n + β

k )
�( ρ

k n + β

k )
.

Using (.), we obtain

L =
xγ + β

k �( + γ

–σ
)k+ γ

–σ

[a( – σ )]
β
k

∞∑

n=

(η)nq,k[w( x
a(–σ ) )

ρ
k ]n

�k(ρn + β + ( + γ

–σ
)k)(δ)pn,k

,

which, with the aid of (.), is seen to reach the right-hand side of (.). �

Setting δ = q =  and k =  in Theorem , we obtain the following known result (see []).
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Corollary . Let ρ , γ , β , η ∈C with min{�(ρ),�(β),�(η)} >  and �( γ

–σ
) > –. Also, let

w,σ ∈R with σ < , p ∈R+. Then

P(η,σ )
+

[
tβ–Eγ ,

k,ρ,,
(
wtρ

)]
(x)

= xη+β
�( + η

–σ
)

[a( – σ )]β
Eγ

ρ,β++ η
–σ

[
wxρ

(a( – σ ))ρ

]
. (.)

We give Theorem  by considering the case σ >  and using equation (.), without its
proof, since the proof is similar to that in Theorem .

Theorem  Let ρ , γ , β , η ∈C with min{�(ρ),�(β),�(η)} >  and �( – η

σ– ) > . Also, let
k, w,σ ∈R with σ > , p, q ∈R

+, and δ ∈C \Z–
 . Then

P(η,σ )
+

[
t

β
k –Eη,δ,q

k,ρ,β ,p
(
wt

ρ
k
)]

(x) = xγ + β
k k(– γ

–σ ) �( – γ

σ– )

[–a( – σ )]
β
k

× Eη,δ,q
k,ρ,β+k(– γ

σ– ),p

[
w

(
x

–a( – σ )

) ρ
k
]

. (.)

The particular case of Theorem  when δ = k = q =  reduces to the following known
result (see []).

Corollary . Let ρ , γ , β , η ∈ C with min{�(ρ),�(β),�(η)} >  and �( – η

σ– ) > . Also,
let w,σ ∈R with σ > , p ∈R

+. Then

P(η,σ )
+

[
tβ–Eγ ,

,ρ,β
(
wtρ

)]
(x)

=
xη+β�( – η

σ– )
[–a(σ – )]β

Eγ

ρ,β+(– η
σ– )

[
w

(
x

–a(σ – )

)ρ]
. (.)

7 Generalized k-Mittag-Leffler function and statistical distribution
In this section, we investigate the density function for (.) stated in Theorem . We also
consider some particular cases of Theorem , which are connected with some possible
known results (if any).

Theorem  Let k, p, q,μ, x ∈ R+ with  < μ ≤  and q ≤ μ + p. Also, let γ , δ ∈ C with
min{�(γ ),�(δ)} > . Let

Fx(x) =  – Eγ ,δ,q
k,μ,k,p

(
–xμ

)
.

Then the density function f (x) of Fx(x) is given as follows:

f (x) = μxμ–(γ )q,k

∞∑

n=

(n + )(γ + qk)nq,k

�k(μn + μ + k)
(–xμ)n

(δ)(n+)p,k
(.)

=
(γ )q,k

(δ)p,k
xμ–Eγ +qk,δ+pk,q

k,μ,μ,p
(
–xμ

)
. (.)
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Proof Using (.), we have

Fx(x) =
∞∑

n=

(–)n+(γ )nq,k

�k(μn + k)
xμn

(δ)pn,k
. (.)

Differentiating each side of (.) with respect to x gives the density function

f (x) =
∞∑

n=

(–)n+(γ )nq,k

�k(μn + k)
μnxμn–

(δ)pn,k
,

which, upon replacing n by n + , yields

f (x) = xμ–
∞∑

n=

(–)n(γ )nq+q,k

�k(μn + μ + k)
(μn + μ)xμn

(δ)p(n+),k
. (.)

Applying the relation

(γ )n+j,k = (γ )j,k(γ + jk)n,k (.)

to the factor in the numerator of (.) and using (.) on the denominator, we get

f (x) = xμ–
∞∑

n=

(–)n(γ )q,k(γ + qk)nq,k

(μn + μ)�k(μn + μ)
(μn + μ)xμn

(δ)p(n+),k

= (γ )q,kxμ–
∞∑

n=

(γ + qk)nq,k

�k(μn + μ)
(–xμ)n

(δ)p(n+),k

= xμ–(γ )q,k

∞∑

n=

(γ + qk)nq,k
�k (μn+μ+k)

(μn+μ)

(–xμ)n

(δ)p(n+),k
, (.)

which is just the desired result (.).
Next, employing the same process as in the proof of (.), we find from (.) that

f (x) = xμ–
∞∑

n=

(–)n(γ )nq+q,k

�k(μn + μ + k)
(μn + μ)xμn

(δ)p(n+),k
.

Applying (.) to both numerator and denominator, we get

f (x) =
(γ )q,k

(δ)p,k
xμ–

∞∑

n=

(γ + qk)nq,k

�k(μn + μ)
(–xμ)n

(δ + pk)np,k
, (.)

which, in view of (.), can be expressed as the desired result (.). �

Here we consider some particular known cases of Theorem .
Taking δ = p = k =  in Theorem , we get the following result (cf. [], Eq. ()).

Corollary . Let q,μ, x ∈R
+ with  < μ ≤  and q ≤ μ + . Also, let �(γ ) > . Let

Fx(x) =  – Eγ ,q
μ,

(
–xμ

)
.
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Then the density function f (x) of Fx(x) is given as follows:

f (x) = (γ )qxμ–Eγ +q,,q
μ,μ,

(
–xμ

)
.

Setting q = k = γ =  in Theorem , we obtain the following result (cf. [], Eq. ()).

Corollary . Let p,μ, x ∈ R
+ with  < μ ≤  and  ≤ μ + p. Also, let γ , δ ∈ C with

min{�(γ ),�(δ)} > . Let

Fx(x) =  – Eγ ,δ
μ,,p

(
–xμ

)
.

Then the density function f (x) of Fx(x) is given as follows:

f (x) =
γ

(δ)p
xμ–Eγ +,δ+p

μ,μ,p
(
–xμ

)
. (.)

Here

Eη,δ
α,β ,p(z) := Eη,δ,

α,β ,p(z). (.)

Setting q = k = γ =  in Theorem , we get the following result (see also []).

Corollary . Let p,μ, x ∈R
+ with  < μ ≤  and  ≤ μ + p. Also, let �(δ) > . Let

Fx(x) =  – E,δ
μ,,p

(
–xμ

)
.

Then the density function f (x) of Fx(x) is given as follows:

f (x) =


(δ)p
xμ–E,δ+p

μ,μ,p
(
–xμ

)
. (.)
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