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Abstract
The main purpose of this paper is to give the forms of transcendental meromorphic
solutions of nonlinear differential equation of the form

f nf ′ + R(z) = p1(z)eα1(z) + p2(z)eα2(z),

where R(z) is a rational function, p1, p2 are nonzero rational functions and α1, α2 are
nonconstant polynomials. More precisely, we have shown the conditions concerning
α′
1

α′
2
that will ensure the existence of the possible meromorphic solutions of the above

equation.

MSC: Primary 34A34; secondary 30D35

Keywords: algebraic differential equations; meromorphic solutions; growth order;
poles

1 Introduction and main results
Let f (z) be a meromorphic function in the complex plane C. We assume that the reader
is familiar with the value distribution theory of meromorphic function (see [, ]) and its
associated standard notations, such as T(r, f ), m(r, f ), N(r, f ) etc.

It is interesting and difficult to find the transcendental meromorphic solution of nonlin-
ear algebraic differential equations. In the last ten years, people have shown great interest
in the equation of the following form:

f n + Qd(z, f ) = p(z)eα(z) + p(z)eα(z), ()

where Qd(z, f ) denotes a polynomial in f and its derivatives with a total degree d ≤ n – ,
with small functions of f as the coefficients, p(z), p(z) are rational functions and α(z),
α(z) are polynomials.

In , Li and Yang [] investigated the existence of entire solution of equation (). In
, Li [] gave the forms of meromorphic solutions of equation () for specific α(z) and
α(z). In , Liao, Yang and Zhang [] investigated the exact meromorphic solutions of
equation (), when p(z), p(z) are rational functions and α(z), α(z) are polynomials.
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Recently, Liao and Ye [] got the following result when the term f n is replaced by f nf ′

and the two terms on the right side of the equation become only one term in equation ().

Theorem A Let Qd(z, f ) be a differential polynomial in f of degree d with rational function
coefficients. Suppose that u is a nonzero rational function and v is a nonconstant polyno-
mial. If d ≤ n –  and the differential equation:

f nf ′ + Qd(z, f ) = u(z)ev(z)

admits a meromorphic solution f with finitely many poles, then f has the following form:

f (z) = s(z)e
v(z)
n+ and Qd(z, f ) ≡ ,

where s(z) is a rational function with sn((n + )s′ + v′s) = (n + )u.

It is difficult to give the form of meromorphic solutions of the following differential equa-
tions:

f nf ′ + Qd(z, f ) = p(z)eα(z) + p(z)eα(z), ()

where Qd(z, f ) is a differential polynomial in f with small functions of f as the coefficients,
p, p are small functions of f , α(z), α(z) are nonconstant polynomials.

Next, we will give the possible forms of meromorphic solutions of equation () when
Qd(z, f ), p, p are rational functions and α(z), α(z) are nonconstant polynomials. Now,
we give our results as follows.

Theorem Let n ≥  be an integer and R(z) be a rational function. Suppose that p, p

are nonzero rational functions and α, α are nonconstant polynomials. If the differential
equation

f nf ′ + R(z) = p(z)eα(z) + p(z)eα(z) ()

admits a transcendental meromorphic solution f , then α′


α′


= , R(z) ≡ , and f (z) has the
following form:

f (z) = q(z)e
α(z)
n+ ,

where q(z) is a rational function with qn((n + )q′ + qα′
) = (n + )(p + peα(z)–α(z)).

From the theorem, we can easily obtain the following result.

Corollary Let n ≥  be an integer and R(z) be a rational function. Suppose that p, p

are nonzero rational functions and α, α are nonconstant polynomials. If the differential
equation

f nf ′ + R(z) = p(z)eαz + p(z)eαz
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admits a transcendental meromorphic solution f , then α
α

= , R(z) ≡ , and f (z) has the
following form:

f (z) = q(z)e
αz
n+ ,

where q(z) is a rational function with qn((n + )q′ + qα) = (n + )(p + p).

Remark  If R(z) replaced by R(z, f ) in the theorem, where R(z, f ) is a differential polyno-
mial in f with rational function as its coefficients, then the conclusion is not true generally.
For example, f (z) = ez + e–z satisfying the following differential equation:

f f ′ – f ′ = ez – e–z,

however, α′


α′


= – and the equation admits a solution which is not of the form q(z)eP(z),
where q(z) is a rational function and P(z) is a nonconstant polynomial.

Remark  If f nf ′ replaced by f n in the theorem, then the conclusion is not true. For ex-
ample, f (z) = ez – ze–z is a meromorphic solution of the following differential equation:

f  + z = ez – ze–z,

we have α′


α′


= – and the equation admits a solution which is not of the form q(z)eP(z),
where q(z) is a rational function and P(z) is a nonconstant polynomial.

Remark  If n =  in the theorem, then the conclusion is not true. For example, f (z) =
ez + e–z satisfies the following differential equation:

ff ′ = ez – e–z.

Obviously, we have α′


α′


= – �= , but the equation still admits a transcendental meromor-
phic solution which is not of the form q(z)eP(z), where q(z) is a rational function and P(z)
is a nonconstant polynomial.

In this paper, we define the degree of a rational function R(z) = P(z)
Q(z) �≡  at ∞ by deg∞ R =

deg P – deg Q, where P(z), Q(z) are co-prime polynomials.

2 Some lemmas
Lemma  ([]) Let aj(z) be an entire function of finite order ≤ ρ . Let gj(z) be entire and
gk(z) – gj(z) (j �= k) be a transcendental entire function or polynomial of degree greater than
ρ . Then

n∑

j=

aj(z)egj(z) = a(z)

holds only when

a(z) = a(z) = · · · = an(z) ≡ .
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Lemma  Let n ≥  be an integer. Suppose that R(z), p(z), p(z) are small functions of f
and α, α are nonconstant polynomials. If f is a meromorphic solution of the equation

f nf ′ + R(z) = p(z)eα(z) + p(z)eα(z), ()

then f is of finite order.

Proof Obviously, any meromorphic function satisfying equation () must be transcen-
dental. Denote k = max{degα, degα}, by using the Clunie reasoning obtained by Yang
and Ye [], we have m(r, f ′) = O(rk) + S(r, f ). Since every pole of f ′ must come from the
pole of R(z), p(z) or p(z), N(r, f ′) = S(r, f ). Therefore, we have T(r, f ′) = O(rk) + S(r, f ) and
T(r, 

f ′ ) = O(rk) + S(r, f ). Rewriting equation () as follows:

f n =

f ′

(
p(z)eα(z) + p(z)eα(z) – R(z)

)
,

we can obtain T(r, f ) = O(rk) + S(r, f ). Therefore, f is of finite order. �

3 Proof of the theorem
Let f be a transcendental meromorphic solution of the equation (). By Lemma , we know
that the order of f is finite. Since every pole of f must come from the pole of R(z), p(z) or
p(z), we know that f has at most finitely many poles.

Next we prove that all meromorphic solutions of equation () must be of the form f (z) =
q(z)eP(z), where q(z) is a rational function and P(z) is a polynomial.

From equation (), we have

nf n–(f ′) + f nf ′′ + R′(z) =
(
p′

 + pα
′

)
eα(z) +

(
p′

 + pα
′

)
eα(z). ()

By eliminating eα(z) from equations () and (), we have

(
p′

 + pα
′

)
f nf ′ +

(
p′

 + pα
′

)
R(z) – npf n–(f ′) – pf nf ′′ – pR′(z) = A(z), ()

where A(z) = [p(p′
 + pα

′
) – p(p′

 + pα
′
)]eα(z).

If A(z) ≡ , then

α′
 – α′

 =
p′


p

–
p′


p

. ()

Thus α′
 – α′

 ≡ . From equation (), we have

(
p′


p

+ α′


)
f nf ′ – nf n–(f ′) – f nf ′′ = R′(z) –

(
p′


p

+ α′


)
R(z). ()

Next, we discuss two cases.
Case : R′(z) – ( p′


p

+ α′
)R(z) ≡ . From equation (), we have

(
p′


p

+ α′


)
ff ′ – n

(
f ′) – ff ′′ = . ()
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Suppose that f (z) has infinitely many zeros, then we know from () that the multiplicity
of each zero of f (z) is not less than , possibly except finite many zeros of f (z). Let z be
a zero of f with multiplicity k, which is not a zero or pole of p′


p

+ α′
, then in some small

neighborhood of z, we have f (z) = ak(z – z)k + ak+(z – z)k+ + · · · , where ak , ak+, . . . are
complex numbers, ak �=  and k ≥ . By calculating the coefficient of the lowest power of
z – z in the left of equation (), we have

–n(kak) – k(k – )a
k = ,

that is,

–nk – k(k – ) = ,

thus k =  or k = 
n+ , this is impossible. This contradiction lead to that f has at most

finitely many zeros. Thus, f (z) = q(z)eP(z), where q(z) is a rational function and P(z) is a
polynomial.

Case : R′(z) – ( p′


p
+ α′

)R(z) �≡ . Rewriting equation () as follows:

f n–
((

p′


p
+ α′



)
ff ′ – n

(
f ′) – ff ′′

)
= R′(z) –

(
p′


p

+ α′


)
R(z). ()

Let

(
p′


p

+ α′


)
ff ′ – n

(
f ′) – ff ′′ = a(z), ()

then a(z) has only finitely many poles. It follows from the Clunie lemma that m(r, a(z)) =
O(log r), thus a(z) is a rational function.

If a(z) ≡ , then from equation (), we have

R′(z) –
(

p′


p
+ α′



)
R(z) ≡ ,

this is a contradiction.
If a(z) �≡ , then from (), we know that f is a rational function. This is impossi-

ble.
Next we consider that A(z) �≡ . In order to the convenience of calculation, we de-

note

A = p′
 + pα

′
,

A = p
(
p′

 + pα
′

)

– p
(
p′

 + pα
′

) �≡ .

Thus equation () becomes

Af nf ′ – npf n–(f ′) – pf nf ′′ + R(z) = Aeα(z), ()
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where R(z) = (p′
 + pα

′
)R(z) – pR′(z) is a rational functions. Differentiating both sides of

(), we have

A′
f nf ′ + n

(
A – p′


)
f n–(f ′) +

(
A – p′


)
f nf ′′ – n(n – )pf n–(f ′)

– npf n–f ′f ′′ – pf nf ′′′ + R′
(z) =

(
A′

 + Aα
′
(z)

)
eα(z). ()

By eliminating eα(z) from equations () and (), we obtain

Bf nf ′ – Bf n–(f ′) – Bf nf ′′ + n(n – )pAf n–(f ′)

+ npAf n–f ′f ′′ + pAf nf ′′′ = Q(z), ()

where

B(z) = A
(
A′

 + Aα
′
(z)

)
– AA′

,

B(z) = np
(
A′

 + Aα
′
(z)

)
+ n

(
A – p′


)
A,

B(z) = p
(
A′

 + Aα
′
(z)

)
+

(
A – p′


)
A,

Q(z) = –
(
A′

 + Aα
′
(z)

)
R(z) + AR′

(z),

are rational functions.
From equation (), we have

f n–(Bf f ′ – Bf
(
f ′) – Bf f ′′ + n(n – )pA

(
f ′) ()

+ npAff ′f ′′ + pAf f ′′′) = Q(z).

Let

Bf f ′ – Bf
(
f ′) – Bf f ′′ + n(n – )pA

(
f ′) + npAff ′f ′′ + pAf f ′′′ = Q(z). ()

It follows from the Clunie lemma that Q(z) is a rational function.
First we assume that Q(z) ≡ . Suppose that f (z) has infinitely many zeros, then we know

from () that the multiplicity of each zero of f (z) is not less than , possibly except finite
many zeros of f (z). Let z be a zero of f with multiplicity k, which is not a zero or pole of
B, B, B and pA, then f (z) = ak(z – z)k + ak+(z – z)k+ + · · · (ak �= , k ≥ ) holds in
some small neighborhood of z. By calculating the coefficient of the lowest power of z – z

in the left of equation (), we have

n(n – )(kak) + nk(k – )a
k + k(k – )(k – )a

k = ,

thus

n(n – )k + nk(k – ) + (k – )(k – ) = ,

this is impossible since n ≥  and k ≥ . This contradiction lead to that f has at most
finitely many zeros. Thus, f (z) = q(z)eP(z), where q(z) is a rational function and P(z) is a
polynomial.
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Next we assume that Q(z) �≡ . By differentiating (), we have

B′
f f ′ +

(
B – B′


)
f
(
f ′) +

(
B – B′


)
f f ′′ +

(
n(n – )(pA)′ – B

)(
f ′)

+
(
n(pA)′ – B – B

)
ff ′f ′′ +

(
(pA)′ – B

)
f f ′′′ + npA

(
f ′)f ′′

+ npAf
(
f ′′) + (n + )pAff ′f ′′′ + pAf f () = Q′(z). ()

It follows from equations () and () that

(
BQ′ – B′

Q
)
f f ′ –

(
BQ′ +

(
B – B′


)
Q

)
f
(
f ′) –

(
BQ′ +

(
B – B′


)
Q

)
f f ′′

+
(
n(n – )pAQ′ – n(n – )(pA)′Q + BQ

)(
f ′)

+
(
npAQ′ –

(
n(pA)′ – B – B

)
Q

)
ff ′f ′′

+
(
pAQ′ –

(
(pA)′ – B

)
Q

)
f f ′′′ – npAQ

(
f ′)f ′′ – npAQf

(
f ′′)

– (n + )pAQff ′f ′′′ – pAQf f () = . ()

If f (z) has infinitely many zeros and z is a zero of f (z) which is not a zero or pole of the
coefficients in () and (), then by () we know that a zero z of f (z) is simple, and it
follows from () that z is a zero of npAQf ′′ – (n(n – )pAQ′ – n(n – )(pA)′Q +
BQ)f ′. Let

b(z) =
npAQf ′′ – (n(n – )pAQ′ – n(n – )(pA)′Q + BQ)f ′

pAQf
. ()

Then b(z) has only finitely many poles and it follows from the lemma of the logarithmic
derivative that m(r, b(z)) = O(log r). Hence b(z) is a rational function.

If b(z) ≡ , then we have

f ′′

f ′ =
n(n – )pAQ′ – n(n – )(pA)′Q + BQ

npAQ

=
n – 
n

Q′

Q
–

n – 
n

A′


A
–

n – 
n

p′


p
+


n

B

pA
.

Noticing that

B(z) = np
(
A′

 + Aα
′

)

+ npα
′
A,

thus we have

f ′′

f ′ =
n – 
n

Q′

Q
–

n – 
n

A′


A
–

n – 
n

p′


p
+


n

(
α′

 + α′

)
.

By solving the above equation, we obtain

f ′(z) = m(z)e
α+α

n ,

where m(z) = ( CQn–

pn–
 An–


) 

n is a rational function.
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From equation () and the fact b(z) ≡ , we have

(
BQ′ – B′

Q
)
ff ′ –

(
BQ′ +

(
B – B′


)
Q

)(
f ′) –

(
BQ′ +

(
B – B′


)
Q

)
ff ′′

+
(
npAQ′ –

(
n(pA)′ – B – B

)
Q

)
f ′f ′′

+
(
pAQ′ –

(
(pA)′ – B

)
Q

)
ff ′′′ – npAQ

(
f ′′)

– (n + )pAQf ′f ′′′ – pAQff () = .

By calculating and substituting f ′, f ′′, f ′′′, f () into the above equation, we can obtain

s(z)f + t(z)e
α+α

n = , ()

where

s(z) =
(
BQ′ – B′

R
)
m(z) –

(
BQ′ +

(
B – B′


)
Q

)(
m′(z) +


n

m(z)
(
α′

 + α′

))

+
(
pAQ′ –

(
(pA)′ – B

)
Q

)(
m′′(z) +


n

m(z)
(
α′′

 + α′′

)

+


n
m′(z)

(
α′

 + α′

)

+


n m(z)
(
α′

 + α′

)

)

– pAQ
(

m′′′(z) +

n

m′(z)
(
α′′

 + α′′

)

+


n
m(z)

(
α′′′

 + α′′′

)

+

n

m′′(z)
(
α′

 + α′

)

+


n m′(z)
(
α′

 + α′

) +


n m(z)

(
α′

 + α′

)(

α′′
 + α′′


)

+


n m(z)
(
α′

 + α′

)

)
,

t(z) = –
(
BQ′ +

(
B – B′


)
Q

)
m(z) – npAQ

(
m′(z) +


n

m(z)
(
α′

 + α′

))

+
(
npAQ′ –

(
n(pA)′ – B – B

)
Q

)
m(z)

(
m′(z) +


n

m(z)
(
α′

 + α′

))

– (n + )pAQm(z)
(

m′′(z) +


n
m(z)

(
α′′

 + α′′

)

+


n
m′(z)

(
α′

 + α′

)

+


n m(z)
(
α′

 + α′

)

)
.

Next we show that s(z) �≡  and t(z) �≡ . Suppose that the assertion is not correct. Ob-
viously, If s(z) ≡ , then from (), we must have t(z) ≡ . By s(z) ≡ , we have

s(z)
m(z)pAQ

=
B

pA

Q′

Q
–

B′


pA

–
(

B

pA

Q′

Q
+

B

pA
–

B′


pA

)(
m′(z)
m(z)

+


n
(
α′

 + α′

))

+
(

Q′

Q
–

(pA)′

pA
+

B

pA

)(
m′′(z)
m(z)

+


n
(
α′′

 + α′′

)

+


n
m′(z)
m(z)

(
α′

 + α′

)

+


n

(
α′

 + α′

)

)

–
(

m′′′(z)
m(z)

+

n

m′(z)
m(z)

(
α′′

 + α′′

)

+


n
(
α′′′

 + α′′′

)

+

n

m′′(z)
m(z)

(
α′

 + α′

)
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+


n
m′(z)
m(z)

(
α′

 + α′

) +


n

(
α′

 + α′

)(

α′′
 + α′′


)

+


n

(
α′

 + α′

)

)

≡ . ()

Similarly, by t(z) ≡ , we can get

t(z)
m(z)pAQ

= –
B

pA

Q′

Q
–

B

pA
+

B′


pA
– n

(
m′(z)
m(z)

+


n
(
α′

 + α′

))

+
(

n
Q′

Q
– n

(pA)′

pA
+

B

pA
+

B

pA

)(
m′(z)
m(z)

+


n
(
α′

 + α′

))

– (n + )
(

m′′(z)
m(z)

+


n
(
α′′

 + α′′

)

+


n
m′(z)
m(z)

(
α′

 + α′

)

+


n

(
α′

 + α′

)

)

≡ , ()

where

B

pA
=

(
p′


p

+ α′


)(
A′


A

–
A′


A

+ α′


)
,

B

pA
= n

(
α′

 + α′

)

+ n
A′


A

,

B

pA
= α′

 + α′
 +

A′


A
,

B′


pA
=

(
p′


p

+ α′


)(
A′′


A

+
A′


A

α′
 +

A′


A
α′

 –
A′′


A

+ α′′


)
,

B′


pA
= n

(
p′


p

A′


A
+

A′′


A
+

(
A′


A

+
p′


p

)(
α′

 + α′

)

+ α′′
 + α′′



)
,

B′


pA
=

p′


p

A′


A
+

A′′


A
+

(
A′


A

+
p′


p

)(
α′

 + α′

)

+ α′′
 + α′′

 .

From () and (), we see that the highest degree terms may appear in

–


n
α′

α
′

(
α′

 + α′

)

+


n

(
α′

 + α′

) –


n

(
α′

 + α′

)

and

–α′
α

′
 –


n

(
α′

 + α′

) +

(n + )
n

(
α′

 + α′

) –

n + 
n

(
α′

 + α′

).

Namely,

–


n
α′

α
′

(
α′

 + α′

)

+
n – 
n

(
α′

 + α′

) ()



Zhang Advances in Difference Equations  (2016) 2016:300 Page 10 of 13

and

–α′
α

′
 +

n – 
n

(
α′

 + α′

). ()

Let α(z) = apzp + ap–zp– + · · · + a, α(z) = bqzq + bq–zq– + · · · + b, where ai

(i = , , . . . , p), bj (i = , , . . . , q) are complex numbers, apbq �=  and p ≥ , q ≥ .
If p �= q, without loss of generality, we assume that p > q. Since t(z) ≡ , by () we have

n–
n pa

p = , so n = 
 , this is impossible. Next we suppose that p = q.

If ap + bp = , then by t(z) ≡  and (), we have apbp = , this is a contradiction.
If ap + bp �= , then from s(z) ≡ , t(z) ≡ , () and (), we can obtain – 

n apbp +
n–
n (ap + bp) =  and –apbp + n–

n (ap + bp) = , thus we have (n–)
n = 

n
n–

n . So
n =  or n = , this is a contradiction with the assumption n ≥ .

Therefore, s(z) �≡  and t(z) �≡ . Hence f (z) = – t(z)
s(z) e

α+α
n . Obviously, α′

(z) + α′
(z) �≡ ,

otherwise, f (z) is a rational function, this is impossible. Thus, f (z) is of the form q(z)eP(z),
where q(z) = – t(z)

s(z) is a rational function, P(z) = α+α
n is a nonconstant polynomial.

Next we assume that b(z) �≡ . From () and (), we get

(
BQ′ – B′

Q
)
ff ′ –

(
BQ′ +

(
B – B′


)
Q

)(
f ′) –

(
BQ′ +

(
B – B′


)
Q

)
ff ′′

+
(
npAQ′ –

(
n(pA)′ – B – B

)
Q

)
f ′f ′′

+
(
pAQ′ –

(
(pA)′ – B

)
Q

)
ff ′′′ – npAQ

(
f ′′)

– (n + )pAQf ′f ′′′ – pAQff () = b(z)pAQ
(
f ′) ()

and

f ′′ =
n(n – )pAQ′ – n(n – )(pA)′Q + BQ

npAQ
f ′ +

pAQb(z)
npAQ

f

=
(

n – 
n

Q′

Q
–

n – 
n

(pA)′

pA
+


n

B

pA

)
f ′ +


n b(z)f

=
(

n – 
n

Q′

Q
–

n – 
n

(pA)′

pA
+


n

A′


A
+


n

(
α′

 + α′

))

f ′ +


n b(z)f . ()

Let ϕ(z) = n–
n

Q′
Q – n–

n
(pA)′

pA
+ 

n
A′


A

+ 
n (α′

 + α′
), then by calculating and substituting f ′′,

f ′′′, f () into (), we can get

μ(z)f  + μ(z)ff ′ + μ(z)
(
f ′) = , ()

where

μ(z) =


n

(
ϕb + b′)(pAQ′ –

(
(pA)′ – B

)
Q

)
–


n b

(
BQ′ +

(
B – B′


)
Q

)

– pAQ
(


n ϕb +


n ϕ′b +


n ϕb′ +


n b′′ +

n + 
n b

)
,

μ(z) = BQ′ – B′
Q – ϕBQ′ – ϕ

(
B – B′


)
Q +


n

pAQ′b –

n

(pA)′Qb

+


n (B + B)Qb +
(
pAQ′ –

(
(pA)′ – B

)
Q

)(
ϕ + ϕ′ +


n b

)
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– pAQ
(

ϕ + ϕϕ′ + ϕ′′ +
n + 

n ϕb +
n + 

n b′
)

,

μ(z) = npAQ′ϕ –
(
n(pA)′ – B – B

)
Qϕ –

(
BQ′ +

(
B – B′


)
Q

)

– pAQb – (n + )pAQ
(

ϕ + ϕ′ +


n b
)

– npARϕ,

are rational functions.
We assume that μ(z) ≡ , μ(z) ≡ , μ(z) ≡  hold simultaneously. By μ(z) ≡ , we

have


n

(
ϕ +

b′

b

)(
Q′

Q
–

(pA)′

pA
+

B

pA

)
–


n

(
B

pA

Q′

Q
+

B

pA
–

B′


pA

)

–
(


n ϕ +


n ϕ′ +


n ϕ

b′

b
+


n

b′′

b
+

n + 
n b

)
≡ . ()

By μ(z) ≡ , we have

B

pA

Q′

Q
–

B′


pA
– ϕ

B

pA

Q′

Q
– ϕ

B – B′


pA
+


n

Q′

Q
b –


n

(pA)′

pA
b

+


n
B + B

pA
b +

(
Q′

Q
–

(pA)′

pA
+

B

pA

)(
ϕ + ϕ′ +


n b

)

–
(

ϕ + ϕϕ′ + ϕ′′ +
n + 

n ϕb +
n + 

n b′
)

≡ . ()

By μ(z) ≡ , we have

n
Q′

Q
ϕ –

(
n

(pA)′

pA
–

B

pA
–

B

pA

)
ϕ –

(
B

pA

R′

R
+

B

pA
–

B′


pA

)

– b – (n + )
(

ϕ + ϕ′ +


n b
)

– nϕ ≡ . ()

Noticing the expressions of ϕ, B
pA

, B
pA

, B
pA

, B′


pA
, B′


pA

, B′


pA
, we know that the highest

powers of z in the left hand side of (), (), () may, respectively, appear in

n – 
n

(
α′

 + α′

) –


n α′

α
′
 –

n + 
n b, ()

n – 
n

(
α′

 + α′

) –


n

α′
α

′

(
α′

 + α′

)

+
n – 

n

(
α′

 + α′

)
b, ()

n – 
n

(
α′

 + α′

) – α′

α
′
 –

n + n + 
n b. ()

Let α(z) = apzp +ap–zp– + · · ·+a, α(z) = bqzq +bq–zq– + · · ·+b, where ai (i = , , . . . , p),
bj (i = , , . . . , q) are complex numbers, apbq �=  and p ≥ , q ≥ .

If p �= q, without loss of generality, we assume that p > q. Obviously, deg∞ b ≤ p – ,
otherwise we can get a contradiction from () immediately. If deg∞ b < p – , then from
(), we have n–

n = . So n = 
 , this is impossible. If deg∞ b = p – , then from () and
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(), we obtain

n–
n

n–
n

=
n+
n

n+n+
n

,

by solving above equation, we have n = ±, this is impossible. Next we suppose that p = q.
If deg∞ b > p – , then by μ(z) ≡  and (), we have – n+

n = , so n = – 
 , this is

impossible. Thus we may assume that deg∞ b ≤ p – .
If ap + bp =  and deg∞ b < p – , then by μ(z) ≡  and (), we have – 

n papbp = ,
this is impossible. If ap + bp =  and deg∞ b = p – , then by μ(z) ≡ , μ(z) ≡  and (),
() we have (n+)

n = n+n+
n , hence n = , this is also impossible.

If ap + bp �=  and deg∞ b < p – , then by μ(z) ≡ , μ(z) ≡  and (), () we have
(n–)

n = n–
n , hence n = , this is a contradiction with the assumption n ≥ . If ap + bp �= 

and deg∞ b = p – , then from (), () and the assumption μ(z) ≡ , μ(z) ≡ , we have
– n+

n = n–
n , thus n = 

 or n = –, this is impossible. Therefore, μ(z) ≡ , μ(z) ≡ ,
μ(z) ≡  cannot hold simultaneously.

If μ(z) �≡ . Then equation () can be rewritten as

μ(z)
(
f ′) = –μ(z)f  – μ(z)ff ′. ()

Suppose that f (z) has infinitely many zeros, then we know that the multiplicity of each
zero of f (z) is not less than , possibly except finitely many zeros of f (z). Let z be a zero
of f with multiplicity k, but that is not the zero and pole of μ(z), μ(z), μ(z), then z is a
zero with multiplicity k –  in the left side and a zero with multiplicity at least k –  in
the right side of equation (). This contradiction lead to that f has at most finitely many
zeros.

If μ(z) ≡ , then μ(z) �≡  and μ(z) �≡ , equation () is simplified to the following
form:

μ(z)f = –μ(z)f ′,

by a similar discussion to above, we see that f has at most finitely many zeros. Thus, f (z) =
q(z)eP(z), where q(z) is a rational function and P(z) is a polynomial.

Substituting f (z) = q(z)eP(z) into the equation () yields

q(z)n(q′(z) + q(z)p′(z)
)
e(n+)P(z) + R(z) = p(z)eα(z) + p(z)eα(z).

If α′
(z) �≡ α′

(z), it follows from Lemma  that R(z) ≡ . Furthermore, either (n + )P(z) =
α(z)+C, q(z)n(q′(z)+q(z)P′(z)) = Dp(z), p(z) ≡  or (n+)P(z) = α(z)+C, q(z)n(q′(z)+
q(z)P′(z)) = Dp(z), p(z) ≡ , where C, C, D, D are constants and DeC = DeC =
. This is a contradiction with the assumption p, p are nonzero rational functions. If
α′

(z) ≡ α′
(z), then α(z) = α(z) + C, where C is a constant, and it follows from Lemma 

that R(z) ≡  and the equation () is reduced to the following form:

f nf ′ =
(
p + peC)

eα(z).
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By Theorem A, we have

f (z) = q(z)e
α(z)
n+ ,

where q(z) is a rational function with qn((n + )q′ + qα′
) = (n + )(p + peα(z)–α(z)).
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