
Jiao et al. Advances in Difference Equations  (2016) 2016:318 
DOI 10.1186/s13662-016-1038-5

R E S E A R C H Open Access

Dynamics of a new delayed
stage-structured predator-prey model with
impulsive diffusion and releasing
Jianjun Jiao1*, Shaohong Cai1 and Limei Li2

*Correspondence:
1499353344@qq.com
1School of Mathematics and
Statistics, Guizhou Key Laboratory of
Economics System Simulation,
Guizhou University of Finance and
Economics, Guiyang 550004, P.R.
China
Full list of author information is
available at the end of the article

Abstract
In this work, we propose a new delayed stage-structured predator-prey model with
impulsive diffusion and releasing. By the stroboscopic map of the discrete dynamical
system, we obtain a prey-extinction boundary periodic solution. Furthermore, we
prove that the prey-extinction boundary periodic solution is globally attractive. We
also prove that the investigated system is permanent by the theory on the delay and
impulsive differential equations. Our results indicate that time delay, impulsive
diffusion, and impulsive releasing have influence to the dynamical behaviors of the
investigated system. The results of this paper also provide a tactical basis for pest
management.
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1 Introduction
Many authors [–] and papers [, ] have studied the predator-prey, competitive, and
cooperative models. Permanence and extinction are significant concepts of those models
which also show many interesting results. However, the stage structure of a species has
been considered very little. In the real world, almost all animals have the stage structure
of being immature and mature. Recently, [–] studied the stage structure of species
with or without time delays. Aiello et al. [] considered a time delayed stage structure of
being immature and mature of the population model

⎧
⎨

⎩

dxi(t)
dt = αxm(t) – rxi(t) – αe–rτ xm(t – τ ),

dxm(t)
dt = αe–rτ xm(t – τ ) – βx

m(t),
(.)

where xi(t) denotes the immature population density at time t, xm(t) denotes the mature
population density at time t, α >  represents the birth rate, r >  represents the immature
death rate, β >  represents the mature death and the overcrowding rate, τ > , represents
the time to maturity rate, the term αe–rτ xm(t – τ ) represents the immature who were born
at time t –τ and survive at time t (with the immature death rate r) and therefore represents
the transformation of the immature to the mature.
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Dispersal is a ubiquitous phenomenon in the natural world. It is important for us to un-
derstand the ecological and evolutionary dynamics of populations mirrored by the large
number of mathematical models devoted to it in the scientific literature [–]. If the
population dynamics with the effects of spatial heterogeneity is modeled by a diffusion
process, most previous papers focused on the population dynamical system modeled by
the ordinary differential equations. But in practice, it is often the case that diffusion occurs
in regular pulse. For example, when winter comes, birds will migrate between patches in
search for a better environment, whereas they do not diffuse in other seasons, and the ex-
cursion of foliage seeds occurs at a fixed period of time every year. Thus impulsive diffusion
provides a more natural description. Lately theories of impulsive differential equations [,
] have been introduced into population dynamics. Impulsive differential equations are
found in most domains of applied science [, , , , –].

The organization of this paper is as follows. In the next section, we introduce the model
and background concepts. In Section , some important lemmas are presented. In Sec-
tion , we give the conditions of global attractivity and permanence for system (.). In
Section , a brief discussion is given in the last section to conclude this work.

2 The model
Wang and Chen [] considered a single population with impulsive diffusion. Jiao []
considered a delayed predator-prey model with impulsive diffusion on predator and
stage structure on prey. Inspired by [, ], we establish a new delayed stage-structured
predator-prey model with impulsive diffusion and releasing

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = ry(t) – re–wτ y(t – τ) – wx(t),

dy(t)
dt = re–wτ y(t – τ) – wy(t) – βy(t)z(t),

dz(t)
dt = kβy(t)z(t) – wz(t),

dx(t)
dt = ry(t) – re–wτ y(t – τ) – wx(t),

dy(t)
dt = re–wτ y(t – τ) – wy(t) – βy(t)z(t),

dz(t)
dt = kβy(t)z(t) – wz(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= (n + l)τ , t �= (n + )τ ,

�x(t) = ,

�y(t) = ,

�z(t) = D(z(t) – z(t)),

�x(t) = ,

�y(t) = ,

�z(t) = D(z(t) – z(t)),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t = (n + l)τ , n ∈ Z+,

�x(t) = ,

�y(t) = ,

�z(t) = μ,

�x(t) = ,

�y(t) = ,

�z(t) = μ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t = (n + )τ , n ∈ Z+,

(.)
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with initial condition

(
ϕ(ζ ),ϕ(ζ ),ϕ(ζ ),ϕ(ζ ),ϕ(ζ ),ϕ(ζ )

) ∈ C+ = C
(
[–τ, ], R

+
)
,

ϕi() > , i = , , , , , ,

where system (.) is constructed of two patches. xi(t), yi(t) and zi(t) represent the im-
mature prey population, mature prey population, predator population in patch i (i = , )
at time t. It is assumed that birth into the immature prey population is proportional to
the existing mature prey population with proportionality constant ri in patch i (i = , ).
τi represents a constant time to maturity of prey population in patch i (i = , ), that is,
immature prey individuals and mature individuals are divided by age τi in patch i (i = , ).
The natural death rates wi, wi and wi (i = , ) are assumed for the immature prey popu-
lation, mature prey population, and predator population in patch i (i = , ). βi (i = , ) is
the mature prey population capture rate by the predator population in patch i (i = , ). ki

(i = , ) is the conversion rate of nutrients into the reproduction of the predator popula-
tion in patch i (i = , ). The pulse diffusion occurs every τ >  period. The system evolves
from its initial state without being further affected by diffusion until the next pulse ap-
pears. �yi((n + l)τ ) = yi((n + l)τ+) – yi((n + l)τ ) where yi((n + l)τ+) represents the density of
population in the ith patch immediately after the nth diffusion pulse at time t = (n + l)τ ,
while yi((n + l)τ ) represents the density of population in the ith patch before the nth dif-
fusion pulse at time t = (n + l)τ (n ∈ Z+,  < l < ).  < D <  is the dispersal rate of the
predator population between two patches. It is assumed here that the net exchange from
the jth patch to the ith patch is proportional to the difference yj – yi of the predator popu-
lation densities. The predator population is released with μi in patch i (i = , ) at moment
t = (n + )τ , n ∈ Z+.

Because xi(t) (i = , ) does not affect the other equations of (.), we can simplify system
(.) and restrict our attention to the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt = re–wτ y(t – τ) – wy(t) – βy(t)z(t),

dz(t)
dt = kβy(t)z(t) – wz(t),

dy(t)
dt = re–wτ y(t – τ) – wy(t) – βy(t)z(t),

dz(t)
dt = kβy(t)z(t) – wz(t),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t �= (n + l)τ , t �= (n + )τ ,

�y(t) = ,

�z(t) = D(z(t) – z(t)),

�y(t) = ,

�z(t) = D(z(t) – z(t)),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t = (n + l)τ , n ∈ Z+,

�y(t) = ,

�z(t) = μ,

�y(t) = ,

�z(t) = μ,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t = (n + )τ , n ∈ Z+,

(.)
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with initial condition
(
ϕ(ζ ),ϕ(ζ ),ϕ(ζ ),ϕ(ζ )

) ∈ C+ = C
(
[–τ, ], R

+
)
,

ϕi() > , i = , , , .

3 The lemmas
The solution of (.), denoted by X(t) = (x(t), y(t), z(t), x(t), y(t), z(t)), is a piecewise
continuous function X : R+ → R

+, X(t) is continuous on (nτ , (n + l)τ ], ((n + l)τ , (n + )τ ],
n ∈ Z+ and X(nτ+) = limt→nτ+ X(t), X((n + l)τ+) = limt→(n+l)τ+ X(t) exist. Obviously the
global existence and uniqueness of solutions of (.) are guaranteed by the smoothness
properties of f , which denotes the mapping defined by the right side of system (.) (see
Lakshmikantham, []). Before we have the the main results, we need to give some lemmas
which will be used in the following.

According to the biological meaning, it is assumed that xi(t) ≥ , yi(t) ≥ , and zi(t) ≥ 
(i = , ).

Let V : R+ × R
+ → R+, then V is said to belong to class V, if:

(i) V is continuous in (nτ , (n + l)τ ] × R
+ and ((n + l)τ , (n + )τ ] × R

+, for each z ∈ R
+,

n ∈ Z+, V (nτ+, z) = lim(t,y)→(nτ+,z) V (t, y), V ((n + l)τ+, z) = lim(t,y)→((n+l)τ+,y) V (t, y)
exist.

(ii) V is locally Lipschitzian in z.

Definition . V ∈ V, then, for (t, z) ∈ (nτ , (n + l)τ ] × R
+ and ((n + l)τ , (n + )τ ] × R

+, the
upper right derivative of V (t, z) with respect to the impulsive differential system (.) is
defined as

D+V (t, z) = lim sup
h→


h
[
V

(
t + h, z + hf (t, z)

)
– V (t, z)

]
.

Lemma . ([]) Let the function m ∈ PC′[R+, R] satisfy the inequalities

⎧
⎪⎪⎨

⎪⎪⎩

m′(t) ≤ p(t)m(t) + q(t),

t ≥ t, t �= tk , k = , , . . . ,

m(t+
k ) ≤ dkm(tk) + bk , t = tk ,

(.)

where p, q ∈ PC[R+, R] and dk ≥ , bk are constants, then

m(t) ≤ m(t)
∏

t<tk <t
dk exp

(∫ t

t

p(s) ds
)

+
∑

t<tk <t

( ∏

tk <tj<t
dj exp

(∫ t

t

p(s) ds
))

bk

+
∫ t

t

∏

s<tk<t
dk exp

(∫ t

s
p(σ ) dσ

)

q(s) ds, t ≥ t.

Now, we show that all solutions of (.) are uniformly ultimately bounded.

Lemma . There exists a constant M >  such that xi(t) ≤ M, yi(t) ≤ M, zi(t) ≤ M (i =
, ) for each solution (x(t), y(t), z(t), x(t), y(t), z(t)) of (.) with all t large enough.
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Proof Define

V (t) =
∑

i=

[
kixi(t) + kiyi(t) + zi(t)

]
,

and d = min{w, w, w, w, w, w}, then t �= (n + l)τ , t �= (n + )τ , we have

D+V (t) + dV (t) =
∑

i=

kirixi(t)

–
∑

i=

[
ki(wi – d)xi(t) + ki(wi – d)yi(t) + (wi – d)zi(t)

]

≤
∑

i=

kirixi(t) < ζ .

When t = (n + l)τ ,

V
(
(n + l)τ+)

=
∑

i=

[
xi

(
(n + l)τ+)

+ yi
(
(n + l)τ+)

+ zi
(
(n + l)τ+)]

=
∑

i=

[
xi

(
(n + l)τ

)
+ yi

(
(n + l)τ

)
+ zi

(
(n + l)τ

)]
= V (nτ ).

When t = (n + )τ ,

V
(
(n + )τ+)

=
∑

i=

[
xi

(
(n + )τ+)

+ yi
(
(n + )τ+)

+ zi
(
(n + )τ+)]

=
∑

i=

[
xi

(
(n + )τ

)
+ yi

(
(n + )τ

)
+ zi

(
(n + )τ

)]
+ μ + μ

= V
(
(n + )τ

)
+ μ + μ.

By Lemma ., for t ∈ (nτ , (n + )τ ], we have

V (t) ≤ V
(
+)

e–dt +
ζ

d
(
 – e–dt) + (μ + μ)

e–d(t–τ )

 – e–dτ
+ (μ + μ)

edτ

edτ – 

→ ζ

d
+ (μ + μ)

edτ

edτ – 
, as t → ∞.

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t), there exists a
constant M >  such that xi(t) ≤ M/ki, yi(t) ≤ M/ki, zi(t) ≤ M (i = , ) for t large enough.
The proof is complete. �
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If yi(t) =  (i = , ), we have the following subsystem of (.):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz(t)
dt = –wz(t),

dz(t)
dt = –dz(t),

⎫
⎬

⎭
t �= (n + l)τ , t �= (n + )τ ,

�z(t) = D(z(t) – z(t)),

�z(t) = D(z(t) – z(t)),

⎫
⎬

⎭
t = (n + l)τ ,

�z(t) = μ,

�z(t) = μ,

⎫
⎬

⎭
t = (n + )τ , n ∈ Z+.

(.)

We can easily obtain the analytic solution of (.) between pulses as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z(t) =

⎧
⎨

⎩

z(nτ+)e–w(t–nτ ), t ∈ [nτ , (n + l)τ ),

z((n + l)τ+)e–w(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

z(t) =

⎧
⎨

⎩

z(nτ+)e–w(t–nτ ), t ∈ [nτ , (n + l)τ ),

z((n + l)τ+)e–w(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ).

(.)

Considering the third and fourth equations of (.), we have

⎧
⎨

⎩

z((n + l)τ+) = ( – D)e–wlτ z(nτ+) + De–wlτ z(nτ+),

z((n + l)τ+) = De–wlτ z(nτ+) + ( – D)e–wlτ z(nτ+).
(.)

Considering the fifth and sixth equations of (.), we also have

⎧
⎨

⎩

z((n + )τ+) = z((n + l)τ+)e–w(–l)τ + μ,

z((n + )τ+) = z((n + l)τ+)e–w(–l)τ + μ.
(.)

Substituting (.) into (.), we have the stroboscopic map of (.)

⎧
⎨

⎩

z((n + )τ+) = ( – D)e–wτ z(nτ+) + De–[w(–l)+wl]τ z(nτ+) + μ,

z((n + )τ+) = De–[wl+w(–l)]τ z(nτ+) + ( – D)e–wτ z(nτ+) + μ.
(.)

Equation (.) has one fixed point:

⎧
⎨

⎩

z∗
 = μ(–A)+μA

(–A)(–B)–AB
> ,

z∗
 = μB+μ(–B)

(–A)(–B)–AB
> ,

(.)

where

A = ( – D)e–wτ < ,

B = De–[w(–l)+wl]τ < ,

A = De–[wl+w(–l)]τ < ,

B = ( – D)e–wτ < .
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Lemma . The fixed point (z∗
 , z∗

) of (.) is globally asymptotically stable.

Proof For convenience, we use the notation (zn
 , zn

) = (z(nτ+), z(nτ+)). The linear form
of (.) can be written as

(
zn+



zn+


)

= M

(
zn



zn


)

. (.)

Obviously, the near dynamics of (z∗
 , z∗

) is determined by linear system (.). The stability
of (z∗

 , z∗
) is determined by the eigenvalue of M less than . If M satisfies the Jury criterion

[], we can know the eigenvalue of M is less than ,

 – tr M + det M > . (.)

We can easily know that (z∗
 , z∗

) is unique fixed point of (.), and

M =

(
A B

A B

)

. (.)

For

 – tr M + det M

=  – (A + B) + (AB – AB)

= ( – A)( – B) – AB

=
[
 – ( – D)e–wτ

] × [
 – ( – D)e–wτ

]
– De–(w+d)τ

=
[(

 – e–wτ
)

+ De–wτ
][(

 – e–wτ
)

+ De–wτ
]

– De–(w+w)τ

=
(
 – e–wτ

) × (
 – e–wτ

)
+ De–wτ

(
 – e–wτ

)
+ De–wτ

(
 – e–wτ

)

> .

From the Jury criterion, (z∗
 , z∗

) is locally stable, then it is globally asymptotically stable.
This completes the proof. �

Lemma . The periodic solution (z̃(t), z̃(t)) of system (.) is globally asymptotically
stable, where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z̃(t) =

⎧
⎨

⎩

z∗
 e–w(t–nτ ), t ∈ [nτ , (n + l)τ ),

z∗∗
 e–w(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

z̃(t) =

⎧
⎨

⎩

z∗
e–w(t–nτ ), t ∈ [nτ , (n + l)τ ),

z∗∗
 e–w(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

(.)

where z∗
 and z∗

 are determined as (.), z∗∗
 and z∗∗

 are defined as

⎧
⎨

⎩

z∗∗
 = ( – D)e–wlτ z∗

 + De–wlτ z∗
,

z∗∗
 = De–wlτ z∗

 + ( – D)e–wlτ z∗
.

(.)
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Lemma . ([]) Consider the following equation:

dx(t)
dt

= ax(t – ω) – ax(t),

where a, a,ω > ; x(t) >  for –ω ≤ t ≤ , we have:
(i) if a < a, then, limt→∞ x(t) = ,

(ii) if a > a, then, limt→∞ x(t) = +∞.

4 The dynamics
From the above discussion, we know there exists a prey-extinction boundary periodic
solution (, z̃(t), , z̃(t)) of system (.). In this section, we will prove that the prey-
extinction boundary periodic solution (, z̃(t), , z̃(t)) of system (.) is globally attrac-
tive.

Theorem . If

max
i=,

{
rie–wiτi –

[
wi + βi

(
z∗

i + z∗∗
i

)]}
<  (i = , ) (.)

holds, the prey-extinction boundary periodic solution (, z̃(t), , z̃(t)) of (.) is globally
attractive, where z∗

i (i = , ) is determined by (.), z∗∗
i (i = , ) is defined by (.).

Proof From (.), we can obtain

rie–wiτi <
[
wi + βi

(
z∗

i + z∗∗
i

)]
. (.)

Then, we can choose ε sufficiently small such that

rie–wiτi < wi + βi
[(

z∗
i + z∗∗

i
)

– ε
]
. (.)

From the second and fourth equations of system (.), we obtain dzi(t)
dt ≥ –wizi(t) (i = , ).

So we consider the following comparison impulsive differential system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz(t)
dt = –wz(t),

dz(t)
dt = –wz(t),

⎫
⎬

⎭
t �= (n + l)τ , t �= (n + )τ ,

�z(t) = D(z(t) – z(t)),

�z(t) = D(z(t) – z(t)),

⎫
⎬

⎭
t = (n + l)τ ,

�z(t) = μ,

�z(t) = μ,

⎫
⎬

⎭
t = (n + )τ , n ∈ Z+.

(.)

In view of Lemma . and (.), we find that the boundary periodic solution of system
(.)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˜z(t) =

⎧
⎨

⎩

z∗
 e–w(t–nτ ), t ∈ [nτ , (n + l)τ ),

z∗∗
 e–w(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

˜z(t) =

⎧
⎨

⎩

z∗
e–w(t–nτ ), t ∈ [nτ , (n + l)τ ),

z∗∗
 e–w(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

(.)
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is globally asymptotically stable, where z∗
 and z∗

 are determined as (.), z∗∗
 and z∗∗

 are
defined as (.).

From Lemma . and comparison theorem of impulsive equation [], we have zi(t) ≥
zi(t) (i = , ) and zi(t) → z̃i(t) as t → ∞. Then there exists an integer k > k, t > k such
that

zi(t) ≥ zi(t) ≥ z̃i(t) – ε (i = , ), nτ < t ≤ (n + )τ , n > k,

that is,

zi(t) > z̃i(t) – ε ≥ (
z∗

i + z∗∗
i

)
– ε


= �i (i = , ), nτ < t ≤ (n + )τ , n > k.

From (.), we get

dyi(t)
dt

≤ rie–wiτi yi(t – τ) – (wi + βi�i)yi(t) (i = , ), t > nτ + τ, n > k. (.)

Consider the following comparison differential system referring to (.):

dRi(t)
dt

= rie–wiτi Ri(t – τ) – (wi + βi�i)Ri(t) (i = , ), t > nτ + τ, n > k. (.)

From (.) and Lemma ., we have limt→∞ Ri(t) = .
Let (y(t), z(t), y(t), z(t)) be the solution of system (.) with initial conditions and

y(ζ ) = ϕ(ζ ) (ζ ∈ [–τ, ]), y(ζ ) = ϕ(ζ ) (ζ ∈ [–τ, ]). Ri(t) (i = , ) is the solution of sys-
tem (.) with initial conditions R(ζ ) = ϕ(ζ ) (ζ ∈ [–τ, ]), R(ζ ) = ϕ(ζ ) (ζ ∈ [–τ, ]). By
the comparison theorem, we have

lim
t→∞ yi(t) < lim

t→∞ Ri(t) = .

Incorporating the positivity of yi(t), we know that limt→∞ yi(t) = . Therefore, for any ε >
 (sufficiently small) and ε < min{ wi

kiβi
}, there exists an integer k (kτ > kτ + τ) such that

yi(t) < ε (i = , ) for all t > kτ .
From the second and fourth equations of system (.), we have

–wizi(t) ≤ dzi(t)
dt

≤ –(wi – kiβiε)zi(t) (i = , ). (.)

Then we have zi(t) ≤ zi(t) ≤ zi(t) and zi(t) → z̃i(t), zi(t) → ˜zi(t) (i = , ) as t → ∞.
While (z(t), z(t)) and (z(t), z(t)) are the solutions of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz(t)
dt = –wz(t),

dz(t)
dt = –wz(t),

⎫
⎬

⎭
t �= (n + l)τ , t �= (n + )τ ,

�z(t) = D(z(t) – z(t)),

�z(t) = D(z(t) – z(t)),

⎫
⎬

⎭
t = (n + l)τ ,

�z(t) = μ,

�z(t) = μ,

⎫
⎬

⎭
t = (n + )τ , n ∈ Z+,

(.)
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and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz(t)
dt = –(w – kβε)z(t),

dz(t)
dt = –(w – kβε)z(t),

⎫
⎬

⎭
t �= (n + l)τ , t �= (n + )τ ,

�z(t) = D(z(t) – z(t)),

�z(t) = D(z(t) – z(t)),

⎫
⎬

⎭
t = (n + l)τ ,

�z(t) = μ,

�z(t) = μ,

⎫
⎬

⎭
t = (n + )τ , n ∈ Z+,

(.)

respectively, we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˜z(t) =

⎧
⎨

⎩

z∗
e–(w–kβε)(t–nτ ), t ∈ [nτ , (n + l)τ ),

z∗∗
 e–(w–kβε)(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

˜z(t) =

⎧
⎨

⎩

z∗
e–(w–kβε)(t–nτ ), t ∈ [nτ , (n + l)τ ),

z∗∗
e–(w–kβε)(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

(.)

where
⎧
⎨

⎩

z∗
 = μ(–A)+μA

(–A)(–B)–AB
> ,

z∗
 = μB+μ(–B)

(–A)(–B)–AB
> ,

(.)

and
⎧
⎨

⎩

z∗∗
 = ( – D)e–(w–kβε)lτ z∗

 + De–(w–kβε)lτ z∗
,

z∗∗
 = De–(w–kβε)lτ z∗

 + ( – D)e–(w–kβε)lτ z∗
,

(.)

and

A = ( – D)e–(w–kβε)τ < ,

B = De–[(w–kβε)(–l)+(w–kβε)l]τ < ,

A = De–[(w–kβε)l+(w–kβε)(–l)]τ < ,

B = ( – D)e–(w–kβε)τ < .

Therefore, for any ε >  (ε is small enough), there exists an integer k, n > k such that
˜zi(t) – ε < zi(t) < ˜zi(t) + ε (i = , ). Let ε → , so we have z̃i(t) – ε < zi(t) < z̃i(t) + ε

(i = , ), for t large enough. This implies zi(t) → z̃i(t) (i = , ) as t → ∞. This completes
the proof. �

The next work is to investigate the permanence of system (.). Before starting our the-
orem, we give the following definition.

Definition . System (.) is said to be permanent if there are constants m, M >  (in-
dependent of initial value) and a finite time T such that, for all solutions (y(t), z(t),
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y(t), z(t)) with all initial values yi(+) > , zi(+) >  (i = , ), m ≤ yi(t) ≤ M, m ≤
zi(t) ≤ M (i = , ) hold for all t ≥ T. Here T may depend on the initial values
(y(+), z(+), y(+), z(+)).

Theorem . If

min
i=,

[
rie–wiτi – wi – βi

(
z∗

ie–(wi–kiβiy∗
i )lτ + z∗∗

i e–(wi+kiβiy∗
i )(–l)τ )] > ,

there is a positive constant q such that each positive solution (y(t), z(t), y(t), z(t)) of (.)
satisfies yi(t) ≥ q, for t large enough, where y∗

i (i = , ) is determined by

rie–wiτi = wi + βi
(
z∗

ie–(wi–kiβiy∗
i )lτ + z∗∗

i e–(wi+kiβiy∗
i )(–l)τ ) (i = , ),

where z∗
i (i = , ) and z∗∗

i (i = , ) are defined as (.) and (.), respectively.

Proof The second and fourth equations of (.) can be rewritten as

dyi(t)
dt

=
[
rie–wiτi –

(
wi + βizi(t)

)]
yi(t)

– rie–wiτi
d
dt

∫ t

t–τi

yi(u) du (i = , ). (.)

According to (.), Qi(t) (i = , ) is defined as

Qi(t) = yi(t) + rie–wiτi

∫ t

t–τi

yi(u) du (i = , ).

We calculate the derivative of Qi(t) (i = , ) along the solution of (.):

dQi(t)
dt

=
[
rie–wiτi –

(
wi + βizi(t)

)]
yi(t) (i = , ). (.)

Since

rie–wiτi > wi + βi
[
z∗

ie–(wi–kiβiy∗
i )lτ + z∗∗

i e–(wi+kiβiy∗
i )(–l)τ ] (i = , ),

we can easily see that there exists a sufficiently small ε >  such that

rie–wiτi > wi + βi
{[

z∗
ie–(wi–kiβiy∗

i )lτ + z∗∗
i e–(wi+kiβiy∗

i )(–l)τ ] + ε
}

(i = , ).

We claim that for any t > , it is impossible that yi(t) < y∗
i (i = , ) for all t > t. Suppose

that the claim is not valid. Then, there is a t >  such that yi(t) < y∗
i (i = , ) for all t > t.

It follows from the first and third equations of (.) that for all t > t

dzi(t)
dt

< –
(
wi – kiβiy∗

i
)
zi(t) (i = , ). (.)
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Consider the following comparison impulsive system for all t > t:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz(t)
dt = –(w – kβy∗

 )z(t),
dz(t)

dt = –(w – kβy∗
)z(t),

⎫
⎬

⎭
t �= (n + l)τ , t �= (n + )τ ,

�z(t) = D(z(t) – z(t)),

�z(t) = D(z(t) – z(t)),

⎫
⎬

⎭
t = (n + l)τ ,

�z(t) = μ,

�z(t) = μ,

⎫
⎬

⎭
t = (n + )τ , n ∈ Z+,

(.)

where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˜z(t) =

⎧
⎨

⎩

z∗
e–(w–kβy∗

 )(t–nτ ), t ∈ [nτ , (n + l)τ ),

z∗∗
 e–(w–kβy∗

 )(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

˜z(t) =

⎧
⎨

⎩

z∗
e–(w–kβy∗

)(t–nτ ), t ∈ [nτ , (n + l)τ ),

z∗∗
e–(w–kβy∗

)(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

(.)

here
⎧
⎨

⎩

z∗
 = μ(–A)+μA

(–A)(–B)–AB
> ,

z∗
 = μB+μ(–B)

(–A)(–B)–AB
> ,

(.)

and
⎧
⎨

⎩

z∗∗
 = ( – D)e–(w–kβy∗

 )lτ z∗
 + De–(w–kβy∗

)lτ z∗
,

z∗∗
 = De–(w–kβy∗

)lτ z∗
 + ( – D)e–(w–kβy∗

)lτ z∗
,

(.)

and

A = ( – D)e–(w–kβy∗
 )τ < ,

B = De–[(w–kβy∗
 )(–l)+(w–kβy∗

)l]τ < ,

A = De–[(w–kβy∗
 )l+(w–kβy∗

)(–l)]τ < ,

B = ( – D)e–(w–kβy∗
)τ < .

By the comparison theorem for impulsive differential equations [], we know that there
exists a sufficient small ε >  and t (> t + τ) such that the inequality zi(t) ≤ ˜zi(t) + ε (i =
, ) holds for t ≥ t, thus zi(t) ≤ [z∗

ie–(wi–kiβiy∗
i )lτ + z∗∗

i e–(wi+kiβiy∗
i )(–l)τ ] + ε for all t ≥ t. We

use the notation σi

= [z∗

ie–(wi–kiβiy∗
i )lτ + z∗∗

i e–(wi+kiβiy∗
i )(–l)τ ] + ε (i = , ) for convenience.

So we have

rie–wiτi > wi + βiσi (i = , ),

then we have

Q′
i(t) > y(t)

[
rie–wiτi – (wi + βiσi)

]
(i = , ),
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for all t > t. Set ym
i = mint∈[t,t+τ] yi(t), we will show that yi(t) ≥ ym

i for all t ≥ t. Suppose
the contrary, then there is a T >  such that yi(t) ≥ ym

i for t ≤ t ≤ t + τ + T, yi(t + τ +
T) = ym

i and y′
i(t + τ + T) < . Hence, the second and fourth equations of system (.)

imply that

y′
i(t + τ + T) = rie–wiτi yi(t + τ + T) –

[
wi + βizi(t + τ + T)

]
yi(t + τ + T)

≥ [
rie–wiτi – (wi + βiσi)

]
Im

i >  (i = , ).

This is a contradiction. Thus, yi(t) ≥ ym
i for all t > t. As a consequence, then Q′

i(t) >
ym

i [rie–wiτi – (wi + βiσi)] >  (i = , ) for all t > t. This implies that as t → ∞, Qi(t) → ∞.
It is a contradiction to Qi(t) ≤ M( + τirie–wiτi ). Hence, the claim is complete.

By the claim, we are left to consider two cases. First, yi(t) ≥ y∗
i (i = , ) for all t large

enough. Second, yi(t) (i = , ) oscillates about y∗
i (i = , ) for t large enough.

Define

q = min

{
y∗




,
y∗




, q, q

}

, (.)

where qi = y∗
i e–(wi+βiM)τi (i = , ). We hope to show that yi(t) ≥ qi (i = , ) for all t large

enough. The conclusion is evident in the first case. For the second case, let t∗ >  and ξ > 
satisfy yi(t∗) = yi(t∗ + ξ ) = y∗

i (i = , ) and yi(t) < y∗
i (i = , ) for all t∗ < t < t∗ + ξ where t∗

is sufficiently large such that yi(t) > σi (i = , ) for t∗ < t < t∗ + ξ , yi(t) (i = , ) is uniformly
continuous. The positive solutions of (.) are ultimately bounded and yi(t) (i = , ) is not
affected by impulses. Hence, there is a T ( < t < τ) and T is dependent on the choice of
t∗ such that yi(t∗) > y∗

i
 (i = , ) for t∗ < t < t∗ + T . If ξ < T , there is nothing to prove. Let us

consider the case T < ξ < τ. Since y′
i(t) > –(wi + βiM)yi(t) (i = , ) and yi(t∗) = y∗

i (i = , ),
it is clear that yi(t) ≥ qi (i = , ) for t ∈ [t∗, t∗ + τ]. Then, proceeding exactly as the proof
for the above claim, we see that yi(t) ≥ qi for t ∈ [t∗ +τ, t∗ +ξ ]. Because the kind of interval
t ∈ [t∗, t∗ + ξ ] is chosen in an arbitrary way (we only need t∗ to be large). We conclude that
yi(t) ≥ q for all large t. In the second case, in view of the above discussion, the choice of
q is independent of the positive solution, and we prove that any positive solution of (.)
satisfies yi(t) ≥ q for all sufficiently large t. This completes the proof of the theorem. �

Theorem . If

min
i=,

[
rie–wiτi – wi – βi

(
z∗

ie–(wi–kiβiy∗
i )lτ + z∗∗

i e–(wi+kiβiy∗
i )(–l)τ )] > ,

system (.) is permanent.

Proof Denote (y(t), z(t), y(t), z(t)) for any solution of system (.). From system (.)
and Lemma ., we can easily obtain

dzi(t)
dt

> –wizi(t) (i = , ). (.)
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Consider the comparison impulsive system (.) for all t > t. By Lemma ., we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˜z(t) =

⎧
⎨

⎩

z∗
 e–w(t–nτ ), t ∈ [nτ , (n + l)τ ),

z∗∗
 e–w(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

˜z(t) =

⎧
⎨

⎩

z∗
e–w(t–nτ ), t ∈ [nτ , (n + l)τ ),

z∗∗
 e–w(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

(.)

here z∗
 and z∗

 are defined as (.), z∗∗
 and z∗∗

 are defined as (.). By the comparison
theorem for impulsive differential equation [], we know that there exists a sufficient
small ε >  and t (> t +τ) such that the inequality zi(t) ≥ z̃i(t) –ε (i = , ) holds for t ≥ t,
thus zi(t) ≥ [z∗

i e–wilτ + z∗∗
i e–wi(–l)τ ] – ε


= pi for all t ≥ t. By Theorem ., Lemma ., and
the above discussion, system (.) is permanent. The proof of Theorem . is complete. �

5 Discussion
In this paper, we investigate a new delayed stage-structured predator-prey model with
impulsive diffusion and releasing. We analyze that the prey-extinction boundary periodic
solution of system (.) is globally attractive, and we also obtain the permanent condition
of system (.). From Theorem . and Theorem ., we can easily guess that there must
exist a threshold μ∗ (μ∗ = maxi=,{μ∗

i } and μ∗
i (i = , )) is determined by the condition of

Theorem .), if μ > μ∗, the prey-extinction boundary periodic solution (, z̃(t), , z̃(t))
of (.) is globally attractive. If μ < μ∗∗ (μ∗∗ = mini=,{μ∗∗

i } and μ∗∗
i (i = , ) is determined

by the condition of Theorem .), system (.) is permanent. From Theorem . and The-
orem ., we can also easily guess that there must exist a threshold D∗ ( < D∗ < ). If
D < D∗, the prey-extinction boundary periodic solution (, z̃(t), , z̃(t)) of (.) is glob-
ally attractive. If D > D∗, system (.) is permanent. This indicates that impulsive diffusion
and impulsive releasing can affect the dynamical behaviors of the investigated system (.).
That is to say, impulsive diffusion and impulsive releasing of the predator population play
important roles for the prey-extinction of system (.). The parameters as τi (i = , ) and
τ can also be discussed, its change also affects the dynamical system of (.). The results
of this paper provide a tactical basis for pest management.
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