
Qiao and Zhou Advances in Difference Equations  (2017) 2017:8 
DOI 10.1186/s13662-016-1042-9

R E S E A R C H Open Access

Existence of positive solutions of singular
fractional differential equations with
infinite-point boundary conditions
Yan Qiao and Zongfu Zhou*

*Correspondence:
zhouzf12@126.com
School of Mathematical Sciences,
Anhui University, Hefei, Anhui
230601, China

Abstract
Using height functions of the nonlinear term on some bounded sets and considering
integrations of these height functions, we obtain the existence of positive solutions
for a class of singular fractional differential equations with infinite-point boundary
value conditions.
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1 Introduction
In this paper, we investigate the existence of positive solutions of the following singular
fractional differential equations with infinite-point boundary value conditions:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ x(t) + q(t)f (t, x(t)) = , t ∈ (, ),

x() = x′() = · · · = x(n–)() = ,

Dβ

+ x() =
∑∞

i= αix(ξi),

(.)

where α > , n –  < α ≤ n, β ∈ [,α – ] is a fixed number, αi ≥  (i = , , . . .),  < ξ < ξ <
· · · < ξi– < ξi < · · · < , �(α)

�(α–β) –
∑∞

i= αiξ
α–
i > , and Dα

+ and Dβ

+ are the standard Riemann-
Liouville derivatives. The nonlinear term f may be singular with respect to both time and
space variables.

A function x ∈ C[, ] satisfying (.) is called a positive solution of (.) if x >  on (, ].
Recently, fractional differential equations have gained considerable attention; for exam-
ple, see [–] and the references therein. Papers [–] discussed the existence of positive
solutions of fractional boundary value problems.

In [], the authors investigated the existence of a positive solution for the following
fractional boundary value problem in a Banach space E:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ u(t) + q(t)f (t, u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = ,

u() =
∑m

i= αiu(ξi).

(.)
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In [], the authors obtained the existence and multiplicity of positive solutions of the
following infinite-point fractional differential equations:

⎧
⎨

⎩

Dα
+ u(t) + q(t)f (t, u(t)) = ,  < t < ,

u() = , u() =
∑∞

i= αiu(ξi).
(.)

In [], the author obtained the existence and multiplicity of positive solutions of the fol-
lowing fractional differential equation with infinite-point boundary value conditions:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ u(t) + q(t)f (t, u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = ,

u(i)() =
∑∞

j= αju(ξj).

(.)

Motivated by the works mentioned, in this paper, we consider the boundary value prob-
lem (.) with more general and more complex boundary conditions. The existence of
positive solutions for (.) is obtained by means of cone expansion and the compression
fixed point theorem.

In order to establish the results, we assume that the following conditions are satisfied:
(A) f ∈ C((, ) × (, +∞), [, +∞)).
(A) q ∈ C((, ), [, +∞)), and q does not vanish identically on any subinterval of (, ).
(A) For any positive numbers r < r, there exists a continuous function pr,r : (, ) →

[, +∞) such that

∫ 


q(t)pr,r (t) dt < +∞

and

f (t, u) ≤ pr,r (t),  < t < , tα–r ≤ u ≤ r.

The rest of this paper is organized as follows. In Section , we introduce some prelimi-
naries and relevant lemmas. In Section , we apply the fixed-point theorem to study the
existence of positive solutions for the boundary value problem (.). In Section , we give
some examples to illustrate our main results.

2 Preliminaries and relevant lemmas
For the convenience of the readers, we first present some useful definitions and fundamen-
tal facts of fractional calculus theory. In order to avoid redundancy, for the definitions of
the Riemann-Liouville fractional integral and fractional derivative, we refer the readers
to [].

Lemma . ([]) Let α > , and u(t) be an integrable function. Then

Iα
+ Dα

+ u(t) = u(t) + ctα– + ctα– + · · · + cntα–n,

where ci ∈R (i = , , . . . , n), and n is the smallest integer greater than or equal to α.
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Lemma . Given y ∈ C[, ], the unique solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ x(t) + y(t) = , t ∈ (, ),

x() = x′() = · · · = x(n–)() = ,

Dβ

+ x() =
∑∞

i= αix(ξi),

(.)

is given by

x(t) =
∫ 


G(t, s)y(s) ds,

where

G(t, s) =

⎧
⎨

⎩


�(α)l() {l(s)tα–( – s)α–β– – l()(t – s)α–},  ≤ s ≤ t ≤ ,


�(α)l() {l(s)tα–( – s)α–β–},  ≤ t ≤ s ≤ ,

(.)

with l(s) = 
�(α–β) – 

�(α)
∑

s≤ξi
αi( ξi–s

–s )α–( – s)β ( ≤ s ≤ ).

Proof By Lemma . we can see that

x(t) = –Iα
+ y(t) + ctα– + ctα– + ctα– + · · · + cntα–n,

so, the solution of (.) is

x(t) = –


�(α)

∫ t


(t – s)α–y(s) ds + ctα– + ctα– + ctα– + · · · + cntα–n.

Since x() = x′() = · · · = x(n–)() = , we have c = c = · · · = cn = .
In addition,

Dβ

+ x(t) = –Dβ

+ Iα
+ y(t) + cDβ

+
(
tα–)

= –


�(α – β)

∫ t


(t – s)α–β–y(s) ds + c

�(α)
�(n + α – β)

dn

dtn

(
tn+α–β–)

= –


�(α – β)

∫ t


(t – s)α–β–y(s) ds

+ c
�(α)

�(n + α – β)
(α – β + n – )(α – β + n – ) · · · (α – β)tα–β–,

where n = [β] + .
Combining this with the second boundary value condition of (.), we have

Dβ

+ x() = –


�(α – β)

∫ 


( – s)α–β–y(s) ds + c

�(α)
�(α – β)

= –


�(α)

∞∑

i=

αi

∫ ξi


(ξi – s)α–y(s) ds + c

∞∑

i=

αiξ
α–
i .
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This yields

c =


�(α–β)
∫ 

 ( – s)α–β–y(s) ds – 
�(α)

∑∞
i= αi

∫ ξi
 (ξi – s)α–y(s) ds

�(α)
�(α–β) –

∑∞
i= αiξ

α–
i

.

Therefore, the solution of (.) is

x(t) = –


�(α)

∫ t


(t – s)α–y(s) ds +


�(α–β)

∫ 
 ( – s)α–β–tα–y(s) ds

�(α)
�(α–β) –

∑∞
i= αiξ

α–
i

–


�(α)
∫ 


∑

s≤ξi
αi(ξi – s)α–tα–y(s) ds

�(α)
�(α–β) –

∑∞
i= αiξ

α–
i

=
∫ 


G(t, s)y(s) ds.

The proof is completed. �

It is easy to see that if l(s) is continuous on [, ], then G(t, s) is continuous on [, ] ×
[, ].

Lemma . The function l(s) is positive and nondecreasing on [, ].

Proof By the definition of l(s) it follows that

l() =


�(α – β)
–


�(α)

∞∑

i=

αiξ
α–
i > .

By computation we have that
() when  ≤ s < limi→∞ ξi,

l′(s) =


�(α)

[∑

s≤ξi

αi(α – )
(

ξi – s
 – s

)α–

( – s)β–( – ξi) +
∑

s≤ξi

αiβ

(
ξi – s
 – s

)α–

( – s)β–
]

> , and

() when limi→∞ ξi ≤ s ≤ ,

l(s) =


�(α – β)
, l′(s) = .

So, l is nondecreasing on [, ], and l(s) ≥ l() > , s ∈ [, ]. The proof is completed. �

Lemma . The function G(t, s) defined in (.) admits the following properties:
() G(t, s) > , ∂

∂t G(t, s) > ,  < t, s < ;
() maxt∈[,] G(t, s) = G(, s) = 

�(α)l() [l(s)( – s)α–β– – l()( – s)α–],  ≤ s ≤ ;
() G(t, s) ≥ tα–G(, s),  ≤ t, s ≤ .

Proof The proof is similar to that of Lemma  in []. �

The following lemma is the main tool in this paper.
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Lemma . ([]) Let E be a real Banach space, and P ⊂ E be a cone. Assume that � and
� are bounded open subsets of E with θ ∈ �,� ⊂ �, and T : P ∩ (� \ �) → P is a
completely continuous operator such that either:

() ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂�, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂�, or
() ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂�, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂�.
Then T has a fixed point in P ∩ (� \ �).

Let E = C[, ], so that E is a Banach space with norm ‖x‖ = maxt∈[,] |x(t)|.
Set P = {x ∈ E|x(t) ≥ tα–‖x‖, t ∈ [, ]}. Then P is a cone in E.
Denote �(r) = {x ∈ P : ‖x‖ < r} and ∂�(r) = {x ∈ P : ‖x‖ = r} for r > .
Define the operator T : P\{θ} → E by

(Tx)(t) =
∫ 


G(t, s)q(s)f

(
s, x(s)

)
ds, t ∈ [, ]. (.)

Lemma . Suppose that (A)-(A) hold and  < r < r. Then T : �(r)\�(r) → P is com-
pletely continuous.

Proof For any x ∈ �(r)\�(r), it follows from (.) and Lemma . that

(Tx)(t) =
∫ 


G(t, s)q(s)f

(
s, x(s)

)
ds ≤

∫ 


G(, s)q(s)f

(
s, x(s)

)
ds, t ∈ [, ], (.)

and

(Tx)(t) =
∫ 


G(t, s)q(s)f

(
s, x(s)

)
ds

≥ tα–
∫ 


G(, s)q(s)f

(
s, x(s)

)
ds, t ∈ [, ]. (.)

By (.) and (.) we know that

(Tx)(t) ≥ tα–‖Tx‖, t ∈ [, ],

which means that T : �(r)\�(r) → P.
Noticing the continuity of G(t, s) and (A)-(A), it is easy to see that T is continuous in

�(r)\�(r). Next, we show T is compact. For any x ∈ �(r)\�(r), we have

∣
∣Tx(t)

∣
∣ =

∣
∣
∣
∣

∫ 


G(t, s)q(s)f

(
s, x(s)

)
ds

∣
∣
∣
∣ ≤

∫ 


G(, s)q(s)pr,r (s) ds

for t ∈ [, ], which implies that T(�(r)\�(r)) is uniformly bounded.
Because G(t, s) is continuous on [, ] × [, ], G(t, s) is uniformly continuous on [, ] ×

[, ]. Thus, for any ε > , there exists δ >  such that

∣
∣G(t, s) – G(t, s)

∣
∣ < ε



Qiao and Zhou Advances in Difference Equations  (2017) 2017:8 Page 6 of 9

if |t – t| < δ and (t, s), (t, s) ∈ [, ]× [, ]. Then, for any x ∈ �(r)\�(r) and t, t ∈ [, ]
such that |t – t| < δ, we have

∣
∣Tx(t) – Tx(t)

∣
∣ =

∣
∣
∣
∣

∫ 



(
G(t, s) – G(t, s)

)
q(s)f

(
s, x(s)

)
ds

∣
∣
∣
∣

≤
∫ 



∣
∣G(t, s) – G(t, s)

∣
∣q(s)pr,r (s) ds

≤ ε

∫ 


q(s)pr,r (s) ds.

We can see that the functions in T(�(r)\�(r)) are equicontinuous. So, T(�(r)\�(r))
is relatively compact in C[, ]. Thereby, T is compact in �(r)\�(r), and thus T :
�(r)\�(r) → P is completely continuous. �

3 Main result
We introduce the following height functions to control the growth of the nonlinear term
f (t, x). Let

ϕ(t, r) = max
{

f (t, x) : tα–r ≤ x ≤ r
}

( < t <, r > ),

ψ(t, r) = min
{

f (t, x) : tα–r ≤ x ≤ r
}

( < t < , r > ).

Theorem . Suppose that (A)-(A) hold and there exist two positive numbers a < b such
that one of the following conditions is satisfied:

(B) a ≤ ∫ 
 G(, s)q(s)ψ(s, a) ds < +∞ and

∫ 
 G(, s)q(s)ϕ(s, b) ds ≤ b;

(B)
∫ 

 G(, s)q(s)ϕ(s, a) ds ≤ a and b ≤ ∫ 
 G(, s)q(s)ψ(s, b) ds < +∞.

Then the boundary value problem (.) has at least one strictly increasing positive solution
x∗ ∈ P such that a ≤ ‖x∗‖ ≤ b.

Proof Without loss of generality, we only prove (B).
If x ∈ ∂�(a), then ‖x‖ = a and tα–a ≤ x(t) ≤ a,  ≤ t ≤ . By the definition of ψ(t, a) we

know that

f
(
t, x(t)

) ≥ ψ(t, a),  < t < . (.)

By (.) and Lemma . we have that

‖Tx‖ = max
t∈[,]

∫ 


G(t, s)q(s)f

(
s, x(s)

)
ds

≥ max
t∈[,]

tα–
∫ 


G(, s)q(s)f

(
s, x(s)

)
ds

=
∫ 


G(, s)q(s)f

(
s, x(s)

)
ds

≥
∫ 


G(, s)q(s)ψ(s, a) ds ≥ a = ‖x‖. (.)
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If x ∈ ∂�(b), then ‖x‖ = b and tα–b ≤ x(t) ≤ b,  ≤ t ≤ . By the definition of ϕ(t, b) we
get that

f
(
t, x(t)

) ≤ ϕ(t, b),  < t < . (.)

By (.) and Lemma . we have that

‖Tx‖ = max
t∈[,]

∫ 


G(t, s)q(s)f

(
s, x(s)

)
ds ≤

∫ 


G(, s)q(s)f

(
s, x(s)

)
ds

≤
∫ 


G(, s)q(s)ϕ(s, b) ds ≤ b = ‖x‖. (.)

By Lemma ., T has a fixed point x∗ ∈ �(b)\�(a). From Section  we know that x∗ is a
solution of (.) and a ≤ ‖x∗‖ ≤ b. Because x∗(t) ≥ tα–‖x∗‖ ≥ atα– > ,  < t ≤ , we get
that x∗ is a positive solution for (.).

From Lemma . we have that

(
x∗)′(t) =

(
Tx∗)′(t) =

∫ 



∂

∂t
G(t, s)q(s)f

(
s, x∗(s)

)
ds > ,

which shows that x∗ is a strictly increasing positive solution. The proof is completed. �

4 Examples
Example . Consider the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D


+ x(t) + 


√

–t (x + 
 √x ) = , t ∈ (, ),

x() = x′() = x()() = ,

D


+ x() =

∑∞
i=


i x( – 

i+ ).

(.)

Let α = 
 ,β = 

 , f (t, x) = x + 
 √x , q(t) = 


√

–t ,αi = 
i , ξi =  – 

i+ . Obviously, f ∈
C((, ) × (, +∞), [, +∞)) and q ∈ C((, ), [, +∞)). It is not difficult to calculate that
∑∞

i= αiξ
α–
i ≈ ., �(α) = �( 

 ) ≈ ., �(α – β) = �() = , l() ≈ .. For any

positive numbers r < r, we can see that (A)-(A) hold for pr,r (t) = r
 + 

 t– 
 r– 


 .

The height functions ϕ(t, r) and ψ(t, r) satisfy the following inequalities:

ϕ(t, r) = max

{

x +


 √x
: t


 r ≤ x ≤ r

}

≤ r +



t– 
 r– 

 ,

ψ(t, r) = min

{

x +


 √x
: t


 r ≤ x ≤ r

}

≥ t

 r +




r– 
 .

It follows that

∫ 


G(, s)q(s)ϕ(s, ) ds ≤ 

�( 
 )l()

∫ 



[
l(s)( – s)α–β–] 


√

 – s

(

 +



s– 


)

ds

≤ 
�( 

 )l()

∫ 


�()( – s)



√

 – s

(

 +



s– 


)

ds < 
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and
∫ 


G(, s)q(s)ψ

(

s,




)

ds

≥ 
�( 

 )l()

∫ 



[
l(s)( – s)α–β– – l()( – s)α–]

× 

√

 – s

[

s



(




)

+



(




)– 

]

ds

≥ 
�( 

 )l()

∫ 



[
l()( – s) – l()( – s)



]
( – s)– 



[

s



(




)

+



(




)– 

]

ds

>



.

According to Theorem ., we get that (.) has at least one strictly increasing positive
solution x∗ and 

 ≤ ‖x∗‖ ≤ .

5 Conclusions
Infinite-point boundary value conditions are the classical boundary value conditions. The
existence of positive solutions for singular fractional differential problem with infinite-
point boundary conditions is established by height functions of the nonlinear term on
some bounded sets.
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