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1 Introduction
Recently, fractional differential systems have played an important role in physics, chem-
istry, engineering, biology, finance etc., due to the memory character of fractional deriva-
tive, which is a generalization of integer-order derivative and can describe many phenom-
ena that an integer derivative cannot characterize (see [–] and the references therein).

In this paper, we study the existence of S-asymptotically T-periodic solutions for the
following fractional differential equation on a Banach space X:

⎧
⎨

⎩

cDq
t u(t) = Au(t) + f (t, ut), t > ,

u(t) = φ(t), t ∈ [–δ, ],
(.)

where q ∈ (, ) and δ > . The fractional derivative is understood here in the Caputo sense.
A is an almost sectorial operator to be introduced later. ut : [–δ, ] → X is defined by
ut(θ ) = u(t + θ ) for θ ∈ [–δ, ]. f is a function to be specified later. φ ∈ C([–δ, ], X).

The literature concerning S-asymptotically T-periodic functions with values in Banach
spaces is very new. There are some papers dealing with the existence of S-asymptotically
T-periodic solutions of differential equations and fractional differential equations with a
sectorial operator in finite as well as infinite dimensional spaces (cf. [–, –]). How-
ever, von Wahl first introduced examples of almost sectorial operators which are not sec-
torial []. To the best of the authors’ knowledge, there are few papers on the existence
of S-asymptotically T-periodic (mild) solutions for fractional differential equation with
almost sectorial operator of type (.).
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We will now present a summary of this work. In Section , we recall some fundamen-
tal properties of S-asymptotically T-periodic functions and preliminary facts. The exis-
tence and uniqueness of S-asymptotically T-periodic mild solution of problem (.) are
discussed in Section , and an example is given to illustrate our result.

2 Preliminaries
Let (X,‖ · ‖) be a Banach space and L(X) be the space of all bounded linear operators from
X to X with the usual operator norm ‖x‖L(X). Cb(R+, X) denotes the space of the continu-
ous bounded functions from [, +∞) to X, endowed with the norm ‖x‖∞ = supt≥ ‖x(t)‖.
C([–δ, ], X) denotes the space of the continuous functions from [–δ, ] to X with the
norm ‖x‖[–δ,] = supt∈[–δ,] ‖x(t)‖. Lp((, +∞), (, +∞)) is the Lp space with the norm
‖x‖p = (

∫ +∞
 |x(t)|p dt)


p for  ≤ p < ∞, and we abbreviate this notation to Lp.

We recall the following basic definitions of the fractional calculus theory. For more de-
tails, we refer to [, ].

Definition . ([, ]) The fractional integral of order q with the lower limit zero for a
function g ∈ L[,∞) is defined as

Iq
t g(t) =


�(q)

∫ t


(t – s)q–g(s) ds, t > ,  < q < ,

where �(·) is the gamma function.

Definition . ([, ]) The Caputo derivative of order q for a function g ∈ C[,∞) can
be written as

cDq
t g(t) =


�( – q)

∫ t



g ′(s)
(t – s)q ds, t > ,  < q < .

As in [, ], we state the concept of almost sectorial operators as follows.

Definition . Let – < γ <  and  < ω < π
 . By 	

γ
ω(X) we denote the family of all linear

closed operators A : D(A) ⊂ X → X which satisfy
() σ (A) ⊂ Sω = {z ∈ C \ {}; | arg z| ≤ ω} ∪ {} and
() for every ω < ζ < π there exists a constant Cζ such that

∥
∥R(z; A)

∥
∥

L(X) ≤ Cζ |z|γ , for all z ∈C \ Sζ .

A linear operator A will be called an almost sectorial operator on X if A ∈ 	
γ
ω(X).

Remark . Let A ∈ 	
γ
ω(X), then the definition implies that  ∈ ρ(A).

We denote the semigroup associated with A by W (t). For t ∈ S
π
 –ω

= {z ∈C\{}; | arg z| <
π
 – ω},

W (t) = e–tz(A) =


π i

∫

�θ

e–tzR(z; A) dz,

forms an analytic semigroup of growth order  + γ , here ω < θ < π
 – | arg t|, the integral

contour �θ := {R+eiθ } ∪ {R+e–iθ } is oriented counter-clockwise [, ].
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Proposition . ([, ]) Let A ∈ 	
γ
ω(X) with – < γ <  and  < ω < π

 . Then
(i) There exists a constant C = C(γ ) >  such that

∥
∥W (t)

∥
∥

L(X) ≤ Ct–γ –, for all t > .

(ii) If β >  + γ , then D(Aβ ) ⊂ �T = {x ∈ X; limt→;t> W (t)x = x}.
(iii) The functional equation W (s + t) = W (s)W (t) for all s, t ∈ S

π
 –ω

holds. However, it is
not satisfied for t =  or s = .

Consider the function of Wright-type (see [, ])

�q(z) :=
∞∑

n=

(–z)n

n!�(–qn +  – q)
=


π

∞∑

n=

(–z)n

(n – )!
�(nq) sin(nπq), z ∈C

with  < q < .
Define operator families {Sq(t)}|t∈S

π
 –ω

and {Tq(t)}|t∈S
π
 –ω

by

Sq(t)x =
∫ ∞


�q(σ )W

(
σ tq)x dσ , t ∈ S

π
 –ω

, x ∈ X,

Tq(t)x =
∫ ∞


qσ�q(σ )W

(
σ tq)x dσ , t ∈ S

π
 –ω

, x ∈ X.

Theorem . ([]) For each fixed t ∈ S
π
 –ω

, Sq(t) and Tq(t) are linear and bounded oper-
ators on X. Moreover, for all t > , – < γ < ,  < q < ,

∥
∥Sq(t)

∥
∥ ≤ Mt–q(+γ ),

∥
∥Tq(t)

∥
∥ ≤ Mt–q(+γ ),

(.)

where M = C�(–γ )
�(–q(+γ )) and M = qC�(–γ )

�(–qγ ) . Moreover,

lim
t→∞

∥
∥Sq(t)

∥
∥ = , lim

t→∞
∥
∥Tq(t)

∥
∥ = . (.)

Theorem . ([], Theorem .) For t > , Sq(t) and Tq(t) are continuous in the uniform
operator topology. Moreover, for every r̃ > , the continuity is uniform on [̃r,∞).

Remark . ([], Theorem .) Let β >  + γ . Then, for all x ∈ D(Aβ ),

lim
t→;t>

Sq(t)x = x.

When φ() ∈ D(Aβ ) with β >  +γ , we present the definition of mild solution of problem
(.) as follows.

Definition . A function u ∈ C([–δ, +∞), X) satisfying the equation

u(t) =

⎧
⎨

⎩

φ(t), t ∈ [–δ, ],

Sq(t)φ() +
∫ t

 (t – s)q–Tq(t – s)f (s, us) ds, t > ,
(.)

is called a mild solution of problem (.).
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Remark . In general, mild solutions to problem (.) are assumed to have the same
kind of singularity at t =  as the operator Sq(t). When φ() ∈ D(Aβ ) with β >  + γ , it
follows from Remark . that the mild solution is continuous at t = .

Let us recall the notion of S-asymptotically T-periodic functions which will come into
play later on.

Definition . ([]) A function g ∈ Cb(R+, X) is called S-asymptotically T-periodic if
there exists T >  such that limt→∞ ‖g(t + T) – g(t)‖ = . In this case, we say that T is an
asymptotic period of g .

Let SAPT (X) represent the space formed for all the X-valued S-asymptotically T-
periodic functions endowed with the uniform convergence norm denoted by ‖ · ‖∞.
Then SAPT (X) is a Banach space (see Proposition ., []). We set SAPT ,(X) = {x ∈
SAPT (X); x() = }. Clearly, SAPT ,(X) is a closed subspace of SAPT (X).

Lemma . Let u : [–δ, +∞) → X be a function with u ∈ C([–δ, ], X) and u|[,+∞) ∈
SAPT (X). Then the function t → ut belongs to SAPT (C([–δ, ], X)).

Proof Since ut is continuous on [–δ, ] which is compact, there exists θ ∈ [–δ, ] such that

‖ut+T – ut‖[–δ,] = sup
–δ≤θ≤

∥
∥u(t + T + θ ) – u(t + θ )

∥
∥ =

∥
∥u(t + T + θ ) – u(t + θ )

∥
∥.

Setting τ = t + θ , we obtain limt→+∞ ‖u(t + T + θ ) – u(t + θ )‖ = limτ→+∞ ‖u(τ + T) –
u(τ )‖ = . �

3 Main result
In this section we discuss the existence and uniqueness of S-asymptotically T-periodic
solutions for problem (.).

The function f : (, +∞) × C([–δ, ], X) → X satisfies the following conditions:
(H) There exists a function μ(·) ∈ L


p ( < p < –qγ ) such that ‖f (t,ϕ)‖ ≤ μ(t), for all

ϕ ∈ C([–δ, ], X).
(H) There exists a function η : (, +∞) → (, +∞) such that

∥
∥f (t,ψ) – f (t,ψ)

∥
∥ ≤ η(t)‖ψ – ψ‖, for all t > ,ψ,ψ ∈ C

(
[–δ, ], X

)

and

� := sup
t≥

∫ t



η(s)
(t – s)+qγ

ds <


M
. (.)

(H) K := supt≥
∫ t


‖f (s,)‖

(t–s)+qγ ds < ∞.
(H) There exists a function ξ : (, +∞) → (, +∞) such that

lim
t→∞

‖f (t + T ,ϕ) – f (t,ϕ)‖
ξ (t)

= , for all ϕ ∈ C
(
[–δ, ], X

)
,

and supt≥
∫ t


ξ (s)

(t–s)+qγ ds < ∞.
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For ν > p,  ≤ t < t, it follows from the Hölder inequality that

∫ t

t

(t – s)ν–μ(s) ds ≤
(∫ t

t

(t – s)
ν–
–p ds

)–p

‖μ‖
L


p

= δν(t – t)ν–p, (.)

where δν = ( –p
ν–p )–p‖μ‖

L

p

.

Theorem . Assume that (H)-(H) hold. Then, for every φ() ∈ D(Aβ ) with β >  + γ ,
the problem (.) has a unique S-asymptotically T-periodic mild solution.

Proof For φ ∈ C([–δ, ], X), we define the function y(t) = φ(t) for t ∈ [–δ, ], y(t) =
Sq(t)φ() for t > , then y ∈ C([–δ,∞), X). Set u(t) = x(t) + y(t), t ∈ [–δ, +∞). It is obvi-
ous that u satisfies (.) if and only if x satisfies x =  and for t > ,

x(t) =
∫ t


(t – s)q–Tq(t – s)f (s, xs + ys) ds.

We write

C̃b(X) =
{

x ∈ Cb
(
[–δ, +∞), X

)
; x|t> ∈ Cb(R+, X), x|[–δ,] = 

}
,

endowed with the norm ‖x‖∞ := supt> ‖x(t)‖ + ‖x‖[–δ,] = supt> ‖x(t)‖.
For x ∈ C̃b(X), setting C := ‖x‖∞ + supt> ‖Sq(t)φ()‖ + ‖φ‖[–δ,], we have

‖xt + yt‖[–δ,] ≤ sup
–δ≤θ≤

∥
∥x(t + θ )

∥
∥ + sup

–δ≤θ≤

∥
∥y(t + θ )

∥
∥

≤ sup
<τ≤t

∥
∥x(τ )

∥
∥ + sup

<τ≤t

∥
∥Sq(τ )φ()

∥
∥ + ‖φ‖[–δ,] ≤ C, (.)

then

∥
∥f (t, xt + yt)

∥
∥ ≤ η(t)‖xt + yt‖[–δ,] +

∥
∥f (t, )

∥
∥ ≤ Cη(t) +

∥
∥f (t, )

∥
∥. (.)

We consider the operator F on C̃b(X) as follows:

(Fx)(t) =

⎧
⎨

⎩

, t ∈ [–δ, ],
∫ t

 (t – s)q–Tq(t – s)f (s, xs + ys) ds, t > .

We will show initially that Fx ∈ C̃b(X). Let h > , we have

∥
∥
∥
∥

∫ t+h


(t + h – s)q–Tq(t + h – s)f (s, xs + ys) ds

–
∫ t


(t – s)q–Tq(t – s)f (s, xs + ys) ds

∥
∥
∥
∥

≤
∥
∥
∥
∥

∫ t



[
(t + h – s)q– – (t – s)q–]Tq(t + h – s)f (s, xs + ys) ds

∥
∥
∥
∥
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+
∥
∥
∥
∥

∫ t


(t – s)q–[Tq(t + h – s) – Tq(t – s)

]
f (s, xs + ys) ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t+h

t
(t + h – s)q–Tq(t + h – s)f (s, xs + ys) ds

∥
∥
∥
∥.

For ε >  small enough, we conclude

∥
∥
∥
∥

∫ t



[
(t + h – s)q– – (t – s)q–]Tq(t + h – s)f (s, xs + ys) ds

∥
∥
∥
∥

≤ M

∫ t–ε



∣
∣(t + h – s)q– – (t – s)q–∣∣(t + h – s)–q(+γ )μ(s) ds

+ M

∫ t

t–ε

[

(t + h – s)––qγ +
(t – s)q–

(t + h – s)q(+γ )

]

μ(s) ds,

taking h → , ε → , and using (.), the right-hand side of the above inequality tends to
zero.

Moreover, by (.), we have

∥
∥
∥
∥

∫ t+h

t
(t + h – s)q–Tq(t + h – s)f (s, xs + ys) ds

∥
∥
∥
∥ ≤ M

∫ t+h

t
(t + h – s)–qγ –μ(s) ds

→ , as h → .

For ε >  small enough, noting that (.) and (.), we obtain

∥
∥
∥
∥

∫ t


(t – s)q–[Tq(t + h – s) – Tq(t – s)

]
f (s, xs + ys) ds

∥
∥
∥
∥

≤
∫ t–ε


(t – s)q–∥∥Tq(t + h – s) – Tq(t – s)

∥
∥

L(X)μ(s) ds

+
∫ t

t–ε

(t – s)q–∥∥Tq(t + h – s) – Tq(t – s)
∥
∥μ(s) ds

≤ sup
s∈[,t–ε]

∥
∥Tq(t + h – s) – Tq(t – s)

∥
∥

L(X) ·
∫ t–ε


(t – s)q–μ(s) ds

+ M

∫ t

t–ε

(
(t – s)q–

(t + h – s)q(+γ ) +
(t – s)q–

(t – s)q(+γ )

)

μ(s) ds.

This, together with Theorem ., shows that the right-hand side tends to zero as h → 
and ε → .

Moreover, from (H), (H), (.), and (.), we have

∥
∥
∥
∥

∫ t



Tq(t – s)f (s, xs + ys)
(t – s)–q ds

∥
∥
∥
∥ ≤ MC

∫ t



η(s)
(t – s)+qγ

ds + MK < C + MK .

Now, the operator F : C̃b(X) → C̃b(X) is well defined. It is clear that the fixed points of F
are mild solutions to problem (.).

Next, we will show that F is SAPT ,(X)-valued, where we identify the element v ∈
SAPT ,(X) with its extension to [–δ, +∞) given by v = . We will prove for any x ∈
SAPT ,(X), Fx ∈ SAPT ,(X). Obviously, (.) implies that y|[,∞) ∈ SAPT (X), then from
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Lemma ., the function t → yt belongs to SAPT (C([–δ, ], X)). Now xt + yt ∈
SAPT (C([–δ, ], X)), this means that, for each ε > , there is a positive constant L > 
such that

∥
∥(xt+T + yt+T ) – (xt + yt)

∥
∥

[–δ,] ≤ ε, for every t ≥ L. (.)

Moreover, (H) implies that there is a positive constant L >  such that

∥
∥f (t + T , xt+T + yt+T ) – f (t, xt+T + yt+T )

∥
∥ < ξ (t)ε, for every t ≥ L.

Then, for t > L + T , L := max{L, L}, we have

∥
∥(Fx)(t + T) – (Fx)(t)

∥
∥

=
∥
∥
∥
∥

∫ T



Tq(t + T – s)
(t + T – s)–q f (s, xs + ys) ds +

∫ t+T

T

Tq(t + T – s)
(t + T – s)–q f (s, xs + ys) ds

–
∫ t


(t – s)q–Tq(t – s)f (s, xs + ys) ds

∥
∥
∥
∥

≤ M

[∫ T


(t + T – s)––qγ

(
Cη(s) +

∥
∥f (s, )

∥
∥
)

ds
]

+
∫ t


(t – s)q–∥∥Tq(t – s)

∥
∥
∥
∥f (s + T , xs+T + ys+T ) – f (s, xs+T + ys+T )

∥
∥ds

+ M

∫ t


(t – s)––qγ

∥
∥f (s, xs+T + ys+T ) – f (s, xs + ys)

∥
∥ds

= I(t) + I(t) + I(t).

Noting that t + T – s ≥ t+T
T (T – s), we have

∫ T



Cη(s) + ‖f (s, )‖
(t + T – s)+qγ

ds ≤
(

T
t + T

)+qγ ∫ T



Cη(s) + ‖f (s, )‖
(T – s)+qγ

ds,

which implies I(t) →  as t → ∞. From (.),

∥
∥f (s + T , xs+T + ys+T ) – f (s, xs+T + ys+T )

∥
∥ ≤ C

[
η(s + T) + η(s)

]
+

∥
∥f (s + T , )

∥
∥ +

∥
∥f (s, )

∥
∥.

Denoting supt≥
∫ t


ξ (s)

(t–s)+qγ ds := M̃ and noting that (H), (H), (.), and t – s ≥ t
L (L – s),

we have

I(t) ≤ M

∫ L



Cη(s + T) + ‖f (s + T , )‖ + Cη(s) + ‖f (s, )‖
(t – s)+qγ

ds

+ Mε

∫ t

L
(t – s)––qγ ξ (s) ds

≤ M

[∫ L+T

T

Cη(s) + ‖f (s, )‖
(t + T – s)+qγ

ds +
∫ L



Cη(s) + ‖f (s, )‖
(t – s)+qγ

ds
]

+ MM̃ε

≤ M

(
L + T
t + T

)+qγ [∫ L+T



(Cη(s) + ‖f (s, )‖) ds
(L + T – s)+qγ

]
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+ M

(
L
t

)+qγ [∫ L



(Cη(s) + ‖f (s, )‖) ds
(L – s)+qγ

]

+ MM̃ε

≤ M

(
L + T
t + T

)+qγ

[C� + K] + MM̃ε.

From (H), (.), and (.), it follows that

I(t) ≤ MC

∫ L



η(s)
(t – s)+qγ

ds + Mε

∫ t

L

η(s)
(t – s)+qγ

ds

≤ M�

[

C

(
L
t

)+qγ

+ ε

]

.

Now we can see ‖(Fx)(t + T) – (Fx)(t)‖ →  as t → ∞. As a result, F (SAPT ,(X)) ⊆
SAPT ,(X).

For x, x̃ ∈ SAPT ,(X), we have

∥
∥(Fx)(t) – (F x̃)(t)

∥
∥ ≤ M

∫ t


(t – s)––qγ η(s)‖xs – x̃s‖[–δ,] ds ≤ M�‖x – x̃‖∞,

then ‖Fx – F x̃‖∞ ≤ M�‖x – x̃‖∞. Then F is a contraction mapping, the proof now can
be finished by using the contraction mapping principle. �

Example . Let � be a bounded domain in R
N (N ≥ ) with boundary ∂� of class C.

Let X = C

 (�),

Ã = �, D(Ã) =
{

u ∈ C

 (�); u|∂� = 

}
.

It follows from Example . [] that there exist ς ,ω > , such that

Ã + ς ∈ 	
– 


π
 –ω

(
C


 (�)

)
,

then Ã + ς is an almost sectorial operator and generates a semigroup {W (t)}t≥ with
‖W (t)‖ ≤ Ct–γ –(γ = – 

 , C > ).
We consider the following fractional differential problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cD


t v(t, x) = �v(t, x) + v(t, x) + α cos v(t+τ ,x)

(t+t)



+ sin π t√
t+ , t > , x ∈ �,

v|∂� = ,

v(t, x) = φ(t, x), t ∈ [–, ],

(.)

where α ∈ R and φ : [–, ] × � → X is a continuous function.
Problem (.) can be written in the abstract form as follows:

cDq
t v(t) = Av(t) + F(t, vt), t > ,

v(t) = φ(t), t ∈ [–, ],

where q = 
 , Av = (Ã + )v, F(t, vt) = α cos vt

(t+t)



+ sin π t√
t+ .
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For ϕ, ϕ̃ ∈ C([–, ], X), we can easily see

∥
∥F(t,ϕ)

∥
∥ ≤ |α|

(t + t) 


+
√

t + 
:= μ(t),

∥
∥F(t,ϕ) – F(t, ϕ̃)

∥
∥ ≤ |α|

(t + t) 

‖ϕ – ϕ̃‖ := η(t)‖ϕ – ϕ̃‖.

Noting that

∫ 



(


t + t

) 


dt ≤
∫ 



(

t

) 


dt = ,

∫ +∞



(


t + t

) 


dt ≤
∫ +∞



(

t

) 


dt =
∫ +∞




t dt =




,

∫ +∞



(


 + t

) 


dt = ,

we can obtain μ(t) ∈ L

p (p = 

 ).
Noting that – – qγ = – 

 , (t + t)– 
 ≤ t– 

 ,
∫ t

 (t – s)– 
 s– 

 ds = π , we have

� := sup
t≥

∫ t


(t – s)– 

 η(s) ds = |α| sup
t≥

∫ t


(t – s)– 

 s– 
 · ( + s)– 

 ds

= |α| sup
t≥

∫ t


(t – s)– 

 s– 
 · s



(
 + s)– 

 ds

≤ |α|π . (.)

Moreover, F(t, ) = α

(t+t)



+ sin π t√
t+ , noting that (.) and

∫ t


(t – s)– 


| sin πs|√

s + 
ds ≤

∫ t


(t – s)– 

 s– 
 ds = π ,

we get

sup
t≥

∫ t


(t – s)– 


∥
∥F(s, )

∥
∥ds < +∞.

We take ξ (t) = t– 
 then

‖F(t + ,ϕ) – F(t,ϕ)‖
t– 


≤ |α|t 



[


(t + t) 


+


[(t + ) + (t + )] 


]

+ t



[
√

t + 
–

√
t + 

]

→ , as t → +∞,

and supt≥
∫ t

 (t – s)– 
 s– 

 ds = π < ∞.
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Noting that M = qC�(–γ )
�(–qγ ) = C�( 

 )
�( 

 )
and (.), in association with Theorem ., if

|α| < �( 
 )

πC�( 
 )

, then the problem (.) has a unique S-asymptotically -periodic mild solu-

tion for φ(, x) ∈ D((A + )

 ).
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