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Abstract
In this research, we investigate the problem of delay-dependent exponential stability
analysis for certain neutral differential equations with discrete and distributed
time-varying delays. The time-varying delays are continuous functions belonging to
the given interval delays, which mean that the lower and upper bounds for the
time-varying delays are available. The restrictions on the derivative of interval
time-varying delays are needed. Based on a class of novel augmented
Lyapunov-Krasovskii functionals, a model transformation, the decomposition
technique of constant coefficients, the Leibniz-Newton formula, and utilization of a
zero equation, new delay-range-dependent exponential stability criteria are derived
in terms of the linear matrix inequality (LMI) for the equations considered. Numerical
examples suggest for the results given to illustrate the effectiveness and
improvement over some existing methods.

1 Introduction
The neutral differential equation is a retarded system that often appears in many scien-
tific and engineering fields such as aircraft, chemical and process control systems, and
biological systems [–]. The problem of various stability analyses for dynamical systems
with state delays has been intensively studied in the past years by several researchers in
mathematics [–]. However, delay-dependent stability criteria for neutral differential
equations have been attracting the attention of several researchers. Delay-dependent sta-
bility criteria make use of information on the length of delays. A certain neutral differential
equation (CNDE) with constant delays is of the form

d
dt

[
x(t) + px(t – τ )

]
= –ax(t) + b tanh x(t – σ ), t ≥ , (.)

where a, b, τ , σ are positive real constants and |p| < . For each solution x(t) of (.), we
assume the initial condition

x(t) = φ(t), t ∈ [–r, ],
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where φ ∈ C([–r, ]; R) denotes the space of all continuous vector functions mapping
[–r, ] into R with r = max{τ ,σ }. Over the past decades, the problem of asymptotic stability
analysis for (.) has been discussed in [, , , , , ] by using several model trans-
formation methods and the Lyapunov-Krasovskii functional approach, while the problem
of exponential stability analysis has been studied with the use of the model transforma-
tion technique and the Lyapunov-Krasovskii functional approach in []. In [, , ], the
authors studied the problem of exponential stability analysis for CNDE with time-varying
delays of the form

d
dt

[
x(t) + px

(
t – τ (t)

)]
= –ax(t) + b tanh x

(
t – σ (t)

)
, t ≥ , (.)

where a, b are positive real constants and |p| < . τ (t) and σ (t) are neutral and discrete
time-varying delays, respectively,

 ≤ τ (t) ≤ τ , τ̇ (t) < τd,

 ≤ σ (t) ≤ σ , σ̇ (t) < σd,

where τ , σ , τd , and σd are given positive real constants. For each solution x(t) of (.), we
assume the initial condition

x(t) = φ(t), t ∈ [–r, ],

where φ ∈ C([–r, ]; R). In [], the results are derived without the use of the model transfor-
mation method and the bounding technique, while the authors have used the model trans-
formation method, radially unboundedness, and the Lyapunov-Krasovskii functional ap-
proach in []. Stability analysis of uncertain neutral stochastic systems with time-varying
delays has received the attention of a lot of theoreticians and engineers in this field over
the last few decades [–]. Moreover, the authors have studied the problem of stability
for systems with discrete and distributed delays such as [], which presented some sta-
bility conditions for uncertain neutral systems with discrete and distributed delays. The
robust stability of uncertain dynamical systems with discrete and distributed delays has
been studied in [, , , ].

This research presents new criteria based on new methods with mixed model transfor-
mation techniques. We investigate the problem of exponential stability criteria for CNDE
with discrete and distributed time-varying delays. The time-varying delays are assumed
to belong to the given lower and upper bound delays and restrictions on the derivative of
the time-varying delays are needed. Based on the combination of a mixed model transfor-
mation, decomposition technique of constant coefficients, utilization of a zero equation,
and a new Lyapunov-Krasovskii functional, sufficient conditions for exponential stability
are obtained and formulated in terms of LMIs for the systems. Finally, numerical examples
suggest that the proposed criteria are effective and an improvement over previous ones.

2 Problem formulation and preliminaries
Consider the CNDE with mixed interval time-varying delays of the form

d
dt

[
x(t) + px

(
t – τ (t)

)]
= –ax(t) + b tanh x

(
t – σ (t)

)
+ c

∫ t

t–ρ(t)
x(s) ds, t ≥ , (.)
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where a, b, c are positive real constants and |p| < . τ (t), σ (t), and ρ(t) are neutral, discrete,
and distributed interval time-varying delays, respectively,

 ≤ τ ≤ τ (t) ≤ τ, τ̇ (t) ≤ τd < ∞, (.)

 ≤ σ ≤ σ (t) ≤ σ, σ̇ (t) ≤ σd < ∞, (.)

 ≤ ρ ≤ ρ(t) ≤ ρ, (.)

where τ, τ, σ, σ, ρ, ρ, τd , and σd are given positive real constants. For each solution
x(t) of (.), we assume the initial condition

x(t) = φ(t), t ∈ [–ω, ],

where φ ∈ C([–ω, ]; R) and ω = max{τ,σ,ρ}.

Definition . ([]) Equation (.) is exponentially stable, if there exist positive real con-
stants α, β such that, for each φ(t) ∈ C([–ω, ], R), the solution x(t,φ) of the system satisfies

∥
∥x(t,φ)

∥
∥ ≤ β‖φ‖e–αt , t ≥ .

Lemma . ([] (Jensen’s inequality)) For any symmetric positive definite matrix Q, pos-
itive real number h, and vector function ẋ(t) : [–h, ] → Rn the following integral is well
defined:

–h
∫ 

–h
ẋT (s + t)Qẋ(s + t) ds ≤ –

(∫ 

–h
ẋ(s + t) ds

)T

Q
(∫ 

–h
ẋ(s + t) ds

)
.

Lemma . For any constant symmetric positive definite matrix Q ∈ Rn×n, h(t) a discrete
time-varying delay with (.), the vector function ω : [–h, ] → Rn such that the integra-
tions concerned are well defined, we have

–[h – h]
∫ –h

–h

ωT (s)Qω(s) ds

≤ –
∫ –h

–h(t)
ωT (s) dsQ

∫ –h

–h(t)
ω(s) ds –

∫ –h(t)

–h

ωT (s) dsQ
∫ –h(t)

–h

ω(s) ds.

Proof It is easy to see that

[h – h]
∫ –h

–h

ωT (s)Qω(s) ds

= [h – h]
∫ –h

–h(t)
ωT (s)Qω(s) ds + [h – h]

∫ –h(t)

–h

ωT (s)Qω(s) ds

≥ [
h(t) – h

] ∫ –h

–h(t)
ωT (s)Qω(s) ds +

[
h – h(t)

] ∫ –h(t)

–h

ωT (s)Qω(s) ds

=



∫ –h

–h(t)

∫ –h

–h(t)
ωT (s)Qω(s) + ωT (ξ )Qω(ξ ) ds dξ
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+



∫ –h(t)

–h

∫ –h(t)

–h

ωT (s)Qω(s) + ωT (ξ )Qω(ξ ) ds dξ

≥ 


∫ –h

–h(t)

∫ –h

–h(t)
ωT (s)Q/T Q/ω(ξ ) ds dξ

+



∫ –h(t)

–h

∫ –h(t)

–h

ωT (s)Q/T Q/ω(ξ ) ds dξ

=
∫ –h

–h(t)
ωT (s) dsQ

∫ –h

–h(t)
ω(s) ds +

∫ –h(t)

–h

ωT (s) dsQ
∫ –h(t)

–h

ω(s) ds.

This completes the proof. �

Remark . In Lemma ., we have modified the method of [].

3 Main results
In this section, we investigate the exponential stability problem for equation (.) with in-
terval time-varying delays satisfying (.)-(.). From the model transformation method,
we have the Leibniz-Newton formula of the form

 = x(t) – x
(
t – τ (t)

)
–

∫ t

t–τ (t)
ẋ(s) ds, (.)

 = x(t) – x
(
t – γ τ (t)

)
–

∫ t

t–γ τ (t)
ẋ(s) ds, (.)

where γ is a given positive real constant. We utilize the zero equations and obtain

 = rx(t) – rx
(
t – τ (t)

)
– r

∫ t

t–τ (t)
ẋ(s) ds, (.)

 = rx(t) – rx
(
t – γ τ (t)

)
– r

∫ t

t–γ τ (t)
ẋ(s) ds, (.)

where r, r ∈ R will be chosen to guarantee the exponential stability of equation (.). By
(.)-(.), equation (.) can be represented by the form

d
dt

[
px(t) + px

(
t – τ (t)

)
+ x

(
t – γ τ (t)

)
+

∫ t

t–γ τ (t)
ẋ(s) ds – p

∫ t

t–τ (t)
ẋ(s) ds

]

= –(a – r – r)x(t) – (a + r)x
(
t – τ (t)

)
– (a + r)

∫ t

t–τ (t)
ẋ(s) ds

– rx
(
t – γ τ (t)

)
– r

∫ t

t–γ τ (t)
ẋ(s) ds

+ b tanh x
(
t – σ (t)

)
+ c

∫ t

t–ρ(t)
x(s) ds. (.)

For convenience, we define a new variable,

D(t) = px(t) + px
(
t – τ (t)

)
+ x

(
t – γ τ (t)

)
+

∫ t

t–γ τ (t)
ẋ(s) ds – p

∫ t

t–τ (t)
ẋ(s) ds. (.)
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Rewrite equation (.) in the following equation:

Ḋ(t) = –(a – r – r)x(t) – (a + r)x
(
t – τ (t)

)
– (a + r)

∫ t

t–τ (t)
ẋ(s) ds

– rx
(
t – γ τ (t)

)
– r

∫ t

t–γ τ (t)
ẋ(s) ds

+ b tanh x
(
t – σ (t)

)
+ c

∫ t

t–ρ(t)
x(s) ds. (.)

We introduce the following notations for later use:

� = [�(i,j)]×, (.)

where �(i,j) = �(j,i),

�(,) = kα – q,

�(,) = qp – q + m + n + kr + kr – ka,

�(,) = qp – q – m – ka – kr,

�(,) = –qp – q – m – ka – kr,

�(,) = q – q – n – kr,

�(,) = q – q – n – kr,

�(,) = �(,) = �(,) = �(,) = ,

�(,) = kb,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –m,

�(,) = �(,) = ,

�(,) = kc,

�(,) = qp + k + k + k + k + kτ

 + kγ

τ 
 + k + kσ


 + m + n

+ w + w + wτ

 + wγ

τ 
 + w(τ – τ) + wγ

(τ – τ) + w(σ – σ)

+ k + ω(ρ – ρ),

�(,) = qp + qp + m + n – m,

�(,) = –qp + qp + m + n – m,

�(,) = q + qp + m + n – n,

�(,) = q + qp + m + n – n,

�(,) = �(,) = �(,) = �(,) = ,

�(,) = m + n,

�(,) = m + n,
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�(,) = –qa,

�(,) = qr + qr – qa,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = m + n,

�(,) = �(,) = �(,) = ,

�(,) = qp – ke–ατ + ktd – m,

�(,) = –qp + qp – m – m,

�(,) = q + qp – m – n,

�(,) = q + qp – m – n,

�(,) = �(,) = �(,) = �(,) = ,

�(,) = –m,

�(,) = –m,

�(,) = –qa,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –m,

�(,) = �(,) = �(,) = ,

�(,) = –qp – m,

�(,) = q – qp – m – n,

�(,) = q – qp – m – n,

�(,) = �(,) = �(,) = �(,) = ,

�(,) = –m,

�(,) = –m,

�(,) = –qa,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –m,

�(,) = �(,) = �(,) = ,

�(,) = q – ke–αγ τ + ktd – n,

�(,) = q + q – n – n,

�(,) = �(,) = �(,) = �(,) = ,

�(,) = –n,

�(,) = –n,

�(,) = ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,
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�(,) = –n,

�(,) = �(,) = �(,) = ,

�(,) = q – n,

�(,) = �(,) = �(,) = �(,) = ,

�(,) = –n,

�(,) = –n,

�(,) = ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –n,

�(,) = �(,) = �(,) = ,

�(,) = –(k + w)e–ατ ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,)

= �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –ke–ατ ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,)

= �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –(k + w)e–αγ τ ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,)

= �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –ke–αγ τ ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,)

= �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –ke–ασ + ksd – k,

�(,) = ,

�(,) = qb,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,)

= �(,) = �(,) = �(,) = ,

�(,) = –ke–ασ ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,)

= �(,) = �(,) = �(,) = �(,) = ,

�(,) = –q,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,)

= �(,) = �(,) = �(,) = ,
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�(,) = (w – w)e–ατ ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,)

= �(,) = �(,) = ,

�(,) = (w – w)e–αγ τ ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,)

= �(,) = ,

�(,) = –we–ατ ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,)

= �(,) = ,

�(,) = –we–αγ τ ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –we–ατ ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –we–ατ ,

�(,) = �(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –we–αγ τ ,

�(,) = �(,) = �(,) = �(,) = �(,) = ,

�(,) = –we–αγ τ ,

�(,) = �(,) = �(,) = �(,) = ,

�(,) = –we–ασ ,

�(,) = �(,) = �(,) = ,

�(,) = –we–ασ ,

�(,) = �(,) = ,

�(,) = –we–ασ ,

�(,) = ,

�(,) = –ωe–αρ .

The exponential stability for the CNDE with time-varying delays in equation (.) will be
represented as follows.

Theorem . For given positive real constants σ, σ, σd , τ, τ, τd , ρ, ρ and γ , equation
(.) is exponentially stable with a decay rate α if there exist positive real constants ω, ki,
wi where i = , , . . . , , and real constants r, r, mk , nk where k = , , . . . ,  such that the
following symmetric linear matrix inequality holds:

� < . (.)
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Proof For ω, ki and wi are positive real constants where i = , , . . . , , we consider the
Lyapunov-Krasovskii functional candidate for equation (.) of the form

V (t, xt) =
∑

i=

Vi(t, xt), (.)

where

V(t, xt) = kD(t),

V(t, xt) = k

∫ t

t–τ

eα(s–t)x(s) ds + k

∫ t

t–τ (t)
eα(s–t)x(s) ds

+ k

∫ t

t–γ τ

eα(s–t)x(s) ds + k

∫ t

t–γ τ (t)
eα(s–t)x(s) ds

+ w

∫ t

t–τ

eα(s–t)x(s) ds + w

∫ t

t–γ τ

eα(s–t)x(s) ds

+ w

∫ t–τ

t–τ

eα(s–t)x(s) ds + w

∫ t–γ τ

t–γ τ

eα(s–t)x(s) ds,

V(t, xt) = kτ

∫ 

–τ

∫ t

t+s
eα(θ–t)x(θ ) dθ ds + kγ τ

∫ 

–γ τ

∫ t

t+s
eα(θ–t)x(θ ) dθ ds

+ wτ

∫ 

–τ

∫ t

t+s
eα(θ–t)x(θ ) dθ ds

+ wγ τ

∫ 

–γ τ

∫ t

t+s
eα(θ–t)x(θ ) dθ ds

+ w(τ – τ)
∫ –τ

–τ

∫ t

t+s
eα(θ–t)x(θ ) dθ ds

+ wγ (τ – τ)
∫ –γ τ

–γ τ

∫ t

t+s
eα(θ–t)x(θ ) dθ ds,

V(t, xt) = k

∫ t

t–σ (t)
eα(s–t) tanh x(s) ds

+ kσ

∫ 

–σ

∫ t

t+s
eα(θ–t) tanh x(θ ) dθ ds

+ wσ

∫ 

–σ

∫ t

t+s
eα(θ–t) tanh x(θ ) dθ ds

+ w(σ – σ)
∫ –σ

–σ

∫ t

t+s
eα(θ–t) tanh x(θ ) dθ ds,

V(t, xt) = ω(ρ – ρ)
∫ –ρ

–ρ

∫ t

t+s
eα(θ–t)x(θ ) dθ ds.

Calculating the time derivatives of V (t, xt) along the solution of equation (.) yields

V̇ (t, xt) =
∑

i=

V̇i(t, xt). (.)
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The time derivatives of V(t, xt) and V(t, xt) are calculated as

V̇(t, xt) = kD(t)Ḋ(t)

= kD(t)
[

–(a – r – r)x(t) – (a + r)x
(
t – τ (t)

)
– (a + r)

∫ t

t–τ (t)
ẋ(s) ds

– rx
(
t – γ τ (t)

)
– r

∫ t

t–γ τ (t)
ẋ(s) ds + b tanh x

(
t – σ (t)

)
+ c

∫ t

t–ρ(t)
x(s) ds

]

+ qD(t)
[

–D(t) + px(t) + px
(
t – τ (t)

)
+ x

(
t – γ τ (t)

)

+
∫ t

t–γ τ (t)
ẋ(s) ds – p

∫ t

t–τ (t)
ẋ(s) ds

]

+ qx(t)
[

–D(t) + px(t) + px
(
t – τ (t)

)
+ x

(
t – γ τ (t)

)

+
∫ t

t–γ τ (t)
ẋ(s) ds – p

∫ t

t–τ (t)
ẋ(s) ds

]

+ qx
(
t – τ (t)

)[
–D(t) + px(t) + px

(
t – τ (t)

)
+ x

(
t – γ τ (t)

)

+
∫ t

t–γ τ (t)
ẋ(s) ds – p

∫ t

t–τ (t)
ẋ(s) ds

]

+ q

∫ t

t–τ (t)
ẋ(s) ds

[
–D(t) + px(t) + px

(
t – τ (t)

)
+ x

(
t – γ τ (t)

)

+
∫ t

t–γ τ (t)
ẋ(s) ds – p

∫ t

t–τ (t)
ẋ(s) ds

]

+ qx
(
t – γ τ (t)

)[
–D(t) + px(t) + px

(
t – τ (t)

)
+ x

(
t – γ τ (t)

)

+
∫ t

t–γ τ (t)
ẋ(s) ds – p

∫ t

t–τ (t)
ẋ(s) ds

]

+ q

∫ t

t–γ τ (t)
ẋ(s) ds

[
–D(t) + px(t) + px

(
t – τ (t)

)
+ x

(
t – γ τ (t)

)

+
∫ t

t–γ τ (t)
ẋ(s) ds – p

∫ t

t–τ (t)
ẋ(s) ds

]

+ qḊ(t)
[

–Ḋ(t) – ax(t) – ax
(
t – τ (t)

)

– a

∫ t

t–τ (t)
ẋ(s) ds + b tanh x

(
t – σ (t)

)
+ c

∫ t

t–ρ(t)
x(s) ds

]

+ αkD(t) – αV(t), (.)

V̇(t, xt) = (k + k + k + k + w + w)x(t) – (k + w)e–ατ x(t – τ)

– k
(
 – τ̇ (t)

)
e–ατ (t)x(t – τ (t)

)
– (k + w)e–αγ τ x(t – γ τ)

– k
(
 – γ τ̇ (t)

)
e–αγ τ (t)x(t – γ τ (t)

)

+ (w – w)e–ατ x(t – τ)(w – w)e–αγ τ x(t – γ τ) – αV(t)
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≤ (k + k + k + k + w + w)x(t) – (k + w)e–ατ x(t – τ)

– ke–ατ x(t – τ (t)
)

+ kτdx(t – τ (t)
)

– (k + w)e–αγ τ x(t – γ τ) – ke–αγ τ x(t – γ τ (t)
)

+ kγ τdx(t – γ τ (t)
)

+ (w – w)e–ατ x(t – τ)(w – w)e–αγ τ x(t – γ τ) – αV(t). (.)

Obviously, for any a scalar s ∈ [t –τ, t], we get e–ατ ≤ eα(s–t) ≤  and e–αγ τ ≤ eα(s–t) ≤ ,
for any a scalar s ∈ [t – γ τ, t]. Together with Lemma . and ., we obtain

V̇(t, xt) = kτ

∫ 

–τ

x(t) ds – kτ

∫ 

–τ

esαx(t + s) ds

+ kγ τ

∫ 

–γ τ

x(t) ds – kγ τ

∫ 

–γ τ

esαx(t + s) ds

+ wτ

∫ 

–τ

x(t) ds – wτ

∫ 

–τ

esαx(t + s) ds

+ wγ τ

∫ 

–γ τ

x(t) ds – wγ τ

∫ 

–γ τ

esαx(t + s) ds

+ w(τ – τ)
∫ –τ

–τ

x(t) ds – w(τ – τ)
∫ –τ

–τ

esαx(t + s) ds

+ w(γ τ – γ τ)
∫ –γ τ

–γ τ

x(t) ds – w(γ τ – γ τ)
∫ –γ τ

–γ τ

esαx(t + s) ds

– αV(t)

≤ k(τ)x(t) – ke–ατ

(∫ t

t–τ

x(s) ds
)

+ k(γ τ)x(t) – ke–αγ τ

(∫ t

t–γ τ

x(s) ds
)

+ w(τ)x(t) – we–ατ

(∫ t

t–τ

x(s) ds
)

+ w(γ τ)x(t) – we–αγ τ

(∫ t

t–γ τ

x(s) ds
)

+ w(τ – τ)x(t) + w(γ τ – γ τ)x(t)

– we–ατ

(∫ t–τ

t–τ (t)
x(s) ds

)

– we–ατ

(∫ t–τ (t)

t–τ

x(s) ds
)

– we–γ ατ

(∫ t–γ τ

t–γ τ (t)
x(s) ds

)

– we–γ ατ

(∫ t–γ τ (t)

t–γ τ

x(s) ds
)

– αV(t). (.)

From Lemma ., ., and tanh x(t) ≤ x(t), we have

V̇(t, xt) = k tanh x(t) – k
(
 – σ̇ (t)

)
e–ασ (t) tanh x

(
t – σ (t)

)

+ kσ

∫ 

–σ

tanh x(t) ds – kσ

∫ 

–σ

eαs tanh x(t + s) ds
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+ wσ

∫ 

–σ

tanh x(t) ds – wσ

∫ 

–σ

eαs tanh x(t + s) ds

+ w(σ – σ)
∫ –σ

–σ

tanh x(t) ds

– w(σ – σ)
∫ –σ

–σ

eαs tanh x(t + s) ds

– αV(t)

≤ k tanh x(t) – ke–ασ tanh x
(
t – σ (t)

)
+ ksd tanh x

(
t – σ (t)

)

+ kσ

 x(t) – ke–ασ

(∫ t

t–σ

tanh x(s) ds
)

+ wσ

 x(t) – we–ασ

(∫ t

t–σ

tanh x(s) ds
)

+ w(σ – σ)x(t) – we–ατ

(∫ t–τ

t–τ (t)
tanh x(s) ds

)

+ kx(t) – k tanh x(t)

– we–ατ

(∫ t–τ (t)

t–τ

tanh x(s) ds
)

– αV(t), (.)

V̇(t, xt) ≤ ω(ρ – ρ)x(t) – ωe–αρ

(∫ t

t–ρ(t)
x(s) ds

)

. (.)

From the Leibniz-Newton formula, the following equations are true for any real constants
mi, ni, i = , , . . . ,  with appropriate dimensions:


[

mD(t) + mx(t) + mx
(
t – τ (t)

)
+ mx

(
t – γ τ (t)

)
+ m

∫ t

t–τ (t)
ẋ(s) ds

+ m

∫ t

t–γ τ (t)
ẋ(s) ds + m tanh x

(
t – σ (t)

)
+ m

∫ t

t–σ

tanh x(s) ds

+ m

∫ t

t–σ

tanh x(s) ds
]

×
[

x(t) – x
(
t – τ (t)

)
–

∫ t

t–τ (t)
ẋ(s) ds

]
= , (.)


[

nD(t) + nx(t) + nx
(
t – τ (t)

)
+ nx

(
t – γ τ (t)

)
+ n

∫ t

t–τ (t)
ẋ(s) ds

+ n

∫ t

t–γ τ (t)
ẋ(s) ds + n tanh x

(
t – σ (t)

)
+ n

∫ t

t–σ

tanh x(s) ds

+ n

∫ t

t–σ

tanh x(s) ds
]

×
[

x(t) – x
(
t – γ τ (t)

)
–

∫ t

t–γ τ (t)
ẋ(s) ds

]
= . (.)

According to (.)-(.), it is straightforward to see that

V̇ (t, xt) + αV (t, xt) ≤ ξT (t)�ξ (t), (.)
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where

ζ T (t) =
[

D(t), x(t), x
(
t – τ (t)

)
,
∫ t

t–τ (t)
ẋ(s) ds, x

(
t – γ τ (t)

)
,
∫ t

t–γ τ (t)
ẋ(s) ds, x(t – τ),

∫ t

t–τ

x(s) ds, x(t – γ τ),
∫ t

t–γ τ

x(s) ds, tanh x
(
t – σ (t)

)
,
∫ t

t–σ

tanh x(s) ds, Ḋ(t),

x(t – τ), x(t – γ τ),
∫ t

t–τ

x(s) ds,
∫ t

t–γ τ

x(s) ds,
∫ t–τ

t–τ (t)
x(s) ds,

∫ t–τ (t)

t–τ

x(s) ds,

∫ t–γ τ

t–γ τ (t)
x(s) ds,

∫ t–γ τ (t)

t–γ τ

x(s) ds,
∫ t

t–σ

tanh x(s) ds,
∫ t–σ

t–σ (t)
tanh x(s) ds,

∫ t–σ (t)

t–σ

tanh x(s) ds,
∫ t

t–ρ

ẋ(s) ds
]

,

and � is defined in (.). It is true that if condition (.) holds, then

V̇ (t, xt) + αV (t, xt) ≤ , ∀t ∈ R+. (.)

From (.), it is easy to see that

x(t,φ)
 ≤ β‖φ‖e–αt , t ∈ R+.

This means that equation (.) is exponentially stable. The proof of the theorem is com-
plete. �

We now present the delay-dependent criteria for exponential stability of equation (.)
where τ = σ = c = . We introduce the following notations for later use:

�̃ = [�̃(i,j)]×, (.)

where �̃(i,j) = �(i,j), except

�̃(,) = qp + k + k + k + k + kτ

 + kγ

τ 
 + k + kσ


 + m + n + k,

�̃(,) = –ke–ατ ,

�̃(,) = –ke–αγ τ .

Corollary . For given positive real constants σ, τ, σd , τd and γ , equation (.) where
τ = σ = c =  is exponentially stable with a decay rate α if there exist positive real constants
ki where i = , , . . . ,  and we have the real constants r, r, mk , nk where k = , , . . . ,  such
that the following symmetric linear matrix inequality holds:

�̃ < . (.)

Proof For ki, i = , , . . . ,  are positive real numbers, we consider the Lyapunov-Krasovskii
functional candidate for equation (.) where τ = σ = c =  of the form

V (t, xt) =
∑

i=

Vi(t, xt), (.)
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where

V(t, xt) = kD(t),

V(t, xt) = k

∫ t

t–τ

eα(s–t)x(s) ds + k

∫ t

t–τ (t)
eα(s–t)x(s) ds

+ k

∫ t

t–γ τ

eα(s–t)x(s) ds + k

∫ t

t–γ τ (t)
eα(s–t)x(s) ds,

V(t, xt) = kτ

∫ 

–τ

∫ t

t+s
eα(θ–t)x(θ ) dθ ds

+ kγ τ

∫ 

–γ τ

∫ t

t+s
eα(θ–t)x(θ ) dθ ds,

V(t, xt) = k

∫ t

t–σ (t)
eα(s–t) tanh x(s) ds

+ kσ

∫ 

–σ

∫ t

t+s
eα(θ–t) tanh x(θ ) dθ ds.

According to Theorem ., we have the delay-dependent exponential stability criteria
(.) of equation (.) where τ = σ = c = . �

4 Numerical examples
In this section, four numerical examples are given to present the effectiveness of our main
results by comparing the upper bounds of the delays σ and the parameter b as well as
investigating the rate of convergence.

Example . Consider the following equation with mixed interval time-varying delays:

d
dt

[
x(t) + .x

(
t – τ (t)

)]
= –.x(t) + b tanh x

(
t – σ (t)

)
+ .

∫ t

t–ρ(t)
x(s) ds. (.)

Decompose the constants a and p as a = a + a and p = p + p, respectively, where

a = , a = ., p = ., p = ..

Solving the LMI (.) when b = ., α = ., τ (t) = . + sin(t)
 , σ (t) = . + cos(t)

 , and
ρ(t) = . + | cos(t)|

 , we can obtain a set of parameters guaranteeing exponential stability as
follows:

q = ., q = –., q = ., q = .,

q = –., q = –., q = ., k = ., k = .,

k = ., k = ., k = ., k = ., k = .,

k = ., k = ., ω = ., w = ., w = .,

w = ., w = ., w = ., w = ., w = .,

w = ., w = ., w = ..
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Table 1 Upper bounds of b for Example 4.1 when γ = 0.05

τd = σd α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4

0.1 1.4906 1.3865 1.2747 1.1601 1.0433
0.2 1.4910 1.3852 1.2740 1.1580 1.0380
0.3 1.4883 1.3835 1.2710 1.1512 1.0271
0.4 1.4861 1.3812 1.2661 1.1450 1.0126
0.5 1.4834 1.3774 1.2610 1.1305 0.9830

Table 2 Upper bounds of α for Example 4.1 when γ = 0.05

τd = σd b = 0.4 b = 0.6 b = 0.8 b = 1 b = 1.2

0.1 0.9105 0.7610 0.6015 0.4364 0.2660
0.2 0.8728 0.7382 0.5895 0.4302 0.2623
0.3 0.8095 0.7031 0.5730 0.4217 0.2591
0.4 0.7020 0.6414 0.5426 0.4094 0.2543
0.5 0.5549 0.5394 0.4897 0.3892 0.2477

Table 3 Upper bounds of b for Example 4.1 when γ = 0.05

c α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4

0.5 1.4834 1.3774 1.2610 1.1305 0.9830
1 1.4830 1.3761 1.2610 1.1288 0.9806
2 1.4791 1.3727 1.2580 1.1249 0.9781
3 1.4780 1.3704 1.2534 1.1228 0.9720
4 1.4750 1.3681 1.2511 1.1270 0.9704

Table 4 Upper bounds of α for Example 4.1 when γ = 0.05

c b = 0.4 b = 0.6 b = 0.8 b = 1 b = 1.2

0.5 0.5549 0.5394 0.4897 0.3892 0.2477
1 0.5548 0.5391 0.4887 0.3877 0.2480
2 0.5546 0.5400 0.4880 0.3890 0.2460
3 0.5546 0.5400 0.4880 0.3850 0.2430
4 0.5546 0.5377 0.4843 0.3840 0.2401

Moreover, the upper bounds of the parameter b which guarantees the exponential and
asymptotic stabilities are . and ., respectively. The maximum upper bounds
b of this example can be found in Table  for different values of α, τd , σd . The maximum
upper bounds as regards the rate of convergent α for this example can be found in Ta-
ble  with different values of b, τd , σd . The maximum upper bounds b for exponential and
asymptotic stabilities of Example . are listed in Table  for different values of α, c. The
maximum upper bounds α for exponential and asymptotic stabilities of Example . are
listed in Table  for different values of c, b.

Example . Consider the following equation studied in [, ]:

d
dt

[
x(t) + .x

(
t – τ (t)

)]
= –.x(t) + . tanh x

(
t – σ (t)

)
, (.)

when σ (t) = sin(t)
 and τd = ..

Decompose the constants a and p thus: a = a + a and p = p + p, respectively, where

a = ., a = ., p = ., p = ..
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Table 5 The upper bound of time delay σ (t) for Example 4.2 when γ = 0.02

Methods α = 0.0038 α = 0.02 α = 0.028

Chen and Meng (2011) [8] Infeasible Infeasible Infeasible
Keadnarmol and Rojsiraphisal (2014) [23] 7.5231 0.5234 0.0321
Corollary 3.2 3.5× 103 564.9979 448.9991

Table 6 Upper bounds of b for Example 4.3 when γ = 0.5

Methods
σ2 = τ2 = 0.5

b

A.S. (α = 0) E.S. (α = 0.177)

Agarwal and Grace (2000) [4] 0.318 -
El-Morshedy and Gopalsamy (2000) [15] 0.424 -
Park and Kwon (2008) [32] 0.422 -
Kwon and Park (2008) [21] 1.49 -
Li (2009) [24] 0.699 0.722
Deng et al. (2009) [14] 0.889 -
Nam and Phat (2009) [29] 1.405 -
Rojsiraphisal and Niamsup (2010) [34] 1.405 0.478
Chen and Meng (2011) [8] 1.346 -
Chen (2012) [7] 1.405 1.092
Keadnarmol and Rojsiraphisal (2014) [23] 1.405 1.1089
Corollary 3.2 1.4051 1.2114

By solving the linear matrix inequality (.), the maximum upper bounds σ for expo-
nential stability of this example is listed fore comparison in Table , for different values
of α. We can see that our results in Corollary . are much less conservative than those
obtained in [, ].

Example . Consider the following equation, which is considered in [, , , , , ,
, , , , ]:

d
dt

[
x(t) + .x(t – .)

]
= –.x(t) + b tanh x(t – .). (.)

Decompose constants a and p as a = a + a and p = p + p, respectively, where

a = ., a = ., p = ., p = ..

Table  lists for comparison the upper bounds b for asymptotic stability (α = ) and ex-
ponential stability (α = .) of equation (.) by different methods. We can see from
Table  that our result (Corollary .) is better than other existing work.

Example . Consider the following equation in [, , , , , , , , ]:

d
dt

[
x(t) + .x(t – .)

]
= –.x(t) + . tanh x(t – σ). (.)

Decompose the matrix a and p in the same way as the decomposition in Example ..
Table  lists for comparison the upper bounds delay for asymptotic stability (α = ) and
exponential stability (α = .) of (.) by different methods. It is clear that our results
(Corollary .) are significantly better than some existing criteria.
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Table 7 Upper bounds of σ2 for Example 4.4 when γ = 0.05

Methods
τ2 = 0.1

σ2

A.S. (α = 0) E.S. (α = 0.0038)

Park (2004) [30] 0.444 -
Park and Kwon (2008) [32] 1.90 -
Kwon and Park (2008) [21] 107 -
Li (2009) [24] 2.07 -
Nam and Phat (2009) [29] 2.32 -
Rojsiraphisal and Niamsup (2010) [34] 2.32 1.947
Chen and Meng (2011) [8] 1021 -
Chen (2012) [7] 1.34× 1021 175.289
Corollary 3.2 3.15× 109 3,700

5 Conclusions
In this paper, we proposed the delay-range-dependent exponential stability criteria for cer-
tain NDE with discrete and distributed interval time-varying delays. Then we presented
the delay-dependent exponential stability criteria for certain NDE with time-varying de-
lays. The method combining an augmented Lyapunov-Krasovskii functional, a mixed
model transformation, the decomposition technique of constant coefficients, and utiliza-
tion of zero equations has been adopted to study the paper. New stability criteria have
been formulated in terms of LMI. Finally, four numerical examples are given to show that
the proposed criteria are less conservative than some existing stability criteria.
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