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Abstract
In this paper, we consider the existence and uniqueness of the solution of fractional
damped dynamical systems. First, we obtain the spreading form of the Gronwall
inequality. Furthermore, several sufficient conditions for the existence of the solutions
are derived from the application of fixed point theorems and inequalities such as the
Hölder and Gronwall inequalities.
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1 Introduction
Recently, fractional differential equations [–] have been studied intensively. The moti-
vation for this work arises from both the development of the theory of fractional calculus
itself and its wide application to various fields of science, such as physics, chemistry, bio-
logical, electromagnetic of complex media, robotics, economics, etc.

Much attention has been paid to the existence and uniqueness of the solutions of frac-
tional dynamic systems [–] on account of the fact that existence is the fundamental
problem and a necessary condition for considering some other properties for fractional
dynamic systems, such as controllability, stability, etc. Besides, one has to take into ac-
count the peculiarity of the kernel to obtain explicit results in practice not only to reduce
such an equation to an integral equation. Moreover, many authors have considered the
multi-term fractional order systems [–] due to their successful applications in me-
chanical system, the dynamics of certain gases, the dynamics of sphere. And the existence
and uniqueness of the solutions of this multi-term fractional order systems becomes more
complicated than one-term fractional order systems which have been considered before
by many authors. In this paper, motivated by the above, we will consider the existence and
uniqueness of the solution of the following fractional damped dynamical systems:

⎧
⎨

⎩

cDα
t x(t) – AcDβ

t x(t) = f (t, x(t)), t ∈ J := [, T],

x() = x, x′() = x′
,

()

where  < β ≤  < α ≤ ,  < T < ∞, x ∈ Rn, A is an Rn×n matrix and f : J × Rn → Rn is
jointly continuous.
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The rest of this paper is organized as follows. In Section , we recall some definitions
and facts on fractional calculus, the generalized Gronwall inequality, and fixed point theo-
rems. In Section , we will give some results as regards the spreading form of the Gronwall
inequality. In Section , we present our main results of this paper.

2 Preliminaries
In this section, we introduce notations, definitions and preliminary facts. Throughout this
paper, let C(J , Rn) be the Banach space of all continuous function from J into Rn with the
norm ‖x‖c = sup{|x(t)| : t ∈ J} for x ∈ C(J , Rn). Let |x|(·) be any vector norm (e.g., := , ,∞)
and ‖(·)‖ be the matrix norm induced by this vector. The symbol ∼ means that the quotient
of both sides converges to . Then we recall the following well-known definitions.

Definition . The fractional integral of order α with the lower zero for a function f :
[,∞) → R is defined as

Iα
t f (t) =


�(α)

∫ t



f (s)
(t – s)–α

ds, t > ,α > ,

provided the right side is point-wise defined on [,∞), where �(·) is a gamma function.

Definition . The Riemann-Liouville derivative of order α with the lower limit zero for
a function f : [,∞) → R can be defined as

LDα
t f (t) =


�(n – α)

dn

dtn

∫ t



f (s)
(t – s)α+–n ds, t > , n –  < α < n.

Definition . The Caputo derivative of order α for a function f : [,∞) → R can be
defined as

cDα
t f (t) = LDα

t

[

f (t) –
n–∑

k=

tk

k!
f (k)()

]

, t > , n –  < α < n.

Lemma . ([]) From the definition of fractional integrals and Caputo derivatives, we
have

Iα
t
(cDα

t x(t)
)

= x(t) –
n–∑

k=

tk

k!
f (k)(), t > , n –  < α < n.

Especially, when  < α < , then we have

Iα
t
(cDα

t x(t)
)

= x(t) – x() – tx′().

Lemma . ([]) Let  < β <  < α < , then we have

Iα
t
(cDβ

t x(t)
)

= Iα–β
t x(t) –

x()tα–β

�(α – β + )
.



Sheng and Jiang Advances in Difference Equations  (2017) 2017:16 Page 3 of 14

Taking the fractional integral of order α on both sides on the system (), due to the above
two lemmas we can easily obtain the integral equation of the system ():

x(t) = x + tx′
 –

Atα–β

�(α – β + )
x +

A
�(α – β)

∫ t


(t – s)α–β–x(s) ds

+


�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds.

For a measurable function δ : J → R, define the norm

‖δ‖Lp(J) =

⎧
⎨

⎩

(
∫

J |δ(t)|p dt)

p ,  ≤ p < ∞,

infμ(J)={supt∈J–J |δ(t)|}, p = ∞,

where μ(J) is the Lebesgue measure on J . Let Lp(J , R) be the Banach space of all Lebesgue
measure functions δ : J → R with ‖δ‖Lp(J) < ∞.

Lemma . (Hölder’s inequality []) Assume that p, q ≥ , and 
p + 

q = . If δ ∈ Lp(J , R),
λ ∈ Lq(J , R), then, for  ≤ q ≤ ∞, δλ ∈ L(J , R), and

‖δλ‖L(J) ≤ ‖δ‖Lp(J)‖λ‖Lq(J).

Lemma . ([]) Let C be a nonempty closed convex subset of a Banach space (X,‖ · ‖).
Suppose that P and Q map C into X such that:

(i) Px + Qy ∈ C where x, y ∈ C ;
(ii) P is a compact and continuous;

(iii) Q is a contraction mapping.
Then there exists z ∈ C such that z = Pz + Qz.

Lemma . ([]) Let X be a Banach spaces and F : X → X be a completely continuous
operator, if the set

E(F) =
{

y ∈ X : y = λFy for some λ ∈ [, ]
}

is bounded, then F has at least a fixed point.

Lemma . ([]) Let C be a nonempty convex subset of X. Let U be a nonempty open subset
of C with  ∈ U and F : U → C be a compact and continuous operators. Then either:

(i) F has fixed points, or
(ii) there exist y ∈ ∂U and λ∗ ∈ [, ] with y = λ∗F(y).

Lemma . ([]) Suppose β > , a(t) is a nonnegative function locally integrable on
[, T) and g̃(t) is a nonnegative, nondecreasing, continuous function defined on [, T);
g̃(t) ≤ M, where M is constant. Suppose x(t) is a nonnegative and locally integrable on
[, T) with

x(t) ≤ ã(t) + g̃(t)
∫ t


(t – s)β–x(s) ds, t ∈ [, T).
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Then

x(t) ≤ ã(t) +
∫ t



[ ∞∑

n=

(̃g(t)�(β))n

�(nβ)
(t – s)nβ–̃a(t)

]

ds, t ∈ [, T).

Corollary . ([]) Under the hypothesis of Lemma ., let a(t) be a nondecreasing
function on [, T). Then

x(t) ≤ ã(t)Eβ

(
g̃(t)�(β)tβ

)
,

where Eβ is the Mittag-Leffler function defined by

Eβ (z) =
∞∑

k=

zk

�(kβ + )
, z ∈ C, Re(β) > .

3 Some results of the Gronwall inequality
In this section, we will give some results as regards the extended form of the Gronwall
inequality.

Lemma . Let p > , q > , then

∫ t

τ

(t – s)p–(s – τ )q– ds =
�(p)�(q)
�(p + q)

(t – τ )p+q–.

Proof Let s = τ + z(t – τ ), then we have

∫ t

τ

(t – s)p–(s – τ )q– ds = (t – τ )p+q–
∫ 


( – z)p–z(q–) dz

= (t – τ )p+q–B(p, q)

=
�(p)�(q)
�(p + q)

(t – τ )p+q–. �

Theorem . Suppose α > , β > , a(t) is a nonnegative function locally integrable on
[, T), g̃(t), and g(t) are nonnegative, nondecreasing, continuous functions defined on [, T);
g̃(t) ≤ M̃, g(t) ≤ M, where M̃ and M are constants. Suppose x(t) is a nonnegative and locally
integrable on [, T) with

x(t) ≤ a(t) + g̃(t)
∫ t


(t – s)α–x(s) ds + g(t)

∫ t


(t – s)β–x(s) ds, t ∈ [, T).

Then

x(t) ≤ a(t) +
∫ t



∞∑

n=

[
g(t)

]n

×
n∑

k=

Ck
n[�(α)]n–k[�(β)]k

�[(n – k)α + kβ]
(t – s)(n–k)α+kβ–a(s) ds, t ∈ [, T), ()

where g(t) = g̃(t) + g(t) and Ck
n = n(n–)(n–)···(n–k+)

k! .
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Proof Let g(t) = g̃(t) + g(t), then

x(t) ≤ a(t) + g(t)
∫ t



[
(t – s)α– + (t – s)β–]x(s) ds.

Define the operator

Bx(t) = g(t)
∫ t



[
(t – s)α– + (t – s)β–]x(s) ds,

then

x(t) ≤ a(t) + Bx(t),

which implies that

x(t) ≤
n–∑

k=

Bka(t) + Bnx(t). ()

Now we prove

Bnx(t) ≤ [
g(t)

]n
∫ t



n∑

k=

Ck
n[�(α)]n–k[�(β)]k

�[(n – k)α + kβ]
(t – s)(n–k)α+kβ–x(s) ds. ()

When n = , the inequality () obviously holds. We assume that it holds for n = m. When
n = m + , we have

Bm+x(t) = B
(
Bmx(t)

)

≤ g(t)
∫ t



[
(t – s)α– + (t – s)β–]

×
[∫ s



[
g(s)

]m
m∑

k=

Ck
m[�(α)]m–k[�(β)]k

�[(m – k)α + kβ]
(s – τ )(m–k)α+kβ–x(τ ) dτ

]

ds. ()

Since g̃(t), g(t) is nondecreasing which implies g(t) is also nondecreasing and by
Lemma ., the inequality () can be rewritten as

Bm+x(t) ≤ [
g(t)

]m+
∫ t



[
(t – s)α– + (t – s)β–]

×
[∫ s



m∑

k=

Ck
m[�(α)]m–k[�(β)]k

�[(m – k)α + kβ]
(s – τ )(m–k)α+kβ–x(τ ) dτ

]

ds. ()

By interchanging the order of integration, the inequality () can be rewritten

Bm+x(t) ≤ [
g(t)

]m+
∫ t



[∫ t

τ

m∑

k=

Ck
m[�(α)]m–k[�(β)]k

�[(m – k)α + kβ]
(t – s)α–(s – τ )(m–k)α+kβ–

+
m∑

k=

Ck
m[�(α)]m–k[�(β)]k

�[(m – k)α + kβ]
(t – s)β–(s – τ )(m–k)α+kβ– ds

]

x(τ ) dτ
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=
[
g(t)

]m+
∫ t



[ m∑

k=

Ck
m[�(α)]m+–k[�(β)]k

�[(m +  – k)α + kβ]
(t – s)(m+–k)α+kβ–

+
m∑

k=

Ck
m[�(α)]m–k[�(β)]k+

�[(m – k)α + (k + )β]
(t – s)(m–k)α+(k+)β–

]

x(s) ds

=
[
g(t)

]m+
∫ t



[ m∑

k=

Ck
m[�(α)]m+–k[�(β)]k

�[(m +  – k)α + kβ]
(t – s)(m+–k)α+kβ–

+
m+∑

k=

Ck–
m [�(α)]m+–k[�(β)]k

�[(m +  – k)α + kβ]
(t – s)(m+–k)α+kβ–

]

x(s) ds

=
[
g(t)

]m+
∫ t



[
C

m[�(α)]m+

�[(m + )α]
(t – s)(m+)α–

+
m∑

k=

(Ck
m + Ck–

m )[�(α)]m+–k[�(β)]k

�[(m +  – k)α + kβ]
(t – s)(m+–k)α+kβ–

+
Cm

m[�(β)]m+

�[(m + )β]
(t – s)(m+)β–

]

=
[
g(t)

]m+
∫ t



m+∑

k=

Ck
m+[�(α)]m+–k[�(β)]k

�[(m +  – k)α + kβ]
(t – s)(m+–k)α+kβ–x(s) ds.

The inequality () is proved. Since g̃(t) ≤ M̃, g(t) ≤ M, t ∈ [, T), which means that g(t) ≤
M̃ + M, therefore it can be seen that

Bnx(t) ≤
∫ t



n∑

k=

(M̃ + M)nCk
n[�(α)]n–k[�(β)]k

�[(n – k)α + kβ]
(t – s)(n–k)α+kβ–x(s) ds,

which implies that Bnx(t) →  as n → ∞ for t ∈ [, T). Indeed, applying mean value theo-
rems and using Stirling’s formula of the gamma function, �(z + ) ∼ √

πz( z
e )z, there exists

a constant ξ ∈ [, T) such that

lim
n→∞ Bnx(t)

≤ lim
n→∞ x(ξ )

n∑

k=

(M̃ + M)nCk
n[�(α)]n–k[�(β)]k

�[(n – k)α + kβ]

∫ t


(t – s)(n–k)α+kβ– ds

= lim
n→∞ x(ξ )

n∑

k=

(M̃ + M)nCk
n[�(α)Tα]n–k[�(β)Tβ ]k

�[(n – k)α + kβ + ]

= lim
n→∞ x(ξ )

n∑

k=

(M̃ + M)nCk
n√

π [(n – k)α + kβ]

(
�(α)Tα

( (n–k)α+kβ

e )α

)n–k(
�(β)Tβ

( (n–k)α+kβ

e )β

)k

≤ lim
n→∞ x(ξ )

[(M̃ + M)(C + C)]n
√

nπγ
,

where γ = min{α,β}, C = �(α)Tα

( (n–k)α+kβ
e )α

, C = �(β)Tβ

( (n–k)α+kβ
e )β

. When n is so large that (M̃ +M)(C +

C) < , which implies [(M̃ + M)(C + C)]n →  as n → ∞, we can say that Bnx(t) →  as
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n → ∞ with x(ξ )√
nπγ

→  as n → ∞. Therefore, by equation (), we can easily obtain the
conclusion. The proof is completed. �

Corollary . Under the hypothesis of Theorem ., let a(t) be a nondecreasing function
on [, T). Then

x(t) ≤ a(t)Eγ

[
g(t)

(
�(α)tα + �(β)tβ

)]
,

where γ = min{α,β}.

Proof When a(t) is a nondecreasing function on [, T), the inequality () can be rewritten
as

x(t) ≤ a(t)

[

 +
∫ t



∞∑

n=

[
g(t)

]n
n∑

k=

Ck
n[�(α)]n–k[�(β)]k

�[(n – k)α + kβ]
(t – s)(n–k)α+kβ– ds

]

= a(t)

[

 +
∞∑

n=

[
g(t)

]n
n∑

k=

Ck
n[�(α)]n–k[�(β)]k

�[(n – k)α + kβ + ]
(t – s)(n–k)α+kβ

]

≤ a(t)

[

 +
∞∑

n=

[g(t)]n ∑n
k= Ck

n[�(α)tα]n–k[�(β)tβ]k

�[nγ + ]

]

= a(t)

[

 +
∞∑

n=

[g(t)]n[�(α)tα + �(β)tβ]n

�[nγ + ]

]

= a(t)Eγ

[
g(t)

(
�(α)tα + �(β)tβ

)]
.

The proof is completed. �

4 Main results
In this section, we will introduce the existence and uniqueness of the solutions of the sys-
tem (). Before stating and proving the main results, we need to give the following hy-
potheses.

(H) f : J × Rn → Rn is jointly continuous.
(H) For all t ∈ J and x ∈ Rn, there exists q ∈ (, ) and a real function m ∈ L


q (J , Rn)

such that |f (t, x)| ≤ m(t).
(H) For all t ∈ J and x, x ∈ Rn, there exist q ∈ (, ) and a real function h ∈ L


q (J , Rn)

such that |f (t, x) – f (t, x)| ≤ h(t)|x – x|.
For brevity, let us denote

a =
α – 
 – q

, b =
α – 
 – q

.

Theorem . Assume that (H)-(H) hold, if

‖A‖Tα–β

�(α – β + )
+

‖h‖
L


q (J)

T (+b)(–q)

�(α)( + b)(–q) < , ()

then the system of () has a unique solution on J .
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Proof First, we construct a space

Cr =
{

x ∈ C
(
J , Rn) : ‖x‖c ≤ r

}
,

where r satisfies

|x| + T
∣
∣x′


∣
∣ +

‖A‖Tα–β

�(α – β + )
|x| +

r‖A‖Tα–β

�(α – β + )
+

‖m‖
L


q (J)

T (+a)(–q)

�(α)( + a)–q
≤ r.

It is obvious that the space Cr is the Banach space. Then we define an operator F : Cr →
C(J , Rn) by

(Fx)(t) = x + tx′
 –

Atα–β

�(α – β + )
x +

A
�(α – β)

∫ t


(t – s)α–β–x(s) ds

+


�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds. ()

Obviously, F is well defined due to (H).
On the one hand, for every x ∈ Cr(J , Rn), we have

∣
∣(Fx)(t)

∣
∣ ≤ |x| + T

∣
∣x′


∣
∣ +

‖A‖Tα–β

�(α – β + )
|x| +

‖A‖
�(α – β)

∫ t


(t – s)α–β–∣∣x(s)

∣
∣ds

+


�(α)

∫ t


(t – s)α–∣∣f

(
s, x(s)

)∣
∣ds

≤ |x| + T
∣
∣x′


∣
∣ +

‖A‖Tα–β

�(α – β + )
|x| +

r‖A‖Tα–β

�(α – β + )

+


�(α)

(∫ t


(t – s)

α–
–q ds

)–q(∫ t


m(s)


q ds

)q

≤ |x| + T
∣
∣x′


∣
∣ +

‖A‖Tα–β

�(α – β + )
|x| +

r‖A‖Tα–β

�(α – β + )
+

‖m‖
L


q (J)

T (+a)(–q)

�(α)( + a)–q

≤ r,

which implies that ‖Fx‖c ≤ r.
On the other hand, for arbitrary x, x ∈ Cr , using (H) and the Hölder inequality, we get

∣
∣(Fx)(t) – (Fx)(t)

∣
∣

≤ ‖A‖
�(α – β)

∫ t


(t – s)α–β–∣∣x(s) – x(s)

∣
∣ds +


�(α)

∫ t


(t – s)α–h(s)

∣
∣x(s) – x(s)

∣
∣ds

≤ ‖x – x‖c
‖A‖

�(α – β)

∫ t


(t – s)α–β– ds

+ ‖x – x‖c


�(α)

(∫ t


(t – s)

α–
–q ds

)–q(∫ t


h(s)


q ds

)q

≤ ‖x – x‖c

( ‖A‖Tα–β

�(α – β + )
+

‖h‖
L


q (J)

T (+b)(–q)

�(α)( + b)–q

)

.
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Thus, F is a contraction mapping on Cr due to the condition (). Due to the well-known
Banach contraction mapping principle we know that the operator F has a unique fixed
point on Cr . Therefore, the system () has a unique solution. The proof is completed. �

Theorem . Assume that (H)-(H) hold, if

‖h‖
L


q (J)

T (+b)(–q)

�(α)( + b)(–q) < , ()

then the system () has at least one solution on J .

Proof Consider the Cr defined in Theorem .. We define the operators F and F on Cr

as follows:

(Fx)(t) = x + tx′
 –

Atα–β

�(α – β + )
x +

A
�(α – β)

∫ t


(t – s)α–β–x(s) ds,

(Fx)(t) =


�(α)

∫ t


(t – s)α–f

(
s, x(s)

)
ds.

For any x, y ∈ Cr and t ∈ J , using (H) and the Hölder inequality, we have

‖Fx + Fy‖c ≤ |x| + T
∣
∣x′


∣
∣ +

‖A‖Tα–β

�(α – β + )
|x| +

r‖A‖Tα–β

�(α – β + )
+

‖m‖
L


q (J)

T (+a)(–q)

�(α)( + a)–q

≤ r.

So we know that Fx + Fy ∈ Cr . In order to use Lemma ., we will verify that F is a
contraction mapping, while F is compact and continuous.

Now we prove the operator F is a contraction operator. Let x, x ∈ Cr and t ∈ J , then

∣
∣(Fx)(t) – (Fx)(t)

∣
∣

≤ 
�(α)

∫ t


(t – s)α–∣∣f

(
s, x(s)

)
– f

(
s, x(s)

)∣
∣ds

≤ 
�(α)

∫ t


(t – s)α–h(s)

∣
∣x(s) – x(s)

∣
∣ds

≤ 
�(α)

(∫ t


(t – s)

α–
–q ds

)–q(∫ t


h(s)


q ds

)q

‖x – x‖c

≤
‖h‖

L


q (J)
T (+b)(–q)

�(α)( + b)–q
‖x – x‖c.

So we see that F is a contraction operator due to the condition ().
Then we prove the operator F is compact and continuous. Let {xn} be a sequence such

that xn → x in the C(J , Rn). Then, for each t ∈ J , we have

∣
∣(Fxn)(t) – (Fx)(t)

∣
∣ ≤ A

�(α – β)

∫ t


(t – s)α–β–∣∣xn(s) – x(s)

∣
∣ds

≤ ‖A‖Tα–β

�(α – β + )
∥
∥xn(·) – x(·)∥∥c.
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Thus, ‖Fxn – Fx‖ →  as n → ∞, which implies that the operator F is continuous on Cr .
For each t ∈ J , we obtain

∣
∣(Fx)(t)

∣
∣

≤ |x| + T
∣
∣x′


∣
∣ –

‖A‖Tα–β

�(α – β + )
|x| +

‖A‖
�(α – β)

∫ t


(t – s)α–β–∣∣x(s)

∣
∣ds

≤ |x| + T
∣
∣x′


∣
∣ –

‖A‖Tα–β

�(α – β + )
|x| +

r‖A‖Tα–β

�(α – β + )
:= r̃.

It shows that, for any r > , there exists a r̃ such that, for each x ∈ Cr , we have ‖Fx‖ ≤ r̃.
That is to say, F maps bounded sets into bounded sets in Cr .

And also for t, t ∈ J ,  ≤ t < t ≤ T , x ∈ Cr , we have

∣
∣(Fx)(t) – (Fx)(t)

∣
∣

≤ ∣
∣x′


∣
∣(t – t) +

|x|‖A‖
�(α – β + )

(
tα–β
 – tα–β


)

+
r‖A‖

�(α – β)

∫ t

t

(t – s)α–β– ds

+
r‖A‖

�(α – β)

∫ t



[
(t – s)α–β– – (t – s)α–β–]ds

=
∣
∣x′


∣
∣(t – t) +

|x|‖A‖
�(α – β + )

(
tα–β
 – tα–β


)

+
r‖A‖

�(α – β + )
(
tα–β
 – tα–β


)

≤ ∣
∣x′


∣
∣(t – t) +

r‖A‖
�(α – β + )

(
tα–β
 – tα–β


)
.

As t → t, |(Fx)(t) – (Fx)(t)| → , which implies that F is equicontinuous. By apply-
ing the well-known Ascoli theorem, we come to the conclusion that the operator F is
compact.

Hence from all the above results together with Lemma ., we can see that the operator
F has at least one fix point. Therefore, the system () has at least one solution on J . The
proof is completed. �

Now, we replace (H) by the following linear growth condition:

(H′) For each t ∈ J and all x ∈ Rn, there exists a constant L >  such that

∣
∣f (t, x)

∣
∣ ≤ L

(
 + |x|).

Theorem . Assume that (H) and (H′) hold, then the system () has at least one solu-
tion on J .

Proof Consider the operator F : Cr → C(J , Rn) defined as () in Theorem .. And we de-
fine the set

E(F) =
{

x ∈ Cr : x = λFx for some λ ∈ [, ]
}

.

In order to use Lemma ., we need to verify that F is completely continuous and the set
E(F) is bounded.
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Now we prove the F is completely continuous. Let {xn} be a sequence such that xn → x
in the C(J , Rn). Then, for each t ∈ J , we have

∣
∣(Fxn)(t) – (Fx)(t)

∣
∣

≤ A
�(α – β)

∫ t


(t – s)α–β–∣∣xn(s) – x(s)

∣
∣ds

+


�(α)

∫ t


(t – s)α–∣∣f

(
s, xn(s)

)
– f

(
s, x(s)

)∣
∣ds

≤ ‖A‖Tα–β

�(α – β + )
∥
∥xn(·) – x(·)∥∥c

+
Tα

�(α + )
∥
∥f

(
(·), xn(·)) – f

(
(·), x(·))∥∥c.

Thus, ‖Fxn – Fx‖ →  as n → ∞, which implies that the operator F is continuous on Cr .
Since for each t ∈ J , we get

∣
∣(Fx)(t)

∣
∣

≤ |x| + T
∣
∣x′


∣
∣ +

‖A‖Tα–β

�(α – β + )
|x| +

r‖A‖
�(α – β)

∫ t


(t – s)α–β– ds

+


�(α)

∫ t


(t – s)α–∣∣f

(
s, x(s)

)∣
∣ds

≤ |x| + T
∣
∣x′


∣
∣ +

‖A‖Tα–β

�(α – β + )
|x| +

r‖A‖Tα–β

�(α – β + )
+

L( + r)Tα

�(α + )
:= r̂.

It shows that, for any r > , there exists a r̂ such that, for each x ∈ Cr , we have ‖Fx‖ ≤ r̂.
That is to say, F maps bounded sets into bounded sets in Cr .

And also due to (H′), for t, t ∈ J ,  ≤ t < t ≤ T , x ∈ Cr , we have

∣
∣(Fx)(t) – (Fx)(t)

∣
∣

≤ ∣
∣x′


∣
∣(t – t) +

|x|‖A‖
�(α – β + )

(
tα–β
 – tα–β


)

+
r‖A‖

�(α – β)

∫ t

t

(t – s)α–β– ds

+
r‖A‖

�(α – β)

∫ t



[
(t – s)α–β– – (t – s)α–β–]ds +

L( + r)
�(α)

∫ t

t

(t – s)α– ds

+
L( + r)
�(α)

∫ t



[
(t – s)α– – (t – s)α–]ds

≤ ∣
∣x′


∣
∣(t – t) +

r‖A‖
�(α – β + )

(
tα–β
 – tα–β


)

+
L( + r)
�(α + )

(
tα
 – tα


)
.

As t → t, |(Fx)(t) – (Fx)(t)| → , which implies that F is equicontinuous. By applying
the well-known Ascoli theorem, we see that the operator F is completely continuous.

On the other hand, let x ∈ E(F), then x = λFx for some λ ∈ [, ]. For t ∈ J , we have

∣
∣x(t)

∣
∣ ≤ |x| + T

∣
∣x′


∣
∣ +

‖A‖Tα–β

�(α – β + )
|x| +

‖A‖
�(α – β)

∫ t


(t – s)α–β–∣∣x(s)

∣
∣ds

+


�(α)

∫ t


(t – s)α–∣∣f

(
s, x(s)

)∣
∣ds



Sheng and Jiang Advances in Difference Equations  (2017) 2017:16 Page 12 of 14

≤ |x| + T
∣
∣x′


∣
∣ +

‖A‖Tα–β

�(α – β + )
|x| +

LTα

�(α + )

+
‖A‖

�(α – β)

∫ t


(t – s)α–β–∣∣x(s)

∣
∣ds

+
L

�(α)

∫ t


(t – s)α–∣∣x(s)

∣
∣ds.

For brevity, let us denote

l = |x| + T
∣
∣x′


∣
∣ +

‖A‖Tα–β

�(α – β + )
|x| +

LTα

�(α + )
,

m =
‖A‖

�(α – β)
, n =

L
�(α)

.

Then by Corollary ., we can obtain

∣
∣x(t)

∣
∣ ≤ l + m

∫ t


(t – s)α–β–∣∣x(s)

∣
∣ds + n

∫ t


(t – s)α–∣∣x(s)

∣
∣ds

≤ lEα–β

[
(m + n)

(
�(α)tα + �(α – β)tα–β

)]

:= M∗,

which implies that there exists a constant M∗ >  such that |x(t)| ≤ M∗. Then we can say
that the set E(F) is bounded.

Hence from all the above results together with Lemma ., we deduce that F has a fixed
point. Therefore the system () has at least one solution. The proof is completed. �

In order to weaken the condition (H′), we will use Lemma . to prove the following
theorem.

(H′′) There exists a constant q ∈ (, ) such that a real valued function φf (t) ∈ L


q (J , Rn)
and there exists a L-integrable and nondecreasing ψ : [, +∞) → [, +∞) such that
|f (t, x)| ≤ φf (t)ψ(|x|) for each t ∈ J and x ∈ Rn.

(H) The inequality

η

� + ψ(η)T (+γ )(–q)ϑ
�(α)(+γ )–q

>  ()

has at least a positive solution, where � = |x| + T |x′
| + ‖x‖c‖A‖Tα–β

�(α–β+) , ϑ = ‖φf ‖
L


q

(J), γ =
α–
–q

.

Theorem . Assume that (H), (H′′), and (H) hold, then the system () has at least one
solution on J .

Proof Proof by contradiction. By the hypothesis (H), there exists a N >  such that ‖x‖c �=
N . Let CN = {x ∈ C(J , Rn) : ‖x‖c < N}. Consider the operator F defined in Theorem ., we
can easily shown that F : CN → C(J , Rn) is continuous and completely continuous. Assume
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that there exist x ∈ ∂CN such that x = λ∗F(x), λ∗ ∈ [, ], then we have

∣
∣x(t)

∣
∣ ≤ ∣

∣(Fx)(t)
∣
∣ ≤ |x| + T

∣
∣x′


∣
∣ +

‖A‖Tα–β

�(α – β + )
|x|

+
‖A‖

�(α – β)

∫ t


(t – s)α–β–∣∣x(s)

∣
∣ds

+
ψ(‖x‖c)
�(α)

∫ t


(t – s)α–∣∣f

(
s, x(s)

)∣
∣ds

≤ |x| + T
∣
∣x′


∣
∣ +

‖x‖c‖A‖Tα–β

�(α – β + )

+
ψ(‖x‖c)
�(α)

(∫ t


(t – s)

α–
–q ds

)–q(∫ t


φf (s)


q ds

)q

≤ � +
ψ(‖x‖c)T (+γ )(–q)ϑ

�(α)( + γ )–q
.

Thus

η

� + ψ(η)T (+γ )(–q)ϑ
�(α)(+γ )–q

≤ ,

which is a contradiction with the inequality () under the hypothesis (H).
Then we can say that there is no x ∈ ∂CN such that x = λ∗F(x), λ∗ ∈ [, ], from the

selection of CN . By the Lemma ., we deduce that F has a fixed point x ∈ CN . Therefore,
the system () has at least one solution. The proof is completed. �
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