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Abstract
Consider the difference equation

[�3f (z)
�f (z)

–
3
2

(�2f (z)
�f (z)

)2]k
=

P(z, f (z))
Q(z, f (z))

,

where P(z, f ) and Q(z, f ) are prime polynomials in f (z) with degf P = p, degf Q = q, and
d =max{p,q} > 0. We give the supremum of d, an estimation of the sum of
Nevanlinna exceptional values of meromorphic solution f (z) of the equation, and
study the value distributions of their difference �f (z) and divided difference �f (z)

f (z) .

MSC: 30D35; 34A20
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1 Introduction and main results
In this paper, we use the basic notions of Nevanlinna theory, such as T(r, f ), m(r, f ), N(r, f ),
and so on; see [–]. Let S(r, f ) denote any quantity satisfying S(r, f ) = o(T(r, f )) for all r
outside a set of finite logarithmic measure. We call f an admissible solution of a difference
(or differential) equation if all coefficients α of the equation satisfy T(r,α) = S(r, f ). In
addition, we denote by σ (f ) the order of growth of a meromorphic function f (z) and by
λ(f ) and λ( 

f ), respectively, the exponents of convergence of zeros and poles of f (z), which
are defined by

σ (f ) = lim
r→∞

log T(r, f )
log r

, λ(f ) = lim
r→∞

log N(r, 
f )

log r
, λ

(

f

)
= lim

r→∞
log N(r, f )

log r
.

If λ(f – a) < σ (f ), then a is called a Borel exceptional value of f .
For a ∈C∪ {∞}, we denote by δ(a, f ) the deficiency of a to f (z), which is defined by

δ(a, f ) = lim
r→∞

m(r, 
f –a )

T(r, f )
(if a ∈ C), δ(∞, f ) = lim

r→∞
m(r, f )
T(r, f )

.

Obviously, δ(a, f ) ≥ . If δ(a, f ) > , then a is called a Nevanlinna exceptional value of f .
The forward differences �nf (z), n ∈N

+, are defined in the standard way [] by

�f (z) = f (z + ) – f (z), �n+f (z) = �nf (z + ) – �nf (z).
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Ishizaki [] studied Schwarzian differential equations and obtained the following:

Theorem A Let α,α, . . . ,αs be distinct constants. If

[(
f ′′

f ′

)′
–




(
f ′′

f ′

)

=
f ′′′

f ′ –



(
f ′′

f ′

)]k

=
P(z, f )
Q(z, f )

possesses an admissible solution, then we have

s∑
j=

δ(αj, f ) ≤  –
d
k

,

where d = max{degf P(z, f ), degf Q(z, f )}.

Chen and Li [] investigated difference equations and obtained the following theorem,
which can be regarded as a difference analogue of Theorem A.

Theorem B Let f (z) be an admissible solution of the difference equation

[
�f (z)
�f (z)

–



(
�f (z)
�f (z)

)]k

= R
(
z, f (z)

)
=

P(z, f (z))
Q(z, f (z))

(.)

such that σ(f ) < , where k (≥ ) is an integer, P(z, f ) and Q(z, f ) are polynomials with
degf P(z, f ) = p, degf Q(z, f ) = q, and d = max{p, q}. Let α, . . . ,αs be s (≥ ) distinct complex
constants. Then

s∑
j=

δ(αj, f ) ≤  –
q

k
. (.)

In particular, if N(r, f ) = S(r, f ), then

s∑
j=

δ(αj, f ) ≤  –
d
k

. (.)

Lan and Chen [] studied the value distribution of transcendental meromorphic solu-
tions and their differences of some difference equation concerning a Schwarzian equation.
From Theorem B we do a rough calculation: if f (z) has two finite Borel exceptional val-
ues, (.) shows that q ≤ k; if f (z) has only one finite Borel exceptional value, (.) shows
q ≤ k ((.) shows that d ≤ k); if f (z) has no finite Nevanlinna exceptional values, (.)
shows that q ≤ k ((.) shows that d ≤ k). The upper bound of d seems to bear on k. We
ask the following interesting questions: what is the supremum of d? whether inequalities
(.) and (.) can be improved? Once we fix d and k, can we get the number of Nevan-
linna exceptional values of meromorphic solutions of (.)? In this paper, we answer these
questions and obtain the following theorem.

Theorem . Suppose that f (z) is an admissible solution of difference equation (.) of
finite order, where k (≥ ) is an integer, degf P = p, degf Q = q, and d = max{p, q} > . Let αj

(j = , . . . , s) be distinct constants. Then
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(i) d ≤ k;
(ii)

∑s
j= δ(αj, f ) ≤ 

 – d
k ;

(iii) if N(r, f ) = S(r, f ), then q = d ≤ k, and
∑s

j= δ(αj, f ) ≤  – d
k .

Example . The function f (z) = z tan πz
 satisfies the difference equation

�f (z)
�f (z)

–



(
�f (z)
�f (z)

)

=
P(z, f )
Q(z, f )

,

where

P(z, f ) = f  + (z + )f  +
(
z + z + 

)
f  + z

(
z + z + 

)
f 

+ z(z + z + 
)
f  + z(z + z + 

)
f  + z(z – z – 

)
f

+ z(z + ),

Q(z, f ) = –f (f + z)
(
f  + f + z + z

).

We see that k =  and p = q = . So, d = max{p, q} =  = k. Obviously, f (z) = z tan πz
 has

no Nevanlinna exceptional value, that is, for any distinct constants αj (j = , . . . , s), we have∑s
j= δ(αj, f ) =  = 

 – d
k .

Example . The function f (z) = ez + z satisfies the difference equation

�f (z)
�f (z)

–



(
�f (z)
�f (z)

)

=
P(z, f )
Q(z, f )

,

where

P(z, f ) = –(e – )f  + (e – )((e – )z + (e – )z + e – 
)
f

– (e – )z – (e – )z – (e – )z – (e – )(e – )z – ,

Q(z, f ) = 
(
(e – )f +

(
( + e)z + 

)(
( – e)z + 

)).

We see that k =  and p = q = . So, d = max{p, q} =  = k. Obviously, f (z) has no finite
Nevanlinna exceptional value, that is, for any distinct constants αj (j = , . . . , s), we have∑s

j= δ(αj, f ) =  =  – d
k .

Remark .
(i) Comparing Theorem . and Theorem B, we see that the result of Theorem . is

better than that of Theorem B.
(ii) Under conditions of Theorem .(iii), the result shows that

∑s
j= δ(αj, f ) ≤  – d

k < ,
that is, f (z) has no finite Borel exceptional value.

(iii) Examples . and . show the equalities in Theorem . can be reached. So, the
result of Theorem . is precise.

In general, λ(�f ) ≤ σ (f ), where f (z) is a meromorphic function. For example, if f(z) =
ez +  and f(z) = ez + z, by calculation we see that �f(z) = (e – )ez has no zeros, whereas
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�f(z) = (e – )ez +  satisfies λ(�f) = σ (f). Even for a meromorphic function of small
lower order, �f (z) may have finitely many zeros. To show this, Bergweiler and Langley []
constructed a meromorphic function like this and obtained the following:

Theorem C Let φ(r) be a positive nondecreasing function on [,∞) that satisfies
limr→∞ φ(r) = ∞. Then there exists a transcendental and meromorphic function f in the
plane with

lim
r→∞

T(r, f )
r

< ∞, lim
r→∞

T(r, f )
φ(r) log r

< ∞

such that g(z) = �f (z) has only one zero. Moreover, the function g satisfies

lim
r→∞

T(r, g)
φ(r) log r

< ∞.

Many authors tried hard to investigate zeros of difference and divided difference of
meromorphic solutions of difference equation and obtained profound results (see [, ,
], etc.). Fixing the connection of d and k, we get the number of Nevanlinna exceptional
values of a meromorphic solution f of (.) and discover some very good properties of f .
These results are stated as follows.

Theorem . Suppose that f (z) is an admissible meromorphic solution of difference equa-
tion (.) of finite order, where k ∈N

+ and d = max{degf P, degf Q} = k. Then
(i) f (z) has no Nevanlinna exceptional value;

(ii) λ(�f ) = λ( 
�f ) = σ (f ), λ( �f

f ) = λ( 
�f
f

) = σ (f );

(iii) T(r,�f ) = T(r, f ) + S(r, f ).

Set d = k in Theorem .(iii). By the proof of Theorem .(iii) we easily obtain the fol-
lowing corollary.

Corollary . Suppose that f (z) is an admissible entire solution of difference equation (.)
of finite order, where k ∈N

+ and d = max{degf P, degf Q} = k. Then
(i) f (z) has no finite Nevanlinna exceptional value;

(ii) T(r,�f ) = T(r, f ) + S(r, f ).

The following Example . satisfies the conditions and results of Theorem ..

Example . In Example ., we see that f (z) = z tan πz
 is also a transcendental meromor-

phic solution of finite order of the equation

f (z + )f (z – ) =  – z.

By the following Lemma ., f (z) has no Nevanlinna exceptional value, and

λ(�f ) = λ

(


�f

)
= σ (f ),λ

(
�f
f

)
= λ

(

�f
f

)
= σ (f ).
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By calculation we have

�f (z) =
z tan πz

 + tan πz
 + z + 

 – tan πz


.

Thus,

T(r,�f ) = T
(

r, tan
πz


)
+ S

(
r, tan

πz


)
= T(r, f ) + S(r, f ).

2 Lemmas for the proofs of theorems
Lemma . ([, ]) Let f (z) be a meromorphic function of finite order σ , and let η be a
nonzero complex constant. Then, for each ε ( < ε < ), we have

m
(

r,
f (z + η)

f (z)

)
+ m

(
r,

f (z)
f (z + η)

)
= O

(
rσ–+ε

)
.

Lemma . ([]) Let f (z) be a meromorphic function with exponent of convergence of poles
λ( 

f ) = λ < ∞, and let η 	=  be fixed. Then, for each ε ( < ε < ),

N
(
r, f (z + η)

)
= N

(
r, f (z)

)
+ O

(
rλ–+ε

)
+ O(log r).

Lemma . ([]) Let f (z) be a meromorphic function of order σ = σ (f ),σ < ∞, and let η

be a fixed nonzero complex number. Then, for each ε > ,

T
(
r, f (z + η)

)
= T

(
r, f (z)

)
+ O

(
rσ–+ε

)
+ O(log r).

Lemma . ([], Lemma .) Suppose that f (z) is a nonconstant meromorphic function in
|z| < R. Let aj (j = , , . . . , q) be distinct finite complex numbers. Then, for  < r < R, we have

m

(
r,

q∑
j=


f – aj

)
=

q∑
j=

m
(

r,


f – aj

)
+ O().

Lemma . ([] (Valiron-Mohon’ko)) Let f (z) be a meromorphic function. Then, for all
irreducible rational functions in f ,

R
(
z, f (z)

)
=

an(z)f (z)n + · · · + a(z)
bm(z)f (z)m + · · · + b(z)

with meromorphic coefficients ai(z) and bj(z) being small with respect to f , the characteristic
function of R(z, f (z)) satisfies

T
(
r, R

(
z, f (z)

))
= max{m, n}T(r, f ) + S(r, f ).

Lemma . ([]) Suppose that h(z) is a nonconstant rational function. If w(z) is a tran-
scendental meromorphic solution of finite order of the equation

w(z + )w(z – ) = h(z).

Then
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(i) w(z) has no Nevanlinna exceptional value;
(ii) λ(�w) = λ( 

�w ) = σ (w), λ( �w
w ) = λ( 

�w
w

) = σ (w).

Lemma . ([]) Let g : (, +∞) → R, h : (, +∞) → R be nondecreasing functions. Sup-
pose that

(i) g(r) ≤ h(r) outside of an exceptional set of finite linear measure, or
(ii) g(r) ≤ h(r), r /∈ H ∪ (, ], where H ⊂ (,∞) is a set of finite logarithmic measure.

Then, for any α > , there exists r >  such that g(r) ≤ h(αr) for all r > r.

From Lemma . we easily obtain the following:

Lemma . Let g(r) be a nondecreasing function, and E be a set of finite logarithmic mea-
sure or finite linear measure. Then

lim
r→∞

r∈(,∞)

log g(r)
log r

= lim
r→∞
r /∈E

log g(r)
log r

and

lim
r→∞

r∈(,∞)

log g(r)
log r

= lim
r→∞
r /∈E

log g(r)
log r

.

3 Proofs of theorems

Proof of Theorem . (i) We first prove that d ≤ k. Lemma . shows that

m(r, R) = km
(

r,
�f (z)
�f (z)

–



(
�f (z)
�f (z)

))
= S(r, f ).

Combining this with Lemma ., we have

T(r, R) = m(r, R) + N(r, R) = N(r, R) + S(r, f ) = dT(r, f ) + S(r, f ). (.)

Rewrite (.) in the form

R(z, f ) =
[

�f (z)
�f (z)

–



(
�f (z)
�f (z)

)]k

=
[

�f (z + ) – �f (z + ) + �f (z)
�f (z)

–



(
�f (z + ) – �f (z)

�f (z)

)]k

=
[

�f (z + )
�f (z)

+
�f (z + )

�f (z)
–




(
�f (z + )

�f (z)

)

–



]k

=
[

f (z + ) – f (z + )
f (z + ) – f (z)

+
f (z + ) – f (z + )

f (z + ) – f (z)
–




(
f (z + ) – f (z + )

f (z + ) – f (z)

)

–



]k

=
[

f (z + ) – f (z + )
f (z + ) – f (z)

–



(
f (z + ) – f (z + )

f (z + ) – f (z)

)

–



]k

. (.)

If z is a pole of f (z + ) and not a pole of f (z + ), f (z + ), or f (z), then z cannot be a
pole of f (z+)–f (z+)

f (z+)–f (z) or a pole of f (z+)–f (z+)
f (z+)–f (z) . By (.) we see that z is not a pole of R(z, f (z)).
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Similarly, if z is a pole of f (z)and not a pole of f (z + ), f (z + ), or f (z + ), then z cannot
be a pole of R(z, f (z)). By this and (.), the poles of R(z, f (z)) come from poles of f (z + )
and f (z + ) and zeros of �f (z). By (.), (.), and Lemmas . and . we obtain

dT(r, f ) = N(r, R) + S(r, f )

≤ kN
(
r, f (z + )

)
+ kN

(
r, f (z + )

)
+ kN

(
r,


�f (z)

)
+ S(r, f )

≤ kN
(
r, f (z)

)
+ kN

(
r,


�f (z)

)
+ S(r, f ) (.)

≤ kT
(
r, f (z)

)
+ kN

(
r,


�f (z)

)
+ S(r, f ) (.)

≤ kT
(
r, f (z)

)
+ kT

(
r,�f (z)

)
+ S(r, f )

≤ kT(r, f ) + S(r, f ). (.)

From this it follows that d ≤ k.
(ii) By (.) we have

N
(

r,


�f (z)

)
≥ d – k

k
T(r, f ) + S(r, f ).

Combining this with Lemma ., we obtain

m
(

r,


�f (z)

)
= T

(
r,�f (z)

)
– N

(
r,


�f (z)

)

≤ T
(
r, f (z)

)
–

d – k
k

T(r, f ) + S(r, f )

=
(




–
d
k

)
T(r, f ) + S(r, f ). (.)

From (.) and Lemmas . and . we deduce that

s∑
j=

m
(

r,


f – αj

)
= m

(
r,

s∑
j=


f – αj

)
+ O()

≤ m

(
r,

s∑
j=

�f
f – αj

)
+ m

(
r,


�f

)
+ O()

= m
(

r,


�f

)
+ S(r, f )

≤
(




–
d
k

)
T(r, f ) + S(r, f ). (.)

By the definition of S(r, f ), (.) shows that

s∑
j=

m
(

r,


f – αj

)
≤

(



–
d
k

+ o()
)

T(r, f ), r /∈ E,
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where E ⊂ (,∞) is a set of finite logarithmic measure. Thus,

s∑
j=

δ(αj, f ) =
s∑

j=

lim
r→∞

m(r, 
f –αj

)

T(r, f )
≤ lim

r→∞

∑s
j= m(r, 

f –αj
)

T(r, f )

≤ lim
r→∞
r /∈E

∑s
j= m(r, 

f –αj
)

T(r, f )

≤ lim
r→∞
r /∈E

( 
 – d

k + o())T(r, f )
T(r, f )

=



–
d
k

,

that is,

s∑
j=

δ(αj, f ) ≤ 


–
d
k

.

(iii) We still have (.)-(.). By N(r, f ) = S(r, f ) and Lemmas . and . we have

N
(

r,


�f

)
≤ T(r,�f ) = m(r,�f ) + N(r,�f )

≤ m(r, f ) + m
(

r,
�f
f

)
+ N

(
r, f (z + )

)
+ N

(
r, f (z)

)

= m(r, f ) + N
(
r, f (z)

)
+ S(r, f )

= T(r, f ) + S(r, f ). (.)

By N(r, f ) = S(r, f ), (.), (.), and Lemmas . and . we obtain

dT(r, f ) = N(r, R) + S(r, f )

≤ kN
(

r,


�f

)
+ kN

(
r, f (z)

)
+ S(r, f )

= kN
(

r,


�f

)
+ S(r, f )

≤ kT(r, f ) + S(r, f ),

that is,

dT(r, f ) = N(r, R) + S(r, f ) ≤ kN
(

r,


�f

)
+ S(r, f ) ≤ kT(r, f ) + S(r, f ). (.)

It follows that d ≤ k.
By (.) and Lemma . we have

dT(r, f ) = N(r, R) + S(r, f )

= N
(

r,

Q

)
+ S(r, f )
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≤ T(r, Q) + S(r, f )

= qT(r, f ) + S(r, f ),

which yields q ≥ d. So, q = d ≤ k.
By (.) we have

N
(

r,


�f

)
≥ d

k
T(r, f ) + S(r, f ).

Combining this with Lemma ., we obtain

m
(

r,


�f

)
= T(r,�f ) – N

(
r,


�f

)

= m(r,�f ) – N
(

r,


�f

)

≤ m(r, f ) + m
(

r,
�f
f

)
–

d
k

T(r, f ) + S(r, f )

=
(

 –
d
k

)
T(r, f ) + S(r, f ). (.)

By (.) and Lemmas . and . we have

s∑
j=

m
(

r,


f – αj

)
= m

(
r,

s∑
j=


f – αj

)
+ O()

≤ m

(
r,

s∑
j=

�f
f – αj

)
+ m

(
r,


�f

)
+ O()

= m
(

r,


�f

)
+ S(r, f )

≤
(

 –
d
k

)
T(r, f ) + S(r, f ),

that is,

s∑
j=

m
(

r,


f – αj

)
≤

(
 –

d
k

+ o()
)

T(r, f ), r /∈ E,

where E ⊂ (,∞) is a set of finite logarithmic measure. Thus,

s∑
j=

δ(αj, f ) =
s∑

j=

lim
r→∞

m(r, 
f –αj

)

T(r, f )
≤ lim

r→∞

∑s
j= m(r, 

f –αj
)

T(r, f )

≤ lim
r→∞
r /∈E

∑s
j= m(r, 

f –αj
)

T(r, f )
≤ lim

r→∞
r /∈E

( – d
k + o())T(r, f )

T(r, f )

=  –
d
k

.
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So,

s∑
j=

δ(αj, f ) ≤  –
d
k

.
�

Proof of Theorem . (i) Using the same method as in Theorem .(i), we still have (.)-
(.). By the fact d = k and (.) we have

kN(r, f ) + kN
(

r,


�f (z)

)
= kT(r, f ) + kT

(
r,�f (z)

)
+ S(r, f )

= kT(r, f ) + S(r, f ).

From this it follows that

N(r, f ) = T(r, f ) + S(r, f ) (.)

and

N
(

r,


�f (z)

)
= T

(
r,�f (z)

)
+ S(r, f ) = T(r, f ) + S(r, f ). (.)

By (.) we see that

m(r, f ) = T(r, f ) – N(r, f ) = S(r, f ), (.)

Hence,

m(r, f ) = o
(
T(r, f )

)
, r /∈ E,

where E ⊂ (,∞) is a set of finite logarithmic measure. Therefore,

δ(∞, f ) = lim
r→∞

m(r, f )
T(r, f )

≤ lim
r→∞
r /∈E

m(r, f )
T(r, f )

= lim
r→∞
r /∈E

o(T(r, f ))
T(r, f )

= .

So, δ(∞, f ) = .
We deduce from (.) that

m
(

r,


�f (z)

)
= T

(
r,�f (z)

)
– N

(
r,


�f (z)

)
= S(r, f ). (.)

For any given a ∈C, by (.) and Lemma . we have

m
(

r,


f (z) – a

)
≤ m

(
r,

�f (z)
f (z) – a

)
+ m

(
r,


�f (z)

)
= S(r, f ),

that is,

m
(

r,


f (z) – a

)
= o

(
T(r, f )

)
, r /∈ E,
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where E ⊂ (,∞) is a set of finite logarithmic measure. Hence,

δ(a, f ) = lim
r→∞

m(r, 
f (z)–a )

T(r, f )
≤ lim

r→∞
r /∈E

m(r, 
f (z)–a )

T(r, f )
= lim

r→∞
r /∈E

o(T(r, f ))
T(r, f )

= .

So, δ(a, f ) = .
Thus, for any a ∈ C ∪ {∞}, we have δ(a, f ) = . So, f (z) has no Nevanlinna exceptional

value.
(ii) By (.) we easily obtain that λ(�f ) = σ (�f ) = σ (f ). By (.) and Lemma . we see

m(r,�f ) ≤ m
(

r,
�f
f

)
+ m(r, f ) = S(r, f ).

Together with (.), we have

N(r,�f ) = T(r,�f ) – m(r,�f ) = T(r,�f ) + S(r, f ) = T(r, f ) + S(r, f )

or

N(r,�f ) =
(
 + o()

)
T(r, f ), r /∈ E,

where E ⊂ (,∞) is a set of finite logarithmic measure.
By Lemmas . and . we see

λ

(


�f

)
= lim

r→∞
log N(r,�f )

log r
= lim

r→∞
r /∈E

log N(r,�f )
log r

= lim
r→∞
r /∈E

log( + o())T(r, f )
log r

= lim
r→∞

log T(r, f )
log r

= σ (f ).

So, λ( 
�f ) = σ (f ).

Finally, we prove that λ( �f
f ) = λ( 

�f
f

) = σ (f ). Set g(z) = �f (z)
f (z) . Then

⎧⎪⎨
⎪⎩

f (z + ) = (g(z) + )f (z),
f (z + ) = (g(z + ) + )f (z + ) = (g(z + ) + )(g(z) + )f (z),
f (z + ) = (g(z + ) + )f (z + ) = (g(z + ) + )(g(z + ) + )(g(z) + )f (z).

Substituting this into (.), we have

R(z, f ) =
[

(g(z) + )((g(z + ) + )(g(z + ) + ) – )
g(z)

–



(
g(z + )(g(z) + )

g(z)

)]k

.

Combining this with (.) and Lemma ., we obtain

dT(r, f ) = T
(
r, R(z, f )

)
+ S(r, f )

≤ M
[
T

(
r, g(z)

)
+ T

(
r, g(z + )

)
+ T

(
r, g(z + )

)]
+ S(r, f )

= MT
(
r, g(z)

)
+ S(r, g) + S(r, f ), (.)

where M is some nonzero constant.
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By the definition of S(r, f ) and S(r, g), (.) can be rewritten as

(
d + o()

)
T(r, f ) ≤ (

M + o()
)
T(r, g), r /∈ E,

where E ⊂ (,∞) is a set of finite logarithmic measure.
Applying Lemmas . and . to the last inequality, we have

σ (f ) = lim
r→∞

log T(r, f )
log r

= lim
r→∞
r /∈E

log T(r, f )
log r

≤ lim
r→∞
r /∈E

log( M+o()
d+o() ) + log T(r, g)

log r

= lim
r→∞

log T(r, g)
log r

= σ (g),

that is, σ (f ) ≤ σ (g). So, σ ( �f
f ) = σ (g) = σ (f ).

If the quantity φ(r) satisfies φ(r) = S(r, f ), then we have φ(r) = S(r, g) by (.). Hence,

S(r, f ) = o
(
T(r, f )

) ≤ o
(
T(r, g)

)
= S(r, g) = S

(
r,

�f
f

)
. (.)

Lemma . and (.) show that

m
(

r,
�f
f

)
= S(r, f ) ≤ S

(
r,

�f
f

)
,

from which it follows that

N
(

r,
�f
f

)
= T

(
r,

�f
f

)
– m

(
r,

�f
f

)
= T

(
r,

�f
f

)
+ S

(
r,

�f
f

)
.

By the definition of S(r, �f
f ), the last equality shows that

N
(

r,
�f
f

)
=

(
 + o()

)
T

(
r,

�f
f

)
, r /∈ E, (.)

where E ⊂ (,∞) is a set of finite logarithmic measure.
Applying Lemmas . and . to (.), we see that

λ

(

�f
f

)
= lim

r→∞
log N(r, �f

f )
log r

= lim
r→∞
r /∈E

log N(r, �f
f )

log r

= lim
r→∞
r /∈E

log( + o())T(r, �f
f )

log r

= lim
r→∞

log T(r, �f
f )

log r
= σ

(
�f
f

)
.

So, λ( 
�f
f

) = σ ( �f
f ) = σ (f ).
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By (.), (.), and (.) we see that

m
(

r,

�f
f

)
= m

(
r,

f
�f

)
≤ m(r, f ) + m

(
r,


�f

)
= S(r, f ) ≤ S

(
r,

�f
f

)
.

Thus,

N
(

r,

�f
f

)
= T

(
r,

�f
f

)
– m

(
r,


�f
f

)
= T

(
r,

�f
f

)
+ S

(
r,

�f
f

)

or

N
(

r,

�f
f

)
=

(
 + o()

)
T

(
r,

�f
f

)
, r /∈ E, (.)

where E ⊂ (,∞) is a set of finite logarithmic measure.
Applying Lemmas . and . to (.), we obtain

λ

(
�f
f

)
= lim

r→∞

log N(r, 
�f
f

)

log r
= lim

r→∞
r /∈E

log N(r, 
�f
f

)

log r

= lim
r→∞
r /∈E

log( + o())T(r, �f
f )

log r

= lim
r→∞

log T(r, �f
f )

log r
= σ

(
�f
f

)
.

So, λ( �f
f ) = σ ( �f

f ) = σ (f ).
(iii) From (.) we see that

T(r,�f ) = T(r, f ) + S(r, f ). �
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