
Wang and Wang Advances in Difference Equations  (2016) 2016:325 
DOI 10.1186/s13662-016-1051-8

R E S E A R C H Open Access

Integro-differential fractional boundary
value problem on an unbounded domain
Dong Wang and Guotao Wang*

*Correspondence:
wgt2512@163.com
School of Mathematics and
Computer Science, Shanxi Normal
University, Linfen, Shanxi 041004,
People’s Republic of China

Abstract
This paper is concerned with the existence of solutions for nonlinear fractional
differential equations of Volterra type with nonlocal fractional integro-differential
boundary conditions on an infinite interval. The results are obtained by using the
Altman fixed point theorem. An example is presented in order to illustrate the main
results.
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1 Introduction
The study of fractional calculus is gaining more and more attention. Compared with clas-
sical integer-order models, fractional-order models can describe reality more accurately,
which has been shown recently in a variety of fields such as physics, chemistry, biology,
economics, signal and image processing, control, porous media, aerodynamics, and so on
[–].

In addition, scientists have found that many mathematics models can be reduced to the
nonlocal problems with integral boundary conditions, such as the models on underground
water flow, chemical engineering, plasma physics, and thermo-elasticity. For more infor-
mation, see the excellent surveys by Corduneanu [] and Agarwal and O’Regan [] and
some recent papers [–].

In the past decades, nonlocal boundary value problems of fractional differential equa-
tions on finite/infinite interval have been extensively investigated; see, for instance, [–
]. However, to the best of our knowledge, very little is known regarding integro-
differential fractional boundary value problem on an infinite interval.

Based on the reason mentioned, in this paper, we consider the following integro-
differential fractional boundary value problem for nonlinear fractional differential equa-
tions of Volterra type on an infinite interval

{
Dαu(t) + f (t, u(t), Tu(t)) = ,  < α ≤ ,
u() = u′() = u′′() = , Dα–u(∞) = ξ Iβu(η), β > ,

(.)
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where t ∈ J = [, +∞), f ∈ C[J × R × R,R], ξ ∈ R, η ∈ J , Dα is the Riemann-Liouville
fractional derivative of order α, Iβ is the Riemann-Liouville fractional integral of order β ,
and (Tu)(t) =

∫ t
 k(t, s)u(s) ds with k(t, s) ∈ C[D,R], D = {(t, s) ∈ R

 |  ≤ s ≤ t}.
Define the space

X =
{

u ∈ C(J ,R) : sup
t∈J

|u(t)|
 + tα– < +∞

}

equipped with the norm

‖u‖X = sup
t∈J

|u(t)|
 + tα– .

It is obvious that X is a Banach space.

2 Preliminaries
For the convenience of the reader, in this section, we first present some useful definitions
and theorems.

Definition . ([]) The Riemann-Liouville fractional derivative of order δ for a contin-
uous function f is defined by

Dδf (t) =


�(n – δ)

(
d
dt

)n ∫ t


(t – s)n–δ–f (s) ds, n = [δ] + ,

provided that the right-hand side is pointwise defined on (,∞).

Definition . ([]) The Riemann-Liouville fractional integral of order δ for a function f
is defined as

Iδf (t) =


�(δ)

∫ t


(t – s)δ–f (s) ds, δ > ,

provided that such an integral exists.

Theorem . (Altman theorem []) Let � be an open bounded subset of a Banach space
E with  ∈ �, and T : � → E be a completely continuous operator. Then T has a fixed point
in �, provided that

‖Tx – x‖ ≥ ‖Tx‖ – ‖x‖, ∀x ∈ ∂�.

Theorem . ([]) Let U ⊂ X be a bounded set. Then U is relatively compact in X if the
following conditions hold:

(i) for any u(t) ∈ U , u(t)
+tα– is equicontinuous on any compact interval of J ;

(ii) for any ε > , there exists a constant T = T(ε) >  such that

∣∣∣∣ u(t)
 + tα–


–

u(t)
 + tα–



∣∣∣∣ < ε

for any t, t ≥ T and u ∈ U .
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Before proving our main result, we list the following assumptions:

(H) ξ ≥ , �(α + β) > ξηα+β–.
(H) There exists a constant k∗ such that

k∗ = sup
t∈J

∫ t



∣∣k(t, s)
∣∣( + sα–)ds < ∞.

(H) There exist nonnegative functions a(t), b(t), c(t) defined on [,∞) and constants
p, q ≥  such that

∣∣f (t, u, v)
∣∣ ≤ a(t) + b(t)|u|p + c(t)|v|q

and
∫ +∞


a(t) dt = a∗ < +∞,

∫ +∞


b(t)

(
 + tα–)p dt = b∗ < +∞,

∫ +∞


c(t) dt = c∗ < +∞.

3 Related lemmas
Firstly, we give an explicit expression of the Green’s function related to the associated linear
problem.

Lemma . Let h ∈ C([, +∞)) with
∫ ∞

 h(s) ds < ∞. If �(α + β) �= ξηα+β–, then the frac-
tional integral boundary value problem

{
Dαu(t) + h(t) = ,
u() = u′() = u′′() = , Dα–u(∞) = ξ Iβu(η), β > ,

(.)

has a unique solution

u(t) =
∫ +∞


G(t, s)h(s) ds,

where

G(t, s) =

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[�(α + β) – ξ (η – s)α+β–]tα–

– [�(α + β) – ξηα+β–](t – s)α–, s ≤ t, s ≤ η,
[�(α + β) – ξ (η – s)α+β–]tα–,  ≤ t ≤ s ≤ η,
�(α + β)[tα– – (t – s)α–] + ξηα+β–(t – s)α–,  ≤ η ≤ s ≤ t,
�(α + β)tα–, s ≥ t, s ≥ η,

(.)

and

� = �(α)
[
�(α + β) – ξηα+β–].
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Proof By (.) we have

u(t) =
∫ +∞


G(t, s)h(s) ds

= –
∫ t



(t – s)α–

�(α)
h(s) ds +

�(α + β)tα–

�(α)[�(α + β) – ξηα+β–]

[∫ ∞


h(s) ds

–
∫ η



ξ (η – s)α+β–

�(α + β)
h(s) ds

]
. (.)

Then, it is easy to get that u() = u′() = u′′() = .
By (.) we have

Dα–u(t) = Dα–
(∫ +∞


G(t, s)h(s) ds

)

= Dα–
(

–
∫ t



(t – s)α–

�(α)
h(s) ds +

�(α + β)tα–

�(α)[�(α + β) – ξηα+β–]

[∫ ∞


h(s) ds

–
∫ η



ξ (η – s)α+β–

�(α + β)
h(s) ds

])

= –
∫ t


h(s) ds +

�(α + β)
[�(α + β) – ξηα+β–]

[∫ ∞


h(s) ds

–
∫ η



ξ (η – s)α+β–

�(α + β)
h(s) ds

]
(.)

and

Iβu(t) = Iβ

(∫ +∞


G(t, s)h(s) ds

)

= Iβ

(
–

∫ t



(t – s)α–

�(α)
h(s) ds +

�(α + β)tα–

�(α)[�(α + β) – ξηα+β–]

[∫ ∞


h(s) ds

–
∫ η



ξ (η – s)α+β–

�(α + β)
h(s) ds

])

= –
∫ t



(t – s)α+β–

�(α + β)
h(s) ds +

tα+β–

[�(α + β) – ξηα+β–]

[∫ ∞


h(s) ds

–
∫ η



ξ (η – s)α+β–

�(α + β)
h(s) ds

]
. (.)

Thus, we can get the relation Dα–u(∞) = ξ Iβu(η).
Finally, applying (.), by a simple deduction it follows

Dαu(t) = Dα

(
–

∫ t



(t – s)α–

�(α)
h(s) ds +

�(α + β)tα–

�(α)[�(α + β) – ξηα+β–]

[∫ ∞


h(s) ds

–
∫ η



ξ (η – s)α+β–

�(α + β)
h(s) ds

])

= –h(t). (.)

Thus, the proof is complete. �



Wang and Wang Advances in Difference Equations  (2016) 2016:325 Page 5 of 11

Through a careful computation, it is easy to obtain the following remark, so we omit its
proof.

Remark . For (s, t) ∈ J × J , if condition (H) holds, then we have

 ≤ G(t, s)
 + tα– ≤ �(α + β)

�(α)[�(α + β) – ξηα+β–]
:= L. (.)

Lemma . If conditions (H) and (H) are satisfied, then we have

∫ +∞



∣∣f (s, u(s), Tu(s)
)∣∣ds ≤ a∗ + b∗‖u‖p

X + c∗(k∗)q‖u‖q
X , ∀u ∈ X. (.)

Proof For all u ∈ X, by conditions (H) and (H) we have

∫ +∞



∣∣f (s, u(s), Tu(s)
)∣∣ds

≤
∫ +∞



[
a(s) + b(s)

∣∣u(s)
∣∣p + c(s)

∣∣Tu(s)
∣∣q]ds

≤ a∗ +
∫ +∞


b(s)

(
 + sα–)p |u(s)|p

( + sα–)p ds +
∫ +∞


c(s)

[∫ s



∣∣K(s, r)u(r)
∣∣dr

]q

ds

≤ a∗ + b∗‖u‖p
X +

∫ +∞


c(s)

[∫ s



∣∣K(s, r)
∣∣( + rα–) |u(r)|

( + rα–)
dr

]q

ds

≤ a∗ + b∗‖u‖p
X +

∫ +∞


c(s)

(
k∗)q‖u‖q

X ds

≤ a∗ + b∗‖u‖p
X + c∗(k∗)q‖u‖q

X . (.)
�

4 Main results
Define the operator Q by

Qu(t) =
∫ +∞


G(t, s)f

(
s, u(s), Tu(s)

)
ds. (.)

Applying Lemma . with h(t) = f (t, u(t), Tu(t)), problem (.) reduces to a fixed point
problem u = Qu, where Q is given by (.). Thus, problem (.) has a solution if and only
if the operator Q has a fixed point.

Lemma . Assume that conditions (H)-(H) are satisfied. Then Q : X → X is completely
continuous.

Proof Firstly, the operator Q : X → X is relatively compact.
() Let � be any bounded subset of X. Then there exists a constant M >  such that

‖u‖X ≤ M. By Lemma . and Remark . we have

‖Qu‖X = sup
t∈J

∫ ∞



G(t, s)
 + tα–

∣∣f (s, u(s), Tu(s)
)∣∣ds

≤ L
∫ +∞



∣∣f (s, u(s), Tu(s)
)∣∣ds
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≤ L
[
a∗ + b∗‖u‖p

X + c∗(k∗)q‖u‖q
X
]

≤ L
[
a∗ + Mpb∗ + Mqc∗(k∗)q], (.)

which implies that T� is uniformly bounded.
() We prove that Q is equicontinuous.
(I) Let I ⊂ J be any compact interval. Let � be any bounded subset of X. For all t, t ∈ I ,

t > t, and u ∈ �, we have
∣∣∣∣ Qu(t)
 + tα–


–

Qu(t)
 + tα–



∣∣∣∣ =
∣∣∣∣
∫ ∞



(
G(t, s)
 + tα–


–

G(t, s)
 + tα–



)
f
(
s, u(s), Tu(s)

)
ds

∣∣∣∣
≤

∫ ∞



∣∣∣∣ G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣∣∣∣∣∣f (s, u(s), Tu(s)
)∣∣ds. (.)

Since G(t, s) ∈ C(J × J), G(t,s)
+tα– is uniformly continuous on any compact set I × I . Note

that this function only depends on t for s ≥ t, so it is uniformly continuous on I × (J\I).
Thus, for all s ∈ J and t, t ∈ I , we have

∀ε > ,∃δ(ε) >  such that if |t – t| < δ, then
∣∣∣∣ G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣∣∣∣ < ε. (.)

By Lemma ., for all u ∈ �, we have

∫ ∞



∣∣f (s, u(s), Tu(s)
)∣∣ds < ∞, ∀u ∈ �. (.)

This, together with (.) and (.), implies that Q� is equicontinuous on I .
(II) We have

lim
t→∞

G(t, s)
 + tα– =


�(α)[�(α + β) – ξηα+β–]

{
ξηα+β– – ξ (η – s)α+β–,  ≤ s ≤ η,
ξηα+β–, η ≤ s.

(.)

From this it is easy to verify that, for any ε > , there exists a constant T ′ = T ′(ε) >  such
that ∣∣∣∣ G(t, s)

 + tα–


–
G(t, s)
 + tα–



∣∣∣∣ < ε

for any t, t ≥ T ′ and s ∈ J . Combining this with Lemma . and (.), we get that the
same property holds for Q�, uniformly on u ∈ �. Hence, Q is equiconvergent at ∞.

Therefore, by Theorem . we know that Q is relatively compact on J .
Next, we show that Q : X → X is continuous.
Let un, u ∈ X be such that un → u (n → ∞). Then, ‖un‖X < ∞ and ‖u‖X < ∞. By

Lemma . we have∫ ∞



G(t, s)
 + tα– f

(
s, un(s), Tun(s)

)
ds ≤ L

∫ ∞



∣∣f (s, un(s), Tun(s)
)∣∣ds

≤ L
[
a∗ + b∗‖un‖p

X + c∗(k∗)q‖un‖q
X
]

< ∞, (.)

where L is defined in (.).
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By the Lebesgue dominated convergence theorem and continuity of f we get

lim
n→∞

∫ ∞



G(t, s)
 + tα– f

(
s, un(s), Tun(s)

)
ds =

∫ ∞



G(t, s)
 + tα– f

(
s, u(s), Tu(s)

)
ds.

Hence, we have

‖Qun – Qu‖X = sup
t∈J

∫ ∞



G(t, s)
 + tα–

∣∣f (s, un(s), Tun(s)
)

– f
(
s, u(s), Tu(s)

)∣∣ds

→  (n → ∞), (.)

which shows that Q is continuous. Therefore, Q : X → X is completely continuous. This
completes the proof. �

Next, we give several existence results for integro-differential fractional boundary value
problem (.).

According to the range of p and q, we have the following theorems.

Theorem . Assume that conditions (H)-(H) are satisfied. If  ≤ p, q < , then problem
(.) has at least one solution.

Proof Let us choose

R ≥ max
{

La∗,
(
Lb∗) 

–p ,
(
Lc∗(k∗)q) 

–q
}

and define U = {u ∈ X,‖u‖X < R}. In view of Theorem ., we just need to show that

‖Qu‖X ≤ ‖u‖X , ∀u ∈ ∂U . (.)

For any u ∈ ∂U , by Lemma . and Remark . we have

‖Qu‖X = sup
t∈J

∫ ∞



G(t, s)
 + tα–

∣∣f (s, u(s), Tu(s)
)∣∣ds

≤ L
∫ +∞



∣∣f (s, u(s), Tu(s)
)∣∣ds

≤ L
[
a∗ + b∗‖u‖p

X + c∗(k∗)q‖u‖q
X
]

≤ L
[
a∗ + Rpb∗ + Rqc∗(k∗)q]

≤ L
(

R
L

+
R
L

+
R
L

)

= R. (.)

Thus, QU ⊂ U and ‖Qu‖X ≤ ‖u‖X for all u ∈ ∂U , which completes the proof. �

Theorem . Assume that conditions (H)-(H) are satisfied. Then problem (.) has at
least one solution, provided that one of the following eight conditions holds:

Case . p = q = , L(b∗ + c∗k∗) < ;
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Case .  ≤ p < , q = , Lc∗k∗ < ;
Case . p > , q = , La∗( – Lc∗k∗)– ≤ (Lb∗)


–p , Lc∗k∗ < ;

Case . p = ,  ≤ q < , Lb∗ < ;
Case . p = , q > , La∗( – Lb∗)– ≤ (Lc∗(k∗)q)


–q , Lb∗ < ;

Case . p, q > , La∗ ≤ min{(Lb∗)


–p , (Lc∗(k∗)q)


–q };
Case .  ≤ p < , q > , max{La∗, (Lb∗)


–p } ≤ (Lc∗(k∗)q)


–q ;

Case . p > ,  ≤ q < , max{La∗, (Lc∗(k∗)q)


–q } ≤ (Lb∗)


–p ;

here L is defined in (.).

Proof The proofs of Cases - are similar, so we only give the proof of Case .
For p = q = , let us take

R ≥ La∗

 – L(b∗ + c∗k∗)

and define U = {u ∈ X,‖u‖X < R}.
For any u ∈ ∂U , by Lemma . and Remark . we have

‖Qu‖X = sup
t∈J

∫ ∞



G(t, s)
 + tα–

∣∣f (s, u(s), Tu(s)
)∣∣ds

≤ L
∫ +∞



∣∣f (s, u(s), Tu(s)
)∣∣ds

≤ L
[
a∗ + b∗‖u‖X + c∗k∗‖u‖X

]
≤ L

[
a∗ +

(
b∗ + c∗k∗)R

]
≤ R. (.)

Thus, QU ⊂ U and ‖Qu‖X ≤ ‖u‖X for all u ∈ ∂U . In view of Theorem ., we get that
problem (.) has at least one solution u(t) satisfying

 ≤ |u(t)|
 + tα– ≤ R for t ∈ J .

The proofs of Cases - are similar to that of Theorem ., so we omit it. This completes
the proof. �

5 Example
Example . Take α = . and β = .. We consider the following integro-differential frac-
tional boundary value problem for nonlinear fractional differential equations of Volterra
type on an unbounded domain:

{
D.u(t) + ln(+t)

(+t) + e–t |u(t)|p
(+t.)p + 

(+t) | ∫ t


e–t cos(t–s)
(+s.) u(s) ds|q = , t ∈ [, +∞),

u() = u′() = u′′() = , D.u(∞) = ξ I.u(η),
(.)

where f (t, u, v) = ln(+t)
(+t) + e–t |u|p

(+t.)p + 
(+t) |v|q,  ≤ p, q ≤ , and ξ , η satisfy  ≤ ξη < . For

example, we take ξ = , η = .
Firstly, it is obvious that �(α + β) =  and ξηα+β– = ξη = . Then (H) holds.
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Secondly, we have

∣∣f (t, u, v)
∣∣ =

ln( + t)
( + t) +

e–t|u|p
( + t.)p +


( + t) |v|q

≤ t
( + t) +

e–t|u|p
( + t.)p +


( + t) |v|q.

Take a(t) = t
(+t) , b(t) = e–t

(+t.)p , c(t) = 
(+t) . By a direct computation we can obtain

a∗ =
∫ +∞


a(t) dt =




< +∞,

b∗ =
∫ +∞


b(t)

(
 + tα–)p dt =  < +∞,

c∗ =
∫ +∞


c(t) dt =  < +∞,

which implies that (H) holds.
Noting that k(t, s) = e–t cos(t–s)

(+s.) , we have

k∗ = sup
t∈J

∫ t



∣∣k(t, s)
∣∣( + sα–)ds ≤ .

Thus, conditions (H)-(H) hold.
Therefore, for the case  ≤ p, q < , by Theorem . the nonlinear fractional differential

equation (.) has at least one solution.
In addition, since L = �(α+β)

�(α)[�(α+β)–ξηα+β–] = 

√

π
, Cases , , and  of Theorem . hold,

Thus, all conditions of Theorem . are satisfied.
To sum up our arguments, for  ≤ p, q ≤ , the integro-differential fractional boundary

value problem (.) has at least one solution.
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