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1 Introduction
The classical Frobenius-Euler polynomials Hn(x|λ) are usually defined by the generating
function:

 – λ

et – λ
ext =

∞∑

n=

Hn(x|λ)
tn

n!
(|t| < π if λ = –; |t| < log(/λ) otherwise

)
. (.)

In particular, the case x =  in (.) is called the classical Frobenius-Euler numbers given
by Hn(λ) = Hn(|λ). It is worthy of mentioning that the classical Frobenius-Euler poly-
nomials and numbers was firstly introduced and studied in great detail by Frobenius [].
We also refer to [–] for some interesting properties on the classical Frobenius-Euler
polynomials and numbers.

The widely investigated analogs of the classical Frobenius-Euler polynomials are the
classical Bernoulli polynomials Bn(x) and the classical Euler polynomials En(x), which are
usually defined by the generating functions (see, e.g., [–]):

text
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∞∑

n=

Bn(x)
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n!
(|t| < π ),

ext

et + 
=
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n=

En(x)
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n!
(|t| < π

)
.

(.)

The rational numbers Bn and integers En given by

Bn = Bn(), En = nEn(/), (.)
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are called the classical Bernoulli numbers and the classical Euler numbers, respectively.
Obviously, the case λ = – in (.) gives the classical Euler polynomials. In fact, the classical
Bernoulli polynomials can also be expressed by the classical Frobenius-Euler numbers, as
follows:

mn–
m–∑

i=

λiBn

(
i

m

)
=

n
λ – 

Hn–

(

λ

)
(m, n ≥ ;λ �= ). (.)

In the year , Agoh and Dilcher [] made use of some connections between the
classical Bernoulli numbers and the Stirling numbers of the second kind to extend Euler’s
well-known recurrence formula on the classical Bernoulli numbers:

n∑

i=

(
n
i

)
BiBn–i = –nBn– – (n – )Bn (n ≥ ), (.)

and they obtained a convolution identity on the classical Bernoulli numbers, as follows:

n∑

i=

(
n
i

)
Bm+n–iBk+i

= –
k! · m! · (n + δ(k, m)(k + m + ))

(k + m + )!
Bk+m+n

+
k+m∑

i=

(–)i Bk+m+–i

k + m +  – i

{
(–)k

(
k + 

i

)(
k +  – i

k + 
n –

i
k + 

m
)

+ (–)m
(

m + 
i

)(
m +  – i

m + 
n –

i
m + 

k
)}

Bn+i–, (.)

where k, m, n are non-negative integers, δ(k, m) =  when k =  or m = , and δ(k, m) = 
otherwise. Interest in (.) stems from its good value distributions, some authors reproved
the above formula by applying different methods; see, for example [–].

Motivated and inspired by the work of the above authors, in this paper we establish some
similar convolution identities for the classical Frobenius-Euler polynomials to (.) by ap-
plying the generating function methods and summation transform techniques developed
in []. Accordingly we present some special cases as well as immediate consequences of
the main results.

This paper is organized as follows. In the second section, we state some new convolution
identities for the classical Frobenius-Euler polynomials, by virtue of which some known
results including the classical ones due to Carlitz [] are obtained as special cases. In the
third and fourth sections are contributions to the proofs of the new convolution identities
for the classical Frobenius-Euler polynomials.

2 The statement of results
In this section, we shall present some new convolution identities for the classical Fro-
benius-Euler polynomials, and show some illustrative special cases as well as immediate
consequences of the main results. We first state the following results.
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Theorem . Let m, n, k be non-negative integers. Then, for λ �= , , μ �= ,  and λμ �= ,

n∑

i=

(
n
i

)
Hm+n–i

(
y
∣∣∣


λμ

)
Hk+i

(
x
∣∣∣


μ

)

=
λμ – 
λ – 

k∑

i=

(
k
i

)
(–)k–iHm+k–i

(
y
∣∣∣


λ

)
Hn+i

(
x + y

∣∣∣

μ

)

–
λ(μ – )

λ – 

m∑

i=

(
m
i

)
(–)m–iHm+k–i(x|λ)Hn+i

(
x + y

∣∣∣


λμ

)
. (.)

It follows that we give some special cases of Theorem .. Since the classical Frobenius-
Euler polynomials obey the symmetric distributions (see, e.g., [])

Hn( – x|λ) = (–)nHn

(
x
∣∣∣


λ

)
(n ≥ ;λ �= , ), (.)

by setting x + y =  – z in Theorem ., we get the following result.

Corollary . Let m, n, k be non-negative integers. Then, for λ �= , , μ �= , , λμ �= , and
x + y + z = ,

(–)n(λ – )
n∑

i=

(
n
i

)
Hm+n–i

(
y
∣∣∣


λμ

)
Hk+i

(
x
∣∣∣


μ

)

+ (–)k( – λμ)
k∑

i=

(
k
i

)
Hm+k–i

(
y
∣∣∣


λ

)
Hn+i(z|μ)

+ (–)mλ(μ – )
m∑

i=

(
m
i

)
Hm+k–i(x|λ)Hn+i(z|λμ) = . (.)

If we take k =  in Theorem ., we get for non-negative integers m, n, and λ �= , ,
μ �= , , λμ �= ,

Hm

(
y
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λ

)
Hn

(
x + y

∣∣∣

μ

)
=

λ(μ – )
λμ – 
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i

)
(–)m–iHm–i(x|λ)Hn+i

(
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λμ

)

+
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n∑
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(
n
i

)
Hm+i

(
y
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)
Hn–i

(
x
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μ

)
. (.)

By substituting x for y, y for x + y, λ for /λ, and μ for /μ in (.), we have

Hm(x|λ)Hn(y|μ) =
μ – 
λμ – 

m∑

i=

(
m
i

)
(–)m–iHm–i

(
y – x

∣∣∣

λ

)
Hn+i(y|λμ)

+
μ(λ – )
λμ – 

n∑

i=

(
n
i

)
Hm+i(x|λμ)Hn–i(y – x|μ). (.)
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Since the classical Frobenius-Euler polynomials satisfy the difference equation (see, e.g.,
[])

Hn( + x|λ) – λHn(x|λ) = ( – λ)xn (n ≥ ;λ �= ), (.)

from (.) and (.), we obtain

(–)nHn

(
x
∣∣∣


λ

)
= ( – λ)(–x)n + λHn(–x|λ) (n ≥ ;λ �= , ). (.)

Hence, by applying (.) to (.), we get the following formula for the products of the
classical Frobenius-Euler polynomials.

Corollary . Let m, n be non-negative integers. Then, for λ �= , μ �= , and λμ �= ,

Hm(x|λ)Hn(y|μ)

=
λ(μ – )
λμ – 

m∑

i=

(
m
i

)
Hm–i(x – y|λ)Hn+i(y|λμ)

+
μ(λ – )
λμ – 

n∑

i=

(
n
i

)
Hn–i(y – x|μ)Hm+i(x|λμ)

–
(λ – )(μ – )

λμ – 

m∑

i=

(
m
i

)
(x – y)m–iHn+i(y|λμ). (.)

In particular, the case x = y in Corollary . gives for non-negative integers m, n and
λ �= , μ �= , λμ �= ,

Hm(x|λ)Hn(x|μ)

=
λ(μ – )
λμ – 

m∑

i=

(
m
i

)
Hi(λ)Hm+n–i(x|λμ)

+
μ(λ – )
λμ – 

n∑

i=

(
n
i

)
Hi(μ)Hm+n–i(x|λμ)

–
(λ – )(μ – )

λμ – 
Hm+n(x|λμ), (.)

which was firstly discovered by Carlitz []. Corollary . can also be found in [], The-
orem ., where it was used to give, for non-negative integer n and λ �= ±,

n∑

i=

Hi(x|λ)Hn–i(x|λ)

=
λ

λ + 

n∑

i=

(
n + 

i

)
Hn–i(λ)Hi

(
x|λ) –

λ – 
λ + 

(n + )Hn
(
x|λ), (.)
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and for positive integer n ≥  and λ �= ±,

n–∑

i=

Hi(x|λ)Hn–i(x|λ)
i(n – i)

=
λ

λ + 
· 

n

n–∑

i=

(
n
i

)
(Hn– – Hi–)Hi(λ)Hn–i

(
x|λ) + Hn–

Hn(x|λ)
n

, (.)

where Hn is the Harmonic numbers given by

H =  and Hn =
n∑

i=


i

=  +



+ · · · +

n

(n ≥ ). (.)

Equations (.) and (.) are very analogous to the following convolution identities on
the classical Bernoulli polynomials due to Kim et al. [], namely

n∑

i=

Bi(x)Bn–i(x) =


n + 

n–∑

i=

(
n + 

i

)
Bn–iBi(x) + (n + )Bn(x) (n ≥ ), (.)

and

n–∑

i=

Bi(x)Bn–i(x)
i(n – i)

=

n

n–∑

i=

(
n
i

)
Bn–iBi(x)

n – i
+


n

Hn–Bn(x) (n ≥ ). (.)

The case x =  in (.) and (.) will lead to the famous Miki identity and the famous
Matiyasevich identity on the classical Bernoulli numbers, respectively. For some related
results of (.), (.), (.), and (.), one may consult [, –].

Theorem . Let m, n, k be non-negative integers. Then, for λ �= , ,

n∑

i=

(
n
i

)
βm+n–i(x)Hk+i(y|λ)

=


λ – 

k∑

i=

(
k
i

)
(–)k–iHm+k–i

(
x
∣∣∣


λ

)
Hn+i(x + y|λ)

+
m∑

i=

(
m
i

)
(–)m–iHm+k–i(y|λ)βn+i(x + y)

– (–)m m! · n!
(m + n + )!

Hm+n+k+(y|λ), (.)

where βn(x) is denoted by βn(x) = Bn+(x)/(n + ) for non-negative integer n.

It is clear that the classical Bernoulli polynomials satisfy the symmetric distributions
(see, e.g., []):

Bn( – x) = (–)nBn(x) (n ≥ ), (.)
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which means

βn( – x) = (–)n+βn(x) (n ≥ ). (.)

Hence, by setting x + y =  – z in Theorem ., in view of (.) and (.), we get the
following result.

Corollary . Let m, n, k be non-negative integers. Then, for λ �= ,  and x + y + z = ,

(–)n
n∑

i=

(
n
i

)
βm+n–i(x)Hk+i(y|λ) + (–)k 

 – λ

k∑

i=

(
k
i

)
Hm+k–i

(
x
∣∣∣


λ

)
Hn+i

(
z
∣∣∣


λ

)

+ (–)m
m∑

i=

(
m
i

)
Hm+k–i(y|λ)βn+i(z)

= (–)m+n+ m! · n!
(m + n + )!

Hm+n+k+(y|λ), (.)

where βn(x) is denoted by βn(x) = Bn+(x)/(n + ) for non-negative integer n.

If we take λ = – in Corollary ., we obtain the following convolution identity for the
classical Euler polynomials.

Corollary . Let m, n, k be non-negative integers. Then, for x + y + z = ,

(–)n
n∑

i=

(
n
i

)
βm+n–i(x)Ek+i(y) + (–)k 



k∑

i=

(
k
i

)
Em+k–i(x)En+i(z)

+ (–)m
m∑

i=

(
m
i

)
Em+k–i(y)βn+i(z)

= (–)m+n+ m! · n!
(m + n + )!

Em+n+k+(y), (.)

where βn(x) is denoted by βn(x) = Bn+(x)/(n + ) for non-negative integer n.

If we substitute y – x for y in Theorem ., we get for non-negative integers m, n, k and
λ �= , ,

n∑

i=

(
n
i

)
βm+n–i(x)Hk+i(y – x|λ)

=


λ – 

k∑

i=

(
k
i

)
(–)k–iHm+k–i

(
x
∣∣∣


λ

)
Hn+i(y|λ)

+
m∑

i=

(
m
i

)
(–)m–iHm+k–i(y – x|λ)βn+i(y)

– (–)m m! · n!
(m + n + )!

Hm+n+k+(y – x|λ). (.)
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By setting m =  in (.), we get for non-negative integers n, k and λ �= , ,

βn(y)Hk(y – x|λ)

=
n∑

i=

(
n
i

)
βn–i(x)Hk+i(y – x|λ)

–


λ – 

k∑

i=

(
k
i

)
(–)k–iHk–i

(
x
∣∣∣


λ

)
Hn+i(y|λ) +


n + 

Hn+k+(y – x|λ). (.)

Substituting x for y, x – y for x, m for n, and n for k in (.) gives

βm(x)Hn(y|λ)

=
m∑

i=

(
m
i

)
βm–i(x – y)Hn+i(y|λ)

–


λ – 

n∑

i=

(
n
i

)
(–)n–iHn–i

(
x – y

∣∣∣

λ

)
Hm+i(x|λ) +


m + 

Hm+n+(y|λ). (.)

It follows from (.) and (.) that, for non-negative integers m, n and λ �= ,

Bm+(x)Hn(y|λ) =
m+∑

i=

(
m + 

i

)
Bm+–i(x – y)Hn+i(y|λ)

–
λ

λ – 
(m + )

n∑

i=

(
n
i

)
Hn–i(y – x|λ)Hm+i(x|λ)

+ (m + )
n∑

i=

(
n
i

)
(y – x)n–iHm+i(x|λ). (.)

Notice that, for non-negative integers m, n (see, e.g., [], Theorem .),

m∑

i=

(
m
i

)
xm–ifn+i(y) =

n∑

i=

(
n
i

)
(–x)n–ifm+i(x + y), (.)

where fn(x) is a sequence of polynomials given for formal power series F(t) by

∞∑

n=

fn(x)
tn

n!
= F(t)e(x–/)t . (.)

If we take F(t) = ( – λ)et//(et – λ) in (.) and then substitute x – y for x in (.), we
obtain for non-negative integers m, n and λ �= ,

m∑

i=

(
m
i

)
(x – y)m–iHn+i(y|λ) =

n∑

i=

(
n
i

)
(y – x)n–iHm+i(x|λ). (.)

Thus, by applying (.) to (.), we get the following formula for the products of the
classical Bernoulli and Frobenius-Euler polynomials.
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Corollary . Let m, n non-negative integers. Then, for λ �= ,

Bm+(x)Hn(y|λ) =
m+∑

i=

(
m + 

i

)
Bm+–i(x – y)Hn+i(y|λ)

–
λ

λ – 
(m + )

n∑

i=

(
n
i

)
Hn–i(y – x|λ)Hm+i(x|λ)

+ (m + )
m∑

i=

(
m
i

)
(x – y)m–iHn+i(y|λ). (.)

If we take k =  in (.) then, for non-negative integers m, n and λ �= , ,

Hm

(
x
∣∣∣


λ

)
Hn(y|λ) = –(λ – )

m∑

i=

(
m
i

)
(–)m–iHm–i(y – x|λ)βn+i(y)

+ (λ – )
n∑

i=

(
n
i

)
βm+i(x)Hn–i(y – x|λ)

+ (λ – )
(–)mm! · n!
(m + n + )!

Hm+n+(y – x|λ), (.)

which together with (.) yields the following result.

Corollary . Let m, n be non-negative integers. Then, λ �= , ,

Hm

(
x
∣∣∣


λ

)
Hn(y|λ)

=
(


λ

– 
) m∑

i=

(
m
i

)
Hm–i

(
x – y

∣∣∣

λ

)
Bn+i+(y)
n + i + 

+ (λ – )
n∑

i=

(
n
i

)
Hn–i(y – x|λ)

Bm+i+(x)
m + i + 

–
(λ – )

λ

m∑

i=

(
m
i

)
(x – y)m–i Bn+i+(y)

n + i + 

+ (λ – )
(–)mm! · n!
(m + n + )!

Hm+n+(y – x|λ). (.)

In particular, the case x = y in Corollary . gives that if λ �=  then, for positive integer
m and non-negative integer n,

Bm(x)Hn(x|λ)

=
m∑

i=

(
m
i

)
BiHm+n–i(x|λ)

–
λ

λ – 
m

n∑

i=

(
n
i

)
Hi(λ)Hm+n––i(x|λ) + mHm+n–(x|λ), (.)
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and if we set x = y and substitute m for n and n for m in Corollary . then, for positive
integers m, n and λ �= , ,

Hm(x|λ)Hn

(
x
∣∣∣


λ

)

= (λ – )
m∑

i=

(
m
i

)
Hi(λ)

Bm+n+–i(x)
m + n +  – i

+
(


λ

– 
) n∑

i=

(
n
i

)
Hi

(

λ

)
Bm+n+–i(x)

m + n +  – i

+ (–)n(λ – )
m! · n!

(m + n + )!
Hm+n+(λ). (.)

Equations (.) and (.) were firstly discovered by Carlitz [] who used them to give
the expressions of the products of the classical Bernoulli polynomials and the classical
Euler polynomials stated in Nielsen’s classical book []. For different proofs of Corollar-
ies . and ., see [] for details. For some related results on the products of the classical
Bernoulli and Euler polynomials, one can refer to [–].

3 The proof of Theorem 2.1
We first prove the following auxiliary result.

Lemma . Let m, n, k be non-negative integers. Then, for λ �= , , μ �= , , and λμ �= ,

k∑

j=

(
k
j

) n∑

i=

(
n
i

)
Hi+j

(
x
∣∣∣


μ

)
Hm+n+k–i–j

(
y
∣∣∣


λμ

)

=
λμ – 
λ – 

Hm

(
y
∣∣∣


λ

)
Hn+k

(
x + y

∣∣∣

μ

)

–
λ(μ – )

λ – 

m∑

i=

(
m
i

)
(–)m–iHm–i(x|λ)Hn+k+i

(
x + y

∣∣∣


λμ

)
. (.)

Proof It is easily seen that


λeu – 

· 
μev – 

=
(

λeu

λeu – 
+


μev – 

)


λμeu+v – 
. (.)

If we multiply both sides of the above identity by (μ – )(λμ – )exv+y(u+v), we get

μ – 
μev – 

exv · λμ – 
λμeu+v – 

ey(u+v)

=
λμ – 
λ – 

· λ – 
λeu – 

eyu · μ – 
μev – 

e(x+y)v

–
λ(μ – )

λ – 
· λ – 
λeu – 

e(–x)u · λμ – 
λμeu+v – 

e(x+y)(u+v). (.)

By substituting /λ for λ in (.), we have

λ – 
λeu – 

exu =
∞∑

m=

Hm

(
x
∣∣∣


λ

)
um

m!
. (.)
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More generally, by the Taylor theorem, we discover

λ – 
λeu+v – 

ex(u+v) =
∞∑

m=

∞∑

n=

Hm+n

(
x
∣∣∣


λ

)
um

m!
· vn

n!
. (.)

Applying (.) and (.) to (.) gives
( ∞∑

n=

Hn

(
x
∣∣∣


μ

)
vn

n!

)( ∞∑

m=

∞∑

n=

Hm+n

(
y
∣∣∣


λμ

)
um

m!
· vn

n!

)

=
λμ – 
λ – 

( ∞∑

m=

Hm

(
y
∣∣∣


λ

)
um

m!

)( ∞∑

n=

Hn

(
x + y

∣∣∣

μ

)
vn

n!

)

–
λ(μ – )

λ – 

( ∞∑

m=

Hm

(
 – x

∣∣∣

λ

)
um

m!

)( ∞∑

m=

∞∑

n=

Hm+n

(
x + y

∣∣∣


λμ

)
um

m!
· vn

n!

)
. (.)

If we take k times the derivative for (.) with respect to v, in view of the Leibniz rule, we
obtain

k∑

j=

(
k
j

)( ∞∑

n=

Hn+j

(
x
∣∣∣


μ

)
vn

n!

)( ∞∑

m=

∞∑

n=

Hm+n+k–j

(
y
∣∣∣


λμ

)
um

m!
· vn

n!

)

=
λμ – 
λ – 

( ∞∑

m=

Hm

(
y
∣∣∣


λ

)
um

m!

)( ∞∑

n=

Hn+k

(
x + y

∣∣∣

μ

)
vn

n!

)

–
λ(μ – )

λ – 

( ∞∑

m=

Hm

(
 – x

∣∣∣

λ

)
um

m!

)

×
( ∞∑

m=

∞∑

n=

Hm+n+k

(
x + y

∣∣∣


λμ

)
um

m!
· vn

n!

)
, (.)

which together with the Cauchy product and (.) yields

∞∑

m=

∞∑

n=

( k∑

j=

(
k
j

) n∑

i=

(
n
i

)
Hi+j

(
x
∣∣∣


μ

)
Hm+n+k–i–j

(
y
∣∣∣


λμ

))
um

m!
· vn

n!

=
∞∑

m=

∞∑

n=

(
λμ – 
λ – 

Hm

(
y
∣∣∣


λ

)
Hn+k

(
x + y

∣∣∣

μ

))
um

m!
· vn

n!

–
∞∑

m=

∞∑

n=

(
λ(μ – )

λ – 

m∑

i=

(
m
i

)
(–)m–iHm–i(x|λ)

× Hn+k+i

(
x + y

∣∣∣


λμ

))
um

m!
· vn

n!
. (.)

Thus, comparing the coefficients of um · vn/m! · n! in (.) gives the desired result. �

We now give the detailed proof of Theorem ..

Proof of Theorem . We shall use induction on k in Lemma . to prove Theorem ..
Clearly, Theorem . holds trivially when k =  in Lemma .. Now, we assume that The-
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orem . holds for all positive integers less than k. It follows from Lemma . that, for
non-negative integers m, n and positive integer k,

n∑

i=

(
n
i

)
Hm+n–i

(
y
∣∣∣


λμ

)
Hk+i

(
x
∣∣∣


μ

)

=
λμ – 
λ – 

Hm

(
y
∣∣∣


λ

)
Hn+k

(
x + y

∣∣∣

μ

)

–
λ(μ – )

λ – 

m+k∑

i=

(
m

i – k

)
(–)m+k–iHm+k–i(x|λ)Hn+i

(
x + y

∣∣∣


λμ

)

–
k–∑

j=

(
k
j

) n∑

i=

(
n
i

)
Hi+j

(
x
∣∣∣


μ

)
Hm+n+k–i–j

(
y
∣∣∣


λμ

)
. (.)

Since Theorem . holds for all positive integers less than k, we have

k–∑

j=

(
k
j

) n∑

i=

(
n
i

)
Hi+j

(
x
∣∣∣


μ

)
Hm+n+k–i–j

(
y
∣∣∣


λμ

)

=
λμ – 
λ – 

k–∑

i=

(–)iHm+k–i

(
y
∣∣∣


λ

)
Hn+i

(
x + y

∣∣∣

μ

) k–∑

j=

(–)j
(

k
j

)(
j
i

)

–
λ(μ – )

λ – 

m+k∑

i=

(–)m+k–iHm+k–i(x|λ)Hn+i

(
x + y

∣∣∣


λμ

)

×
k–∑

j=

(–)j
(

k
j

)(
m + k – j

i

)
. (.)

Notice that, for non-negative integers m, n, k, i,

k∑

j=

(–)j
(

k
j

)(
m + j

i

)
= (–)k

(
m

i – k

)
, (.)

by using induction on k. It follows from (.) that, for non-negative integers m, n, k, i with
k ≥ ,

k–∑

j=

(–)j
(

k
j

)(
j
i

)
= (–)k

(


i – k

)
– (–)k

(
k
i

)
(.)

and

k–∑

j=

(–)j
(

k
j

)(
m + k – j

i

)
=

(
m

i – k

)
– (–)k

(
m
i

)
. (.)

Thus, by applying (.) and (.) to (.) and combining with (.) we have the desired
result. This completes the proof of Theorem .. �
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4 The proof of Theorem 2.4
In a similar consideration to Theorem ., we firstly give the following result.

Lemma . Let m, n, k be non-negative integers. Then, for λ �= , ,

k∑

j=

(
k
j

) n∑

i=

(
n
i

)
Hi+j(y|λ)βm+n+k–i–j(x)

=


λ – 
Hm

(
x
∣∣∣


λ

)
Hn+k(x + y|λ) +

m∑

i=

(
m
i

)
(–)m–iHm–i(y|λ)βn+k+i(x + y)

– (–)m m! · (n + k)!
(m + n + k + )!

Hm+n+k+(y|λ). (.)

Proof By substituting /λ for μ in (.), we have


λeu – 

· 

λ

ev – 
=

λeu

λeu – 
· 

eu+v – 
+



λ

ev – 
· 

eu+v – 
. (.)

Multiplying both sides of the above identity by (λ – )(/λ – )exu+yv yields

λ – 
λeu – 

exu ·

λ

– 

λ

ev – 
eyv = λ

(

λ

– 
)

λ – 
λeu – 

e(+x–y)u
(

ey(u+v)

eu+v – 
–


u + v

+


u + v

)

+ (λ – )

λ

– 

λ

ev – 
e(y–x)v

(
ex(u+v)

eu+v – 
–


u + v

+


u + v

)
. (.)

It is clear from (.) that

exu

eu – 
–


u

=
∞∑

m=

βm(x)
um

m!
, (.)

which together with the Taylor theorem gives

ex(u+v)

eu+v – 
–


u + v

=
∞∑

m=

∞∑

n=

βm+n(x)
um

m!
· vn

n!
. (.)

By applying (.) and (.) to (.), with the help of (.), we get
( ∞∑

m=

Hm

(
x
∣∣∣


λ

)
um

m!

)( ∞∑

n=

Hn(y|λ)
vn

n!

)

= –(λ – )

( ∞∑

m=

(–)mHm(y – x|λ)
um

m!

)( ∞∑

m=

∞∑

n=

βm+n(y)
um

m!
· vn

n!

)

+ (λ – )

( ∞∑

n=

Hn(y – x|λ)
vn

n!

)( ∞∑

m=

∞∑

n=

βm+n(x)
um

m!
· vn

n!

)
+ M, (.)

where M is given by

M =
λ – 
u + v

( ∞∑

n=

Hn(y – x|λ)
vn

n!
–

∞∑

m=

(–)mHm(y – x|λ)
um

m!

)
. (.)
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Observe that

∞∑

m=

Hm(y – x|λ)
vm

m!
=

∞∑

m=

Hm(y – x|λ)
m!

(u + v – u)m, (.)

which together with the binomial theorem means

∞∑

m=

Hm(y – x|λ)
vm

m!

=
∞∑

m=

Hm(y – x|λ)
m!

m∑

k=

(
m
k

)
(u + v)k(–u)m–k +

∞∑

m=

(–)mHm(y – x|λ)
um

m!
. (.)

It follows from (.) and (.) that

M = (λ – )
∞∑

m=

Hm(y – x|λ)
m!

m∑

k=

(
m
k

)
(u + v)k–(–u)m–k

= (λ – )
∞∑

m=

Hm(y – x|λ)
m!

m–∑

k=

(–)m––k
(

m
k + 

) k∑

n=

(
k
n

)
um–(n+)vn. (.)

By changing the order of the summation in the right side of (.), we have

M = (λ – )
∞∑

n=

∞∑

m=n+

(–)m–Hm(y – x|λ)
m!

um–(n+)vn
m–∑

k=n

(–)k
(

m
k + 

)(
k
n

)
. (.)

Notice that, for non-negative integer m, n with m ≥ n + ,

m–∑

k=n

(–)k
(

m
k + 

)(
k
n

)
= (–)n, (.)

by using induction on m. Hence, applying (.) to (.) gives

M = (λ – )
∞∑

m=

∞∑

n=

(–)m m! · n!
(m + n + )!

Hm+n+(y – x|λ)
um

m!
· vn

n!
. (.)

By putting (.) to (.) and then taking k times the derivative with respect to v, we get

∞∑

m=

∞∑

n=

( k∑

j=

(
k
j

) n∑

i=

(
n
i

)
Hi+j(y – x|λ)βm+n+k–i–j(x)

)
um

m!
· vn

n!

=
∞∑

m=

∞∑

n=


λ – 

Hm

(
x
∣∣∣


λ

)
Hn+k(y|λ)

um

m!
· vn

n!

+
∞∑

m=

∞∑

n=

( m∑

i=

(
m
i

)
(–)m–iHm–i(y – x|λ)βn+k+i(y)

)
um

m!
· vn

n!

–
∞∑

m=

∞∑

n=

(–)m m! · (n + k)!
(m + n + k + )!

Hm+n+k+(y – x|λ)
um

m!
· vn

n!
. (.)
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Thus, replacing y by x + y and comparing the coefficients of um · vn/m! · n! in (.) gives
Lemma .. �

We next give the detailed proof of Theorem ..

Proof of Theorem . Obviously, Theorem . holds trivially when k =  in Lemma ..
Now, we assume Theorem . holds for all positive integers less than k. It follows from
Lemma . that, for non-negative integers m, n and positive integer k,

n∑

i=

(
n
i

)
βm+n–i(x)Hk+i(y|λ)

=


λ – 
Hm

(
x
∣∣∣


λ

)
Hn+k(x + y|λ)

+
m+k∑

i=

(
m

i – k

)
(–)m+k–iHm+k–i(y|λ)βn+i(x + y)

– (–)m m! · (n + k)!
(m + n + k + )!

Hm+n+k+(y|λ)

–
k–∑

j=

(
k
j

) n∑

i=

(
n
i

)
Hi+j(y|λ)βm+n+k–i–j(x). (.)

Since Theorem . holds for all positive integers less than k, we get

k–∑

j=

(
k
j

) n∑

i=

(
n
i

)
Hi+j(y|λ)βm+n+k–i–j(x)

=


λ – 

k–∑

i=

(–)iHn+i(x + y|λ)Hm+k–i

(
x
∣∣∣


λ

) k–∑

j=

(–)j
(

k
j

)(
j
i

)

+
m+k∑

i=

(–)m+k–iHm+k–i(y|λ)βn+i(x + y)
k–∑

j=

(–)j
(

k
j

)(
m + k – j

i

)

– Hm+n+k+(y|λ)


n + 

k–∑

j=

(–)m+k–j

(k
j
)

(m+n+k+–j
n+

) . (.)

Observe that, for non-negative integers m, n, k,

k∑

j=

(–)j

(k
j
)

(m+n+j
n

) =
m! · (n + k – )! · n

(m + n + k)!
, (.)

by using induction on k. It follows from (.) that, for non-negative integers m, n and
positive integer k,


n + 

k–∑

j=

(–)m+k–j

(k
j
)

(m+n+k+–j
n+

) =
(–)mm! · (n + k)!
(m + n + k + )!

–
(–)mm! · n!
(m + n + )!

. (.)
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Thus, by applying (.), (.), and (.) to (.) and combining with (.), we get the
desired result. This concludes the proof of Theorem .. �
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