
Wen et al. Advances in Difference Equations  (2017) 2017:17 
DOI 10.1186/s13662-016-1056-3

R E S E A R C H Open Access

New results on H∞ state estimation of
static neural networks with time-varying
delay
Bin Wen1*, Hui Li1 and Shouming Zhong2,3

*Correspondence:
wenbin_08@126.com
1School of Aeronautics and
Astronautics, University of Electronic
Science and Technology of China,
Chengdu, 611731, P.R. China
Full list of author information is
available at the end of the article

Abstract
This paper is concerned with the problem of H∞ state estimation problem for a class
of delayed static neural networks. The purpose of the problem is to design a
delay-dependent state estimator such that the dynamics of the error system is
globally exponentially stable with a prescribed H∞ performance. Some improved
delay-dependent conditions are established by using delay partitioning method and
the free-matrix-based integral inequality. The gain matrix and the optimal
performance index are obtained via solving a convex optimization problem subject
to LMIs (linear matrix inequality). Numerical examples are provided to illustrate the
effectiveness of the proposed method comparing with some existing results.

Keywords: static neural networks; H∞; state estimator; Lyapunov-Krasovskii
functional

1 Introduction
Neural networks (NNs) have attracted a great deal of attention because of their extensive
applications in various fields such as associative memory, pattern recognition, combina-
torial optimization, adaptive control, etc. [, ]. Due to the finite switching speed of the
amplifiers, time delays are inevitable in electronic implementations of neural networks
(such as Hopfield neural networks, cellular neural networks). Time delay in a system is
often a source of instability, and delay systems has been widely studied (see [–] and the
references therein). The stability and passivity problems of delayed NNs have been widely
reported (see [, , –]).

We mainly focus on static neural networks (SNNs) in this paper, which is one type of
recurrent neural networks. According to whether the neuron states or the local field states
of neurons are chosen as basic variables, the model of neural networks can be classified
into static neural networks or local field networks. As mentioned in [, ], local field
neural networks and SNNs are not always equivalent. In contrast to the local field neural
networks, the stability analysis of SNNs has attracted relatively little attention, many in-
teresting results on the stability analysis of SNNs have been addressed in the literature [,
–].

Meanwhile, the state estimation of neural networks is an important issue. In many ap-
plications, it is important to estimate the state of neurons to utilize the neural networks.
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Recently, some results on the state estimation problem for the neural networks have been
investigated in [–]. Among them H∞ state estimation of static neural networks with
time delay was studied in [, –]. In [], a delay partition approach was proposed
to deal with the state estimation problem for a class of static neural networks with time-
varying delay. In [], the state estimation problem of the guaranteed H∞ and H perfor-
mance of static neural networks was considered. Further improved results were obtained
in [, , ] by using the convex combination approach. The exponential state estima-
tion of time-varying delayed neural networks was studied in []. These literatures all use
the Lyapunov-Krasovskii functionals (LKFs) method, conservativeness comes from two
things: the choice of functional and the bound on its derivative. A delay partitioning LKF
reduce the conservativeness of a simple LKF by containing more delay information. There
are two main techniques for dealing with the integrals that appear in the derivative: the
free-weighting matrix method and the integral inequality method. However, the inequal-
ities used may lead to conservatism to some extent. Moreover, the information of neuron
activation functions has not been adequately taken into account in [, –]. Therefore,
the guaranteed performance state estimation problem has not yet been fully studied and
remains a space for improvement. Thus, it remains a space to improve the results.

This paper studies the problem of H∞ state estimation for a class of delayed SNNs. Our
aim is to design a delay-dependent state estimator, such that the filtering error system is
globally exponentially stable with a prescribed H∞ performance. By using delay equal-
partitioning method, augmented LKFs are properly constructed. The lower bound is par-
titioned into several components in [], so it is impossible to deal the situation when
lower bound is zero. Moreover, the effectiveness of delay partitioning method is not evi-
dent when lower bound is very small. Different from the delay partitioning method used in
[], we decompose the delay interval into multiple equidistant subintervals, this method
is more universal in dealing with the interval time-varying delay. Then the free-weighting
matrix technique is used to get a tighter upper bound on the derivatives of the LKFs. As
mentioned in Remark ., we also reduce conservatism by taking advantage of the infor-
mation on activation function. Moreover, the free-matrix-based integral inequality was
used to derive improved delay-dependent criteria. Compared with existing results in [–
], the criteria in this paper lead to less conservatism.

The remainder of this paper is organized as follows. The state estimation problem is
formulated in Section . Section  deals with the design of the state estimator for delayed
static neural networks. In Section , two numerical examples are provided to show the
effectiveness of the results. Finally, some conclusions are made in Section .

Notations: The notations used throughout the paper are fairly standard. Rn denotes the
n-dimensional Euclidean space; Rn×m is the set of all n × m real matrices; the notation
A >  (< ) means A is a symmetric positive (negative) definite matrix; A– and AT denote
the inverse of matrix A and the transpose of matrix A, respectively; I represents the iden-
tity matrix with proper dimensions; a symmetric term in a symmetric matrix is denoted
by (∗); sym{A} represents (A + AT ); diag{·} stands for a block-diagonal matrix. Matrices,
if their dimensions are not explicitly stated, are assumed to be compatible for algebraic
operations.
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2 Problem formulation
Consider the delayed static neural network subject to noise disturbances described by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = –Ax(t) + f (Wx(t – h(t)) + J) + Bw(t),
y(t) = Cx(t) + Dx(t – h(t)) + Bw(t),
z(t) = Hx(t),
x(t) = φ(t), t ∈ [–τ , ],

()

where x(t) = [x(t), x(t), . . . , xn(t)]T ∈ R
n is the state vector of the neural network, y(t) ∈

R
m is the neural network output measurement, z(t) ∈ R

r to be estimated is a linear com-
bination of the state, w(t) ∈ R

n is the noise input belonging to L[,∞), f (·) denote the
neuron activation function, A = diag{a, a, . . . , an} with ai > , i = , , . . . , n is the posi-
tive diagonal matrix, B, B, C, D, and H are real known matrices with appropriate di-
mensions, W ∈ R

n×n denote the connection weights, h(t) represent the time-varying de-
lays, J represents the exogenous input vector, the function φ(t) is the initial condition, and
τ = supt≥{h(t)}.

In this paper, the time-varying delays satisfy

 ≤ d ≤ h(t) ≤ d, ḣ(t) ≤ μ,

where d, d, and μ are constants.
In order to conduct the analysis, the following assumptions are necessary.

Assumption . For any x, y ∈ R (x �= y), i ∈ {, , . . . , n}, the activation function satisfies

k–
i ≤ fi(x) – fi(y)

x – y
≤ k+

i , ()

where k–
i , k+

i are constants, and we define K– = diag{k–
 , k–

 , . . . , k–
n }, K+ = diag{k+

 , k+
 ,

. . . , k+
n }.

We construct a state estimator for estimation of z(t):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂x(t) = –Ax̂(t) + f (W x̂(t – h(t)) + J) + K(y(t) – ŷ(t)),
ŷ(t) = Cx̂(t) + Dx̂(t – h(t)),
ẑ(t) = Hx̂(t),
x̂(t) = , t ∈ [–τ , ],

()

where x̂(t) ∈ R
n is the estimated state vector of the neural network, ẑ(t) and ŷ(t) denote

the estimated measurement of z(t) and y(t), K is the gain matrix to be determined. Define
the error e(t) = x(t) – x̂(t), z̄(t) = z(t) – ẑ(t), we can easily obtain the error system:

{
ė(t) = –(A + KC)e(t) – KDe(t – h(t)) + g(We(t – h(t))) + (B – KB)w(t),
z̄(t) = He(t),

()

where g(We(t)) = f (Wx(t) + J) – f (W x̂(t) + J).



Wen et al. Advances in Difference Equations  (2017) 2017:17 Page 4 of 15

Definition . [] For any finite initial condition φ(t) ∈ C([–τ , ];Rn), the error system
() with w(t) =  is said to be globally exponentially stable with a decay rate β , if there exist
constant λ >  and β >  such that

∥
∥e(t)

∥
∥ ≤ λe–βt sup

–τ<s<

{∥
∥φ(s)

∥
∥,

∥
∥φ̇(s)

∥
∥}.

Given a prescribed level of disturbance attenuation level γ > , the error system is said to
be globally exponentially stable with H∞ performance, when the error system is globally
exponentially stable and the response z̄(t) under zero initial condition satisfies

‖z̄‖
 ≤ γ ‖w‖

,

for every nonzero w(t) ∈ L[,∞), where ‖φ‖ =
√∫ ∞

 φT (t)φ(t) dt.

Lemma . ([]) For any constant matrix Z ∈ Rn×n, Z = ZT > , scalars h > h > , and
vector function x : [h, h] → Rn such that the following integrations are well defined,

–(h – h)
∫ t–h

t–h

xT (s)Zx(s) ds ≤ –
∫ t–h

t–h

xT (s) dsZ
∫ t–h

t–h

x(s) ds.

Lemma . (Schur complement) Given constant symmetric matrices S, S, and S, where
S = ST

 , and S = ST
 > , then S + ST

 S–
 S <  if and only if

[
S ST



S –S

]

<  or

[
–S S

ST
 S

]

< .

Lemma . ([]) For differentiable signal x in [α,β] → R
n, symmetric matrix R ∈ R

n×n,
Y, Y ∈R

n×n, any matrices Y ∈R
n×n, and M, M ∈R

n×n satisfying

Ȳ =

⎡

⎢
⎣

Y Y M

∗ Y M

∗ ∗ R

⎤

⎥
⎦≥ ,

the following inequality holds:

–
∫ β

α

ẋT (s)Rẋ(s) ds ≤ � T	� , ()

where

	 = (β – α)
(

Y +



Y

)

+ Sym{M
̄ + M
̄},


̄ = ē – ē, 
̄ = ē – ē – ē,

ē = [ I   ], ē = [  I  ], ē = [   I ],

and

� =
[

xT (β) xT (α) 
β–α

∫ β

α
xT (s) ds

]
.
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3 State estimator design
In this section, a delay partition approach is proposed to design a state estimator for the
static neural network (). For convenience of presentation, we denote

η̂(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e(t – d)
e(t – d – 

m d)

e(t – d – 
m d)

...
e(t – d – m–

m d)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, η̂(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g(We(t – d))
g(We(t – d – 

m d))

g(We(t – d – 
m d))

...
g(We(t – d – m–

m d))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where d = d – d.

Theorem . Under Assumption ., for given scalars μ,  ≤ d ≤ d, γ > , α ≥ , and
integers m ≥ , m ≥ k ≥ , the system () is globally exponentially stable with H∞ per-
formance γ if there exist matrices P (∈ R

n×n) > , Ri (∈ R
n×n) >  (i = , , . . . , m + ),

Q (∈R
mn×mn) > , Q (∈R

n×n) > , symmetrical matrices X, X, Y, Y, X, X, Y, Y ∈
R

n×n, positive diagonal matrices �, i (i = , , . . . , m + ), m+, and any matrices with
appropriate dimensions M, X, X, Y, Y, Nj (j = , , . . . , ), such that the following LMIs
hold:

[
�̂ H̄T

∗ –I

]

< , ()

⎡

⎢
⎣

X X N

∗ X N

∗ ∗ Rm+

⎤

⎥
⎦≥ , ()

⎡

⎢
⎣

Y Y N

∗ Y N

∗ ∗ Rm+

⎤

⎥
⎦≥ , ()

⎡

⎢
⎣

X X N

∗ X N

∗ ∗ Rk

⎤

⎥
⎦≥ , ()

⎡

⎢
⎣

Y Y N

∗ Y N

∗ ∗ Rk

⎤

⎥
⎦≥ , ()

where

�̂ = αET
m+PEm+ + sym

{
ET

m+PEm+
}

+ 
T
 Q
 – e–αd/m
T

 Q


+ 
T
 Q
 – ( – μ)e–αd/m
T

 Q
 + (d – d)ET
m+Rm+Em+

+
(
h(t) – d

)
e–αd
T



(

X +



X

)


 + e–αd sym
{

T

 N
 + 
T
 N


}

+
(
d – h(t)

)
e–αd
T



(

Y +



Y

)


 + e–αd sym
{

T

 N
 + 
T
 N


}
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+
(

d
m

)

ET
m+

( m∑

i=

Ri

)

Em+

+
d
m

(
k
m

d + d – h(t)
)

e–α(d+kd/m)
T


(

X +



X

)




+
d
m

e–α(d+kd/m) sym
{

T

N
 + 
T
N


}

+
d
m

e–α(d+kd/m) sym
{

T

N
 + 
T
N


}

+
d
m

(

h(t) –
k – 

m
d – d

)

e–α(d+kd/m)
T


(

Y +



Y

)




–
m∑

i=,i�=k

e–α(d+id/m)[ET
i – ET

i+
]
Ri[Ei – Ei+] – 

m+∑

i=

(
ET

m+i+iEm+i+
)

– 
m+∑

i=

(
ET

i W T K–iK+WEi
)

+
m+∑

i=

sym
{

ET
i W T(K– + K+)iEm+i+

}

– ET
m+m+Em+ – ET

m+W T K–m+K+WEm+

+ sym
{

ET
m+W T(K– + K+)m+Em+

}
– ET

m+�Em+

– ET
m+W T K–�K+WEm+ + sym

{
ET

m+W T(K– + K+)�Em+
}

– sym
{

ET
m+MEm+

}
– ET

m+ sym{MA}Em+

– ET
m+ sym{GC}Em+ – sym

{
ET

m+GDEm+
}

+ sym
{

ET
m+MEm+

}

+ sym
{

ET
m+MBEm+

}
– sym

{
ET

m+GBEm+
}

– ET
m+ sym{M}Em+ – sym

{
ET

m+MAEm+
}

– sym
{

ET
m+GCEm+

}
– sym

{
ET

m+GDEm+
}

+ sym
{

ET
m+MEm+

}
+ sym

{
ET

m+MBEm+
}

– sym
{

ET
m+GBEm+

}
– γ ET

m+Em+,


 =
[
ET

 , ET
 , ET

 , . . . , ET
m, ET

m+, ET
m+, . . . , ET

m+
]T ,


 =
[
ET

 , ET
 , ET

 , . . . , ET
m+, ET

m+, ET
m+, . . . , ET

m+
]T ,


 =
[
ET

m+, ET
m+

]T ,


 =
[
ET

m+, ET
m+

]T ,


 =
[
ET

 , ET
m+, ET

m+
]T ,


 = E – Em+,


 = Em+ – E – Em+,


 =
[
ET

m+, ET
m+, ET

m+
]T ,


 = Em+ – Em+,


 = Em+ – Em+ – Em+,


 =
[
ET

m+, ET
k+, ET

m+
]T ,
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 = Em+ – Ek+,


 = Em+ – Ek+ – Em+,


 =
[
ET

k , ET
m+, ET

m+
]T ,


 = Ek – Em+,


 = Em+ – Ek – Em+,

Ei = [n×(i–)n, In, n×(m+–i)n], i = , , . . . , m + ,

H̄ = [, , , , H , , , , , , , , , ],

the estimator gain matrix is given by K = M–G.

Proof Construct a Lyapunov-Krasovskii functional candidate as follows:

V (t, et) =
∑

i=

Vi(t, et), ()

where

V(t, et) = eT (t)Pe(t),

V(t, et) =
∫ t

t– d
m

e–α(t–s)

[
η̂(s)
η̂(s)

]T

Q

[
η̂(s)
η̂(s)

]

ds,

V(t, et) =
∫ t

t–h(t)
e–α(t–s)

[
e(s)

g(We(s))

]T

Q

[
e(s)

g(We(s))

]

ds,

V(t, et) =
d
m

m∑

i=

∫ – i–
m d–d

– i
m d–d

∫ t

t+θ

e–α(t–s)ėT (s)Riė(s) ds dθ ,

V(t, et) =
∫ –d

–d

∫ t

t+θ

e–α(t–s)ėT (s)Rm+ė(s) ds dθ ,

calculating the derivative of V (t, et) along the trajectory of system, we obtain

V̇(t, et) = eT (t)Pė(t) = ζ̂ T
t sym

{
ET

m+PEm+
}
ζ̂t , ()

V̇(t, et) = –αV(t, et) +

[
η̂(t)
η̂(t)

]T

Q

[
η̂(t)
η̂(t)

]

– e–αd/m

[
η̂(t – d/m)
η̂(t – d/m)

]T

Q

[
η̂(t – d/m)
η̂(t – d/m)

]

= –αV(t, et) + ζ̂ T
t 
T

 Q
ζ̂t – e–αd/mζ̂ T
t 
T

 Q
ζ̂t , ()

V̇(t, et) = –αV(t, et) +

[
e(t)

g(We(t))

]T

Q

[
e(t)

g(We(t))

]

– ( – μ)e–αh(t)

[
e(t – h(t))

g(We(t – h(t)))

]T

Q

[
e(t – h(t))

g(We(t – h(t)))

]
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≤ –αV(t, et) + ζ̂ T
t 
T

 Q
ζ̂t – ( – μ)e–αd/mζ̂ T
t 
T

 Q
ζ̂t , ()

V̇(t, et) ≤ –αV(t, et) +
(

d
m

)

ėT (t)

( m∑

i=

Ri

)

ė(t)

–
(

d
m

) m∑

i=

∫ t– i–
m d–d

t– i
m d–d

e–α(d+id/m)ėT (s)Riė(s) ds, ()

V̇(t, et) ≤ –αV(t, et) + (d – d)ėT (t)Rm+ė(t)

–
∫ t–d

t–h(t)
e–αd ėT (s)Rm+ė(s) ds –

∫ t–h(t)

t–d

e–αd ėT (s)Rm+ė(s) ds, ()

according to Lemma ., it follows that

V̇(t, et) ≤ –αV(t, et) + (d – d)ζ̂ T
t ET

m+Rm+Em+ζ̂t

+
(
h(t) – d

)
e–αd ζ̂ T

t 
T


(

X +



X

)


ζ̂t

+ e–αd ζ̂ T
t sym

{

T

 N
 + 
T
 N


}
ζ̂t

+
(
d – h(t)

)
e–αd ζ̂ T

t 
T


(

Y +



Y

)


ζ̂t

+ e–αd ζ̂ T
t sym

{

T

 N
 + 
T
 N


}
ζ̂t , ()

there should exist a positive integer k ∈ {, , . . . , m}, such that h(t) ∈ [ (k–)
m d + d, k

m d + d],

–
(

d
m

)∫ t– k–
m d–d

t– k
m d–d

e–α(d+kd/m)ėT (s)Rkė(s) ds

≤ d
m

(
k
m

d + d – h(t)
)

e–α(d+kd/m)ζ̂ T
t 
T



(

X +



X

)


ζ̂t

+
d
m

e–α(d+kd/m)ζ̂ T
t sym

{

T

N
 + 
T
N


}
ζ̂t

+
d
m

(

h(t) –
k – 

m
d – d

)

e–α(d+kd/m)ζ̂ T
t 
T



(

Y +



Y

)


ζ̂t

+
d
m

e–α(d+kd/m)ζ̂ T
t sym

{

T

N
 + 
T
N


}
ζ̂t . ()

For i �= k, we also have the following inequality by Lemma .:

–
(

d
m

) m∑

i=

∫ t– i–
m d–d

t– i
m d–d

e–α(d+id/m)ėT (s)Riė(s) ds

≤ –
m∑

i=

e–α(d+id/m)
[

eT
(

t – d –
i – 
m

d
)

– eT
(

t – d –
i

m
d
)]

Ri

×
[

e
(

t – d –
i – 
m

d
)

– e
(

t – d –
i

m
d
)]

= –
m∑

i=

e–α(d+id/m)ζ̂ T
t
[
ET

i – ET
i+
]
Ri[Ei – Ei+]ζ̂t . ()
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According to Assumption ., we obtain


(
g
(
We(t)

)
– K–We(t)

)T
�
(
g
(
We(t)

)
– K+We(t)

)≤ , ()


m+∑

i=

(

g
(

We
(

t – d –
i – 
m

d
))

– K–We
(

t – d –
i – 
m

d
))

i

×
(

g
(

We
(

t – d –
i – 
m

d
))

– K+We
(

t – d –
i – 
m

d
))

≤ , ()


(
g
(
We

(
t – h(t)

))
– K–We

(
t – h(t)

))T
m+

× (
g
(
We

(
t – h(t)

))
– K+We

(
t – h(t)

))≤ , ()

where �, i are positive diagonal matrices.
According to the system equation, the following equality holds:


(
eT (t) + ėT (t)

)
M
{

–(A + KC)e(t) – KDe
(
t – h(t)

)

+ g
(
We

(
t – h(t)

))
+ (B – KB)w(t) – ė(t)

}
= . ()

Combining the qualities and inequalities from () to (), we can obtain

z̄T (t)z̄(t) – γ wT (t)w(t) + V̇ (t, xt) + αV (t, xt) ≤ ζ̂ T
t (�̂)ζ̂t + eT (t)HT He(t), ()

where ζ̂t is defined as

ζ̂ T
t =

[

η̂T
 (t), eT (t – d), η̂T

 (t), g
(
We(t – d)

)T , eT (t), eT(t – h(t)
)
,


h(t) – d

∫ t–d

t–h(t)
eT (s) ds,


d – h(t)

∫ t–h(t)

t–d

eT (s) ds,


d – h(t)

∫ t–h(t)

t–d

eT (s) ds,


d – h(t)

∫ t–h(t)

t–d

eT (s) ds, g
(
We(t)

)T , g
(
We

(
t – h(t)

))T , wT (t), ėT (t)
]

.

Based on Lemma ., one can deduce that

z̄T (t)z̄(t) – γ wT (t)w(t) + V̇ (t, xt) + αV (t, xt) ≤ ζ̂ T
t

[
�̂ H̄T

∗ –I

]

ζ̂t , ()

where H̄ = [, , , , H , , , , , , , , , ].
If the LMI () holds, then

z̄T (t)z̄(t) – γ wT (t)w(t) + V̇ (t, xt) + αV (t, xt) < , ()

αV (t, xt) ≥ , so we can obtain

∫ ∞



[
z̄T (t)z̄(t) – γ wT (t)w(t) + V̇

(
t, e(t)

)]
dt < ,
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since V (t, e(t)) > , under the zero initial condition, we have

∥
∥z̄(t)

∥
∥ ≤ γ ∥∥w(t)

∥
∥.

Therefore, the error system () guarantee H∞ performance γ according to Definition ..
In the sequel, we show the globally exponentially stability of the estimation error system
with w(t) = . When w(t) = , the error system () becomes

{
ė(t) = –(A + KC)e(t) – KDe(t – h(t)) + g(We(t – h(t))),
z̄(t) = He(t),

()

equation () becomes


(
eT (t) + ėT (t)

)
M
{

–(A + KC)e(t) – KDe(t – d) + g
(
We(t – d)

)
– ė(t)

}
= , ()

considering the same Lyapunov-Krasovskii functional candidate and calculating its time
derivative along the solution of (), we can derive

V̇ (t, et) + αV (t, et) ≤ ζ T
t �ζt , ()

where � is obtained by deleting the terms in �̂ associated with w(t),

ζ T
t =

[

η̂T
 (t), eT (t – d), η̂T

 (t), g
(
We(t – d)

)T , eT (t), eT(t – h(t)
)
,


h(t) – d

∫ t–d

t–h(t)
eT (s) ds,


d – h(t)

∫ t–h(t)

t–d

eT (s) ds,


d – h(t)

∫ t–h(t)

t–d

eT (s) ds,


d – h(t)

∫ t–h(t)

t–d

eT (s) ds, g
(
We(t)

)T , g
(
We

(
t – h(t)

))T , ėT (t)
]

.

Let G = MK , it is obvious that if �̂ < , then � < , so we get

V̇ (t, et) + αV (t, et) ≤ . ()

Integrating the above inequality (), so we obtain

V (t, et) ≤ e–αtV (, e). ()

From (), we have

V (t, et) ≥ λmin(P)
∥
∥e(t)

∥
∥, ()

V (, e) ≤ b sup
–τ<s<

{∥
∥φ(s)

∥
∥,

∥
∥φ̇(s)

∥
∥}, ()

where

b = λmax(P) +
(
 + ρ)dλmax(Q) +

(
 + ρ)dλmax(Q)

+
d
m

m∑

i=

( i
m d + d) – ( i–

m d + d)


λmax(Ri) +

(d) – (d)


λmax(Rm+),
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ρ = max
≤i≤

(∣
∣k–

i
∣
∣,
∣
∣k+

i
∣
∣
)
.

Combining (), (), and () yields

∥
∥e(t)

∥
∥ ≤ 

λmin(P)
V (t, et) ≤ b

λmin(P)
e–αt sup

–τ<s<

{∥
∥φ(s)

∥
∥,

∥
∥φ̇(s)

∥
∥}, ()

hence the error system () is globally exponentially stable. Above all, if �̂ < , then the state
estimator for the static neural network has the prescribed H∞ performance and guaran-
tees the globally exponentially stable of the error system. This completes the proof. �

Remark . We use two ways to reduce the conservativeness: a good choice of the
Lyapunov-Krasovskii functionals, and the use of a less conservative integral inequality. To
make the Lyapunov-Krasovskii functionals contain more detailed information of time de-
lay, delay partitioning method is employed. We also use the free-weighting matrix method
to obtain a tighter upper bound on the derivative of the LKFs, many free-weighting ma-
trices will be introduced with the increasing number of partitions. That will lead to com-
plexity and computational burden. Hence, the partitioning number should be properly
chosen.

Remark . Condition () in Theorem . depends on the time-varying delay, it is easy to
show that the condition is satisfied for all  ≤ d ≤ h(t) ≤ d if �̂|h(t)=d <  and �̂|h(t)=d < .

Remark . In some previous literature [, , ], k–
i ≤ fi(x)

x ≤ k+
i , which is a special

case of k–
i ≤ fi(x)–fi(y)

x–y ≤ k+
i was used to reduce the conservatism. In our proof, not only k–

i ≤
gi(Wie(t))

Wie(t) ≤ k+
i , but also k–

i ≤ gi(Wie(t–h(t)))
Wie(t–h(t)) ≤ k+

i , k–
i ≤ gi(Wie(t–d– j–

m d))
Wie(t–d– j–

m d)
≤ k+

i , j ∈ {, , . . . , m + }
have been used, which play an important role in reducing the conservatism.

4 Numerical examples
In this section, numerical examples are provided to illustrate effectiveness of the devel-
oped method for the state estimation of static neural networks.

Example  Consider the neural networks () with the following parameters:

A =

⎛

⎜
⎝

.  
 . 
  .

⎞

⎟
⎠ , W =

⎛

⎜
⎝

. . –.
. . .

–. . .

⎞

⎟
⎠ ,

H =

⎛

⎜
⎝

  
  –
  

⎞

⎟
⎠ , B =

⎛

⎜
⎝

.  
.  
.  

⎞

⎟
⎠ , J =

⎛

⎜
⎝





⎞

⎟
⎠ ,

C = (   – ), D = ( .  – ), B = ( –.   ).

To compare with the existing results, we let α = , d = . We obtain the optimal H∞
performance index γ for different values of delay d and μ. It is summarized in Table .

From Table , it is clear that our results achieve better performance. In addition, the op-
timal H∞ performance index γ becomes smaller as the partitioning number is increasing.
It shows that the delay partitioning method can reduce the conservatism effectively.
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Table 1 The H∞ performance index γ with different (d2,μ)

Methods (0.8, 0.4) (0.9, 0.7) (1.1, 0.5)

[34] 1.2197 1.2719 1.8944
[35] 1.2989 1.3164 1.6441
Theorem 3.1 [36] 1.1391 1.1489 1.1538
Theorem 3.2,m = 5 0.7196 0.9940 0.7677
Theorem 3.2,m = 10 0.7175 0.9916 0.7655

Example  Consider the neural networks () with the following parameters:

A =

⎛

⎜
⎝

.  
 . 
  .

⎞

⎟
⎠ , W =

⎛

⎜
⎝

–. . –.
. . –.

.  –.

⎞

⎟
⎠ ,

H =

⎛

⎜
⎝

  .
  
 – 

⎞

⎟
⎠ , B =

⎛

⎜
⎝

.  
.  
.  

⎞

⎟
⎠ , J =

⎛

⎜
⎝





⎞

⎟
⎠ ,

C = (    ), D = (    ), B = ( .   ).

The activation function is f (x) = tanh(x), it is easy to get K– = , K+ = I . We set γ = , α = ,
h(t) = . + . sin(.t), so the bound of time delay d = , d = , and μ = .. The noise
disturbance is assumed to be

w(t) =

⎛

⎜
⎝


.+.t




⎞

⎟
⎠ .

Figure 1 The state variables and their estimation.
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Figure 2 The response of the error e(t).

By solving through the Matlab LMI toolbox, we obtain the gain matrix of the estimator:

K =

⎛

⎜
⎝

–.
.
.

⎞

⎟
⎠ .

Figure  present the state variables and their estimation of the neural network () from
initial values [., –., .]T . Figure  shows the state response of the error system ()
under the initial condition e() = [., –., .]T . It is clear that e(t) converges rapidly
to zero. The simulation results reveal the effectiveness of the proposed approach to the
design of the state estimator for static neural networks.

5 Conclusions
In this paper, we investigated the H∞ state estimation problem for a class of delayed static
neural networks. By constructing the augmented Lyapunov-Krasovskii functionals, new
delay-dependent conditions were established. The estimator matrix gain was obtained by
solving a set of LMIs, which can guarantee the global exponential stability with a pre-
scribed H∞ performance level of the error system. In the end, numerical examples were
provided to illustrate the effectiveness of the proposed method comparing with some ex-
isting results.
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