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Abstract
In a recent study by Kim (Bull. Korean Math. Soc. 53(4):1149-1156, 2016) an attempt
was made to examine some of the identities and properties that are related to the
degenerate Carlitz q-Bernoulli numbers and polynomials. In our paper we define the
modified degenerate q-Bernoulli numbers and polynomials. As part of this we
investigate some of the identities and properties that are associated with these
numbers and polynomials which are derived from the generating functions and
p-adic integral equations.

MSC: 05A10; 11B68; 11S80; 05A19

1 Introduction
Let p be a fixed prime number. In our study, Zp, Qp, and Cp refer to the ring of p-adic
integers, the field of p-adic rational numbers, and the completion of the algebraic clo-
sure of Qp; meanwhile νp will be the normalized exponential valuation of Cp with
|p|p = p–νp(p) = 

p . In terms of the q-extension, q is considered to be as indeterminate, a
complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, we suppose that |q| < . If
q ∈ Cp, we suppose that |q – |p < p– 

p– so that qx = exp(x log q) for |x|p ≤ . We use the
notation [x]q = –qx

–q . Note that limq→[x]q = x.
It is well known that the Bernoulli numbers are defined by the generating function to be

t
et – 

=
∞∑

n=

Bn
tn

n!
= eBt (see [–]). ()

By (), we derive

t =
(
et – 

)
eBt = e(B+)t – eBt

=
∞∑

n=

{
(B + )n – Bn

} tn

n!
. ()

For (), we have

B = , (B + )n – Bn =

{
 if n = ,
 if n > .

()
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In [], Carlitz () defined the recurrence relation as

γ,q = , (qγq + )n – γn,q =

{
 if n = ,
 if n > .

()

Observe that for n = , by (), we have

 = (qγq + ) – γ,q

=
∑

l=

(

l

)
qlγl,q – γ,q

= γ,q + (q – )γ,q. ()

By (), we see that if q �= , then γ, q = .
For n = , as stated in (), we conclude that

 = (qγq + ) – γ,q

=
∑

l=

(

l

)
qlγl,q – γ,q

= γ,q + qγ,q + qγ,q – γ,q

=  +
(
q – 

)
γ,q. ()

By (), we find that γ,q = – 
q– . Therefore we state that limq→ γ,q = 

 = ∞. As a conse-
quence we examine the following recurrence equation which remodels equation ():

β,q = , q(qβq + )n – βn,q =

{
 if n = ,
 if n > 

(see []). ()

For n = , by (), we have

 = q(qβq + ) – β,q

= q
∑

l=

(

l

)
qlβl,q – β,q

= q(β,q + qβ,q) – β,q

= qβ,q + qβ,q – β,q. ()

By (), we see that  – q = (q – )β,q and hence β,q = – 
q+ = – 

[]q
.

Therefore we state that limq→ β,q = – 
 = B.

For n = , by (), we have

 = q(qβq + ) – β,q

= q
∑

l=

(

l

)
qlβl,q – β,q
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= q
(
β,q + qβ,q + qβ,q

)
– β,q

= q – q 
 + q

+
(
q – 

)
β,q

=
q – q

 + q
+

(
q – 

)
β,q. ()

By (), we see that β,q = q
[]q[]q

. Therefore we state that limq→ β,q = 
 = B.

Let UD(Zp) be the space of Cp-valued uniformly differentiable functions on Zp. For f ∈
UD(Zp), the p-adic q-integral on Zp has been defined by Kim as being:

Iq(f ) =
∫

Zp

f (x) dμq(x) = lim
N→∞


[pN ]q

pN –∑

x=

f (x)qx (see []). ()

The Carlitz’s q-Bernoulli numbers are represented by the p-adic q-integrals on Zp ac-
cordingly:

∫

Zp

[x]n
q dμq(x) = βn,q (n ≥ ) (see [–]). ()

Therefore, for (), we get

∫

Zp

e[x]qt dμq(x) =
∞∑

n=

βn,q
tn

n!
(see [–, ]). ()

From (), we are able to derive the following equation:

βn,q =


( – q)n

n∑

l=

(
n
l

)
(–)l l + 

[l + ]q
(see [–, , ]). ()

Recently, Kim [] studied some identities and properties of the degenerate Carlitz
q-Bernoulli numbers and polynomials. In our paper we define the modified degenerate
q-Bernoulli numbers and polynomials. As part of this we investigate some of the iden-
tities and properties that are associated with these numbers and polynomials which are
calculated from the generating functions and p-adic integral equations.

2 Modified Carlitz q-Bernoulli numbers and polynomials
As a result of (), we define the modified Carlitz q-Bernoulli numbers as follows:

∫

Zp

q–x[x]n
q dμq(x) = Bn,q. ()

Observe that, for n = , we state

B,q =
∫

Zp

q–x dμq(x) = lim
N→∞


[pN ]q

pN –∑

x=



= lim
N→∞

 – q
 – qpN pN =

q – 
log q

. ()
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We also observe that if f(x) = f (x + ), then

qIq(f) = lim
N→∞


[pN ]q

pN –∑

x=

f (x + )qx+

= lim
N→∞


[pN ]q

(pN –∑

x=

f (x)qx – f () + f
(
pN)

qpN

)

= Iq(f ) + lim
N→∞

(
(q – )

pN

qpN – 
f (pN ) – f ()

pN + (q – )f
(
pN))

= Iq(f ) + (q – )f () +
q – 
log q

f ′(). ()

Therefore, by (), we are able to obtain the p-adic integral equation on Zp as follows:

qIq(f) – Iq(f ) = (q – )f () +
q – 
log q

f ′(). ()

Therefore, examining () and (), if we take f (x) = q–x[x]n
q , then we have

q
∫

Zp

q–(x+)[x + ]n
q dμq(x) –

∫

Zp

q–x[x]n
q dμq(x)

= (q – )[]n
q +

q – 
log q

f ′(). ()

Hence, we are able to obtain the following recurrence relation results:

B,q =
q – 
log q

, (qBq + )n – Bn,q =

{
 if n = ,
 if n > .

()

By (), we state that

Bn,q =


( – q)n

n∑

l=

(
n
l

)
(–)l l

[l]q
. ()

From (), we are able to define the modified Carlitz’s q-Bernoulli polynomials as fol-
lows:

∫

Zp

q–ye[x+y]qt dμq(y) =
∞∑

n=

Bn,q(x)
tn

n!
. ()

For (), we are able to state

Bn,q(x) =
∫

Zp

q–y[x + y]n
q dμq(y). ()
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For (), we calculate

Bn,q(x) =
∫

Zp

q–y[x + y]n
q dμq(y)

=


( – q)n

n∑

l=

(
n
l

)
(–)lqlx

∫

Zp

q–yqly dμq(y)

=


( – q)n

n∑

l=

(
n
l

)
(–)lqlx l

[l]q
. ()

3 Modified degenerate Carlitz q-Bernoulli numbers and polynomials
Here, we assume that λ, t ∈Cp,  < |λ|p ≤ , |t|p < p– 

p– .
In terms of (), we define the modified degenerate Carlitz q-Bernoulli polynomials as

∫

Zp

q–y( + λt)

λ

[x+y]q dμq(y) =
∞∑

n=

Bn,λ,q(x)
tn

n!
, ()

when x = , Bn,λ,q = Bn,λ,q() are called the modified degenerate Carlitz q-Bernoulli num-
bers.

We observe that

∫

Zp

q–y( + λt)

λ

[x+y]q dμq(y) =
∞∑

n=

∫

Zp

q–y
( [x+y]q

λ

n

)
λntn dμq(y)

=
∞∑

n=

∫

Zp

q–y
(

[x + y]q

λ

)

n
dμq(y)λn tn

n!
, ()

where ( [x+y]q
λ

)n = [x+y]q
λ

× ( [x+y]q
λ

– )×· · ·× ( [x+y]q
λ

– n + ). Note that [x + y]q,n,λ = [x + y]q([x +
y]q – λ) · · · ([x + y]q – (n – )λ) (n ≥ ).

For (), we are able to derive the following theorem.

Theorem . For n ≥ , we have

∫

Zp

q–y[x + y]q,n,λ dμq(y) = Bn,λ,q(x). ()

Let S(n, m) be the Stirling numbers of the first kind, which are defined by (x)n =
∑n

l= S(n, l)xl (n ≥ ). Note that limλ→ Bn,λ,q(x) = Bn,q(x).
Then, by using (), we are able to state

λn
∫

Zp

q–y
(

[x + y]q

λ

)

n
dμq(y) =

n∑

l=

S(n, l)λn–l
∫

Zp

q–y[x + y]l
q dμq(y)

=
n∑

l=

S(n, l)λn–lBl,q(x). ()

Therefore, by using () and (), we are able to derive the following theorem.
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Theorem . For n ≥ , we have

Bn,λ,q(x) =
n∑

l=

S(n, l)λn–lBl,q(x). ()

By using () and (), we are able to present details of the following corollary.

Corollary . For n ≥ , we have

Bn,λ,q(x) =
n∑

l=

l∑

k=

S(n, l)
( – q)l

(
l
k

)
(–)kqkx k

[k]q
λn–l. ()

Observe that

q–y( + λt)
[x+y]q

λ = q–ye
[x+y]q

λ
log(+λt)

= q–y
∞∑

m=

(
[x + y]q

λ

)m 
m!

(
log( + λt)

)m

=
∞∑

m=

q–y
(

[x + y]q

λ

)m 
m!

m!
∞∑

n=m
S(n, m)

λntn

n!

=
∞∑

n=

( n∑

m=

λn–mS(n, m)q–y[x + y]m
q

)
tn

n!
. ()

Therefore by using (), we are able to state

∫

Zp

q–y( + λt)
[x+y]q

λ dμq(y) =
∞∑

n=

m∑

m=

λn–mS(n, m)
∫

Zp

q–y[x + y]m
q dμq(y)

tn

n!

=
∞∑

n=

( n∑

m=

λn–mS(n, m)Bm,q(x)

)
tn

n!
. ()

By substituting t by 
λ

(eλt – ) in (), we find

∫

Zp

q–ye[x+y]qt dμq(y) =
∞∑

m=

Bm,λ,q(x)


m!


λm

(
eλt – 

)m

=
∞∑

m=

Bm,λ,q(x)λ–m
∞∑

n=m
S(n, m)

λntn

n!

=
∞∑

n=

n∑

m=

Bm,λ,q(x)λn–mS(n, m)
tn

n!
, ()

where S(n, m) are the Stirling numbers of the second kind as follows:

(
et – 

)m = m!
∞∑

n=m
S(n, m)

tn

n!
. ()
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Note that the left-hand side of () is derived as

∫

Zp

q–ye[x+y]qt dμq(y) =
∞∑

n=

∫

Zp

q–y[x + y]n
q dμq(y)

tn

n!

=
∞∑

n=

Bn,q(x)
tn

n!
. ()

Therefore, by using () and (), the following theorem can be derived.

Theorem . For n ≥ , we have

Bn,q(x) =
n∑

m=

Bm,λ,q(x)λn–mS(n, m). ()

Note that

q–y( + λt)
[x+y]q

λ = q–y( + λt)
[x]q
λ ( + λt)

qx[y]q
λ

=

( ∞∑

m=

[x]q,m,λ
tm

m!

) ∞∑

l=

q–y qlx

λl

[y]l
q(log( + λt))l

l!

=

( ∞∑

m=

[x]q,m,λ
tm

m!

)( ∞∑

k=

( k∑

l=

λk–lq–y+lk[y]l
qS(k, l)

)
tk

k!

)

=
∞∑

n=

( n∑

k=

k∑

l=

[x]q,n–k,λλ
k–lq–y+lk[y]l

qS(k, l)
(

n
k

))
tn

n!
. ()

Thus, by (), we get

∞∑

n=

Bn,λ,q(x)
tn

n!
=

∞∑

n=

( n∑

k=

k∑

l=

(
n
k

)
[x]q,n–k,λλ

k–lqlx
∫

Zp

q–y[y]l
q dμq(y)S(k, l)

)
tn

n!

=
∞∑

n=

( n∑

k=

k∑

l=

(
n
k

)
[x]q,n–k,λλ

k–lqlxBl,qS(k, l)

)
tn

n!
. ()

Therefore, by (), we obtain the following theorem.

Theorem .

Bn,λ,q(x) =
n∑

k=

k∑

l=

(
n
k

)
[x]q,n–k,λλ

k–lqlxBl,qS(k, l). ()

For r ∈N, we define the modified degenerate Carlitz q-Bernoulli polynomials of order r
as follows:

∫

Zp

· · ·
∫

Zp

q–(x+···+xr)( + λt)
[x+···+xr+x]q

λ dμq(x) · · · dμq(xr)

=
∞∑

n=

B(r)
n,λ,q(x)

tn

n!
. ()
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We observe that
∫

Zp

· · ·
∫

Zp

q–(x+···+xr)( + λt)
[x+···+xr+x]q

λ dμq(x) · · · dμq(xr)

=
∞∑

m=

λ–m
∫

Zp

· · ·
∫

Zp

q–(x+···+xr)[x + · · · + xr + x]m
q dμq(x) · · · dμq(xr)

× 
m!

(
log( + λt)

)m

=
∞∑

m=

B(r)
m,λ,q(x)λ–m

∞∑

n=m
S(n, m)

λn

n!
tn

=
∞∑

n=

( n∑

m=

λn–mB(r)
m,q(x)S(n, m)

)
tn

n!
, ()

where B(r)
m,q(x) are the modified Carlitz q-Bernoulli polynomials of order r.

As a consequence of using () and (), the following theorem can be derived.

Theorem . For n ≥ , we have

B(r)
n,λ,q(x) =

n∑

m=

λn–mB(r)
m,q(x)S(n, m). ()

Replacing t by 
λ

(eλt – ) in (), we have

∫

Zp

· · ·
∫

Zp

q–(x+···+xr)e[x+···+xr+x]qt dμq(x) · · · dμq(xr)

=
∞∑

m=

B(r)
m,λ,q(x)


m!

λ–m(
eλt – 

)m

=
∞∑

m=

B(r)
m,λ,q(x)λ–m

∞∑

n=m
S(n, m)

λntn

n!

=
∞∑

n=

( n∑

m=

λn–mB(r)
m,λ,q(x)S(n, m)

)
tn

n!
. ()

By comparing the coefficients on the right hand sides of (), the following theorem can
be obtained.

Theorem . For n ≥ , we have

B(r)
n,q(x) =

n∑

m=

λn–mB(r)
m,λ,q(x)S(n, m). ()
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