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Gazimagusa, TRNC, Mersin 10, In this research, the existence of the solutions for an impulsive fractional differential

Turkey equation of order g with mixed boundary conditions is studied by using some
well-known fixed point theorems. At last, an example is presented to illustrate our
results.

1 Introduction
The boundary value problems of fractional differential equations have attracted the at-
tention of many authors. Fractional differential equations are used in mathematical mod-
elling, engineering, biology, chemistry, and many other fields of science; see the references.
However, the impulsive fractional differential equations has become a new topic, there-
fore more researchers interest focused on the field of impulsive problems for fractional
differential equations; see [1-28] and the references therein.

Tian and Bai, [7] used the Banach fixed point theorem and Schauder’s fixed point
theorem to obtain the existence of the solutions of the problem which is given as fol-
lows:

DY, u(t) =f(t,u(t)),

Aut)iey = I(u®), k=12,...,m,
A (Oseg = I(u(t)), k=1,2,...,m,
u(0) +/(0) = 0,

u(l) +u/(§) = 0.

The existence and uniqueness of the solutions for an anti-periodic BVP of nonlinear
impulsive differential equations of order « € (2,3] were obtained, in 2010 [17], given in
the following:

(CDg+u(t)) :f(t,u(t)), 2<a<3
Au(ty) = Qk(u(tk)), k=12,...,p,

Au(t) = Ik(u(tk)), k=1,2,...,p,
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Au' () = I (u(ty)), k=1,2,...,p,

u(0) = —u(1),
u'(0) = —u/'(1),
u//(o) — —I/t”(l),

with the Caputo fractional derivative °Dg,, f € C(J x R,R) and Q, I, I{ € CR x R), 0 =
o<t <+ <lg<  <b<ilp=1
In 2011, Cao and Chen, [6], studied the following problem to give some existence results

and a continuous version of Filippov’s theorem of a fractional differential inclusion:

c

( D8‘+u(t)) ef(t,u(t)), aete]

Au(t)t=tk :Ik(u(t))) k= 1,2,...,m,

(AD}, u()ies) = I (w(0)), k=1,2,...,m,

u(0) + DS, u(0) = A,

u(1) + D§+u(§) =B.
Here, €D, is the Caputo fractional derivative and multi-valued map with compact values
F:] x R — P(R) where P(R) is the family of all nonempty subsets of R, 1 <« < 2 and
0 < B < — 1 with real numbers A, B.

In 2012, the contraction mapping principle, Krasnoselskii’s theorem, Schaefer’s theo-

rem, and the Leray-Schauder alternative were used, in [18], to find the existence of the

solutions of the following problem:

D, u(t) = £ (&, u(®)),
Aulty) = yi,
Au/(tk)=j_/k, k=1,....,m
u(0) = uo, u'(0) = tho;  Yio Yo o, tho € R.
By using fixed point theorems, the existence and uniqueness solutions for an impulsive

mixed boundary value problem of nonlinear differential equations of fractional order were
studied in 2016, [1], which is given as

“Diu®)=f(t,u), teJ
Auty) = I (u(t)), A (t) = Ji (u(t)),
u(0) + #/(0) =0, u(l)+4'(1) =0,
where g € (1,2) and “D{, is the Caputo derivative of order q.

Motivated by the above mentioned work, we focus on the existence of solutions of frac-

tional differential equation:

“Diu)=f(t,u®), teJ, @
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with boundary conditions;

Au(ty) = Ik(u(tk)) = u(t,ﬁ) - u(t,:),
A () = Je(u(te)) =/ (&) =/ (t); k=1,...,p
u(0) + ' (1) = oy,

u'(0) + pou(l) = oy, (2)
where D, is the Caputo derivative of order g € (1,2), J = [0,1], J' = J\{t, £2,..., &},
O=ty<tp<---<ty<tlya=1 Aulty) = u(ty) — u(ty) and Au'(ty) = u'(tf) — u'(¢;). Here,

respectively, the right and the left limits of u(t) at ¢ = ] are represented by u(¢;) and u().

2 Preliminaries
In this section, we introduce preliminary facts which are used throughout this paper. We
have

PC(J) = {u:[0,1] > Ru € C(J'),and u(t} ), u(t;) exists,

and u(t,:) =u(te),1 <k Sp}.
Obviously, PC(J) is a Banach space with the norm
lellpc = sup fu(e)].
0<t<1

Definition 1 The Riemann-Liouville fractional integral of order « > 0 for a function f :
[0, +00) — R is defined as

IEf(0) = ﬁ /0 (- 9 (s) ds,

provided that the right hand side of the integral is pointwise defined on (0, +00) and I is
the gamma function.

Definition 2 The Caputo derivative of order « > 0 for a function f : [0, +00) — R is writ-
ten as

D0 = s [ -l

where 7 = [«] + 1, [¢] is the integral part of «.

Lemma 3 Let o > 0. Then the differential equation Df,f(t) = 0 has solutions
f@) =ko + kit + kot® + -+ - + kgt

and
I5. Dy f(8) =f(t) + ko + Kyt + kot + oo+ kyg 8

wherek;e Randi=1,2,...,n=[a] +1.
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Lemma 4 ([9]) The set F C PC([0,1], R") is relatively compact if and only if F is bounded,
that is, ||x|| < C for each x € F and some C > 0, and/or F is quasi-equicontinuous in [0,1].
That is to say, for any € > 0 there exists § > 0 such that ifx € F, k € N; 11, T2 € (tk—1, tx) and
|71 — To| < 8, we have |x(11) — x(12)| < €.

Lemma 5 ([19]) Let M be a closed, convex, and nonempty subset of Banach space X, and
the operators A and B be such that
(i) Ax+ By € M whenever x,y € M;
(i) A is compact and continuous;
(ili) B is contraction mapping.
Then there exists z € M such that z = Az + Bz.

Lemma 6 For q € (1,2), and the continuous function f : ] — R, we have the following im-
pulsive fractional boundary value problem:

“Df,u(®) = £ (t,u(0)),

Auty) = I (u(te)) = u(ty) — u(g),

A (tr) = Ji(u(t)) = u’(t,’;) -u(t); k=1....p,

u(0) + ' (1) = 01,

u'(0) + pou(1) = o9,

has a unique solution, and Green’s function is given by

Jo G F(5) ds — paen(B) [y S (s) dis
- mwl(t) Jo S F(s) ds + 01w1(t) ron(), tel0n],
fo (trs)q f(s)ds — pLowo(t fo _S s)ds
~ meon(0) fy () ds + mwl(t) + 025 (2)
— o1(8) Y2 Jul®))t - a(0) Y2 Jj(u()
u(t) = + wi(t) Zﬁil Ii(u(ty))
+ Zj’ e i@ =) = X7 L)) t € [t trn]
Jo G F(5) ds — paen(®) [y S (s) dis
- mw1(t) Jo LS F(s) ds + olwl(t) +oyn(t)
— o (8) Y7 T ()t — a(6) Yo7 Jj(ulty))

+o1(t) X, L)), te b tpal,

<

[N

1+ — Uot t—
o) = — P27 ) = o

1+ po = purpto L+ py — papty
Proof A general solution “DY u(t) = f(¢, u(?)), on (tx, te1l, k=1,...,p,

L(t—s)it

u(t) = s)ds +ay + bt, fort e (tr, tis1l,
(t) . TQ f(s) K+ bi (trs te]
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where ) = 0, t,,1 = 1 and taking the derivative,

t (¢ _ )42
u/(t) = '/0 (Iti(qsz 1)f(s) ds + by, forte (t, tril-

We use the boundary conditions #(0) + p14'(1) = o1 and #/(0) + uou(1) = o, to get

/ T ds e b
ap + s)ds + =0
0o+ M1 o F(q—l) H10p 1

and

L(t—s)1!
b _— d b, = o9,
0+M2f0 ) -f(s) S+ Wadp + U2 03

where

u(0)=ao,  u'(0)=bo,

t _ g1
u(l) = /0 “F (Sq)) £(s)ds +ay + by,

t _ )92
W (1) = /0 (i(qsz 1)f(g) ds + by.
That is,

Au(t) = Ji(u(tx))

W (5) - (%)
= by — bry,

b = by + Ji (ultx)),

b1 = b + Jew (u(tic + 1)),

p
by=bia+ Y _Ji(ult)),

Jj=k

p
bi=by - Z ]j(”(ti))’

Jj=k+1

and

Au(tr) = I (u(tr)) = u(tl) —u(t;),

ai + bty = ag_q + bt + I (u(tk))
Since by = by_1 + Ji (u(tr)), we have

ak + (bia + Ji(u(t)) ) b = air + biatie + I (u(t))

ax + bty + i (u(te)) t = axoy + bty + I (u(tr),
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ak + T (u(te)) b = ay + I (u(t)),

ax = ag-1 — Ji(u(te)) b + I (u(t)),

P
ag = a, + Z Ji(u(t))t; Z Ii(u(t).
j=k+1 j=k+1
Then
1 -2
(1-s)1 .
ao + by + , T(g- 1)f(3)d3 =0
and
a s)q :
bo + Haay + ll«sz + Mz/ ' f(s)ds = 0.
0
Also we get
by = by + T (u(tr)),
)2
b =by - Z ]j(”(ti))’
Jj=k+1
and
ax = ag-1 — Ji(u(te)) b + I (u(t)),
P p
ax=ay+ ) (@) - Y L(u®).
j=k+1 j=k+1
By combining (3), (4), (5), and (6)
1 .
(1-s)72
b d )
ao + U1 p+,u1/(; r'q _l)f(S) $=01

L-s)r? )q2 o

ap + by + 1 L Tq-1) (s)ds+Z], (u(®))g le(u(t;))=01»

j=1
and

la- s)‘i"1

%+M@+m%+m/ f(s)ds = o9,

gq-1
[b —ka i|+l/«2ﬂp+/$2b + 4 / - S)) f(s)ds = 02,

1(1_ <\9-1 4
Hady + (L+ p2)by, + MZ/O (1F(S;) f(s)ds — Z]f(”(t/)) =0y

Jj=1

Page 6 of 16

3)

(4)

(5)
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Then
~ '(1-s)12 “ Z
4y =or-mby-m [ = 1)f(s> ds - ;L(u<t;))zrj + ,zzll’(”(t’))’
a 1- 1<

R = iz et

Also we have
T(1-s)12 o 2
01— by — 1 /0 mf(s) ds - /zzlfj(u(tj))tj + jzzlfj(u(tj))

o (1+p) L1-s)t 1<
LEN b, - ~ N ().
my  pa L /o Tg) A2 ;]’(u(t’))

Therefore a, and b, are found as follows:

b= ) (s )
p = — o1 + (o))
1+ po — papo 1+ po — papo

7% ' —S)q !
- (1 1) —Mluz)f fl9)ds

s)q 2

e, /s

2302%)
1+ po — pipa

()
<1+M2—M1M2> 1]’ ! <1+uz—mm>i
(i)

+

J=

p
ZIJ u(ty)
j=1

1+ po — papo

and

( P ) ( - )
= ——— o - | ———— |o
1+ po = papio 1+ pa — papio
1 _
1-s)!
. ( 1o )/ ( £(5)ds
T+pa—ppa/) Jo  Tlg)

1+ o T (1-s)1?
o —F2 d
Ml(lﬂiz—ﬂluz) 0 F(q—l)f(S) ’

1+ - M1 i
- (m) > i) - (4) jzzllj(u(t,))

=) 1+ po — papo

1+ ) z
+ I u(t
(1+M2—M1M2 ZI )

j=1

Page 7 of 16
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By (5), (6), (7), and (8) since

»
bi = by - Z Ji(u(®)),

j=k+1
V4 b
ag = a, + Z Ji(u(t))t; - Z 5i(u()),
j=k+1 j=k+1

are known. By (5),

k= — o1t (o))
1+ o — papa 1+ o — papta
1 -1 1 )
M (1-s) < H1iko ) / (1-s)
- ds + a
<1+M2—M1M2>/o I'(q) fs)ds L+ pa —papa ) Jo F(q—l)f(s) ’

121:]’ u(t <1+M2—M1H2>Z]] u(t)

()2
1+M2—M1M2

5i(u Z‘ Ji((5)), ©)

<1+M2—M1M2 o e

with the help of (6),

( 1+ ) ( H1 )
= ———— o - —— |o»

1+ po — papn 1+ pa — papn

+( M1l )/ (1- S)q71

1+ po = papn
1+ po >/1 (1 5)172
- —_ (s)ds
M1<1+M2—M1M2 o I'lg- l)f

1+ po o
<1+,U«2—,U«1M2)Z]1 (s(t)) <1+H2—M1M2>12:]] )

1+ ) P L4
' (1 + W2 = Hifka IZ / 1;1]1 jzkzﬂ Li(u()) (10)

for k=0,1,...,p — 1. By using (9) and (10), we get

[1+M2—M2t} |: £— ]
ag+bit=| ————— o1+ | —————— |on

1+ pa = papio 1+ o — papho
[ mpalt =) } / (RO
L1+ o — (1t F(Q)

N [ =1+ po — zt)]/ (1-
L 1+ po—papn

M1 a-
_ +pa(1-12) ]Z]] (t]

L1+ w2 — pipo
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»
+|: M1+t i|Z]; t)

1+ po = papo Py

p
+ [ 1 +-/L2 } 25:346 (q

R DV e

p

P
Y Je) -1 = Y L)

j=k+1 j=k+1

Thus

u(t) = / t (t;—s)q_l £(s)ds + w ()01 + wa ()0

—mw@/(ru

'(1-s)12 u

f(5) ds — wy(t) le(u(tj))tj

- i (f) ; Tw-1- @-D

j=1

p
— () ) Jj(u) + er(6) Y L(ult)

p
j=1 j=1

p

+ Z], )t —t) - le(u(t,)),

Jj=k+1 j=k+1

1+ g — ot t—
e Rl L wa(t) = o

w1 (t _—
1+ pa = papio 1+ po — papn

2.1 Existence and uniqueness results
In this section, we state and prove existence and uniqueness results of the fractional BVP

(1)-(2) by using the Banach fixed point theorem. We use the following notations through-
out this paper:

1+ o — ot t—
o (t) = ————, () = ————
1+ o — papea 1+ po — o
and
1+2 1+
wi(t) <y = ¢, wo(t) < wy = ¢
1+ ua — 1tz 1+ pa — itz

By using the following conditions, we state and prove our first result.
(Al) The function f :[0,1] x R — R is jointly continuous.
(A2) There exist positive constants Ly, Ly, L3, My, My such that

[f(t,x) —f(t,y)‘§L1|x—y|, t€[0,1],x,y €R;
L) - k)| < Lol -yl |[x) = Je®)| < Lslx -y,
k@) <M, )| < Ma.

Page 9 of 16



Mahmudov and Unul Advances in Difference Equations (2017) 2017:15 Page 10 of 16

Also it is clear that

f(t,2)] < |f(62) —£(5,0)] + [£(5,0)]
< Lilx| + M,

where sup,o ) [f (£, 0)| = M.

Theorem 7 Assume (A1)-(A2) holds. If

(1 +palwy  |urlan

Mg+ ' T@ ) Hlovrlptho v Ly) v eapls <1 )

then our boundary value problem (1)-(2) has a unique solution on [0,1].

Proof By using (11) r can be chosen as follows:

1L1(1||)||L171M |01 + w0
r > — + [0)] — w + w1|071| + Wy |0
F(q +1) W2 w2 15891 F(q) F(q 1) 1101 2|02

M
+lpa|wy ——— + lu1|lor =
I(g+1) ['(q)

+ (w1 + 2)p(M1 + My) + wapM, }

Define an operator T : PC([0,1],R) — PC([0,1], R) to transform (1)-(2) into the fixed point
problem

t(r_ g-1
(Tu)(t) = /0 (tF(S;: £(s,u(s)) ds + w1(£)01 + s ()0

11 _ g1
- 2@ [ L2 o) ds

1(1_ a2
_,U,lwl(t)‘/ (=) f(s,u(s)) ds
0

I'g-1)
p
— (e Z]} )t —wn(t) Y Ji(u(t))
j=1
p
+a)1(t)21,'(14(t;))
j=1
b
+Z}, )G -0- D L)),
j=k+1 Jj=k+1

where t; <t < t;41, k=0,...,p. Then

t _ g1
|Tu(t)|§/o (tF(S;) If (s, () | ds + |1 (2)| o1 | + |2(2)] |0

1 (1 _ S)q—l

+ |le|w2(f)|/0 If (s, u(s)) | ds
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1 (l_s)q—Z
o I'(g-1)

o r>|z|f, )|+ on0] )1 ut)

+ |l (8)| If (s, u(s))| ds

j=1
P
+ (@) Y[5(u()]
j=1
p P
+2 ) ()| + Y 5(u(e))|
j=k+1 Jj=k+1
and then
| Tu(t)|

Lt —s)1 (t- S)
5/0 @ I (s, u(s)) —f(s,0)|cis+/0 |f(s,0)| ds

+ |w1(0)]lo1| + |wa(2) |02

L) a-srt

+|M2||wz(t)|[ T If (s, u(s)) f(s,0)|d8+/ F() [f(s,O)IdS]
1(1-5)12 1(1-s)

+ |//,1||a)1(t)}|:  TG-D |f (s, u(s)) = f(5,0)| ds +  TG-D [f(s,0)|ds]

p
|w1(t>|2u, (u(t)) |w2(t>|ZU, (@) + |n(®)] D15 (u(t)|
=1

j=1

+ Z i (u@)| + Z |5 (ut)|

j=k+1 j=k+1
Thus

Lyr
’Tu(t)| T I'(g+1

+ w1|o1] + w0y

M
) "T(q+1)
Lir M
Flg+1) " F(q+1)]
Lir M
(g ' Tq)]
+ (w1 + 2)p(My + M3) + wypMy < r.

+ |M2|w2[

+ |M1|w1[

For t € [0,1], the expression is well defined. The fixed point of the operator T is the solu-
tion of our boundary value problem (1)-(2). To show the existence and uniqueness of the
solution, the Banach fixed point theorem is used and then it is shown that T is a contrac-
tion and we get

|(T2)(8) = (T7)(@)]

< /Ot (t;(sq);f‘l Lf(s,x(s)) —f(s,y(s)) | ds
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11 -1
+ lal|n®)] [ /0 % 1 (5,%() —f (5.5(6))| ds}

11 g2
+ Imllwl(t)I/O %V(&x(ﬂ) —f(5,9(9))| ds

b
+len ()] 315 (0)) =1 0))|
j=1

p
+lan®] Y () -1 (0(8) |

j-1

p
+en @] Y_[5(®)) - L)
j=1

p p
23 @) -5 0@)| + Y [5(x©) - L(6:@)]-

j=k+1 j=k+1

Thus

[(T2)@) - (Ty)®)]
1 luallwz (@) |l (2)]
S[L1<F(q+1)+ [(g+1) " I'(q) )

+ (Jo1()] + 1)p(La + Ls) + |wa(2) ’PL3:| llx = yll. (12)

T is contraction mapping. By condition (11), we have

ITx - Ty
< |:L1<1+ |2l s |M1|w1)
I(g+1) ['(q)

+ (1 +2)p(Ly + L3) + wszs] llx =yl

Thus 7 is a contraction mapping. 7 has a fixed point, and that is the solution of the BVP
by the Banach fixed point theorem. O

Theorem 8 Assume |f(t,u)| < p(t) for (t,u) € ] x Rwhere p € Ls (JxR)ando € (0,q-1),
moreover, there exist positive constants Ly, Ly, L3, My, My and M such that

[f(t,x) - f(&y)| <Lilx—yl, t€[0,1],xy€R;
k@) = )| < Lolx—yl, k) = k()| < Lslx -y,
|[Ie(x)| < My, k()| < My,

with
(w1 +2)p(Ly + L3) + wopL3 < 1. 13)

Then our boundary value problem has at least one solution on J.
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Proof Let us choose

- (1 + |palwr) |1l
=P \reE T ez

+ (w1 + 2)p(My + My) + a)szg],

and B, = {u € PC(J,R) | ||lu|lpc < r}. The operators S and N on B, are defined as

1 _ g1
0 (lr(S;) f (s, u(s)) ds

t(r_ a1
(Su)(t)=/0 (tr(sq);f £ (s,u(s)) ds — powa(£)

11 g2
- Mla)l(t)/(; (rl‘(qs_) l)f(S, u(s)) ds

and

)4

b p
(Nu)(t) = —en(0) D ()t = () Y Jj(u®) + on(6) Y (u()
j=1

j=1 j=1

p p
Y Ji(u@) -1 =Y L(u)).

j=k+1 j=k+1

For any u,v € B, and ¢ € ], by using |f (¢, )| < p(t) and the Holder inequality,

F(q)/ (t s)? s,u(s) dSSTq)(/ (t - s)lods> </0 (p(s))" )

ol 1
< Lo
~ D ")1 o’

s 1 1 o
F(q)/|l s)at (s,u(s) |ds_F( )</ 1- s)lvds) (/0 (p(s))"ds)

ol 2
< Lo
NG ”)1 o’

and at last
1 1 ) 1 1 2 1-o 1 . .
F(q-l)/o =9 (s uts)) | ds < _1)(f (l—s)mds) (/ (o)* d )
ol 1
F(q 1)(‘1‘_’”1)1_0'
We get
1S+ Nl < 1+ |M2|a)2)||,0||L% lialanlloll, 1
u+Nv| <

D(q)(£2)1- F(q (5= 1)1 ’
+ (w1 + 2)p(M; + M3) + wrpM;.
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Thus Su + Nv € B,. By (13), it is obvious that N is a contraction mapping. Moreover, the
continuity of f implies S is continuous. And the operator S is uniformly bounded on B,

where

A+ [pzl@)llpll 1 luilenlloll, 1
S ATEr <
F@OED~ " Tg-1 =

[Sull <

Here the quasi-equicontinuity of the operator S is proved. Let A =] X By, fup =

SUD (e |f(t,u)|. For any & < £ < tj < tx41, we have

|(Su)(t2) - (Su)(t)|

< fS“P /tZ [(tz - S)qfl —(t - S)qfl] ds + /;2 (tll:(;))q__l ds‘

~I'(g)
gl
“)/ F(S)q s

_¢)q-2
&ds‘
o I'(g-1)

(t—t)T+t1—t] ool [(£5 — £])]

stu”[ rg+1 T+

qul(tZ—tf)]
INC)

(a—t1)

1]

It tends to zero as t, — t;. On the interval (¢, 1], S is quasi-equicontinuous. Also by
lemma ( 4), S is compact and is relatively compact on B,. Therefore our BVP has at least
one solution on J = [0,1]. O

2.2 Examples
Example 9 Consider the following boundary value problem of fractional differential
equation:

3
2 _ cos u(t)
DO* ( ) - (t+10)2(1+u6(t))’

)
Au ( ) 100+|u( )’

1 lu(} )\
Aul (3) 100+|u(%)|’

u(0) + u(1) = 0,
u(1) + u(0) =

Here t € [0,1], let

o1=0=0,

Ly=L,=1L3=0.01,
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and since 0.88 < I'(1.5) < 0.89 and 1.33 < I"'(2.5) < 1.34, we found

Therefore,

<(1 +199) 299
0.01

o5 ‘T (1'5)> +(0.01 + 0.01)(2.99 +2) + 0.01(1.99) < 1,

0.01(2.24 + 3.38) + (0.02)(4.99) + (0.01)(1.99) < 1,
0.0562 + 0.0998 + 0.0199 < 1,

0.1759 < 1.

Thus, by Theorem 7, the BVP has a unique solution on [0, 1].
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