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Abstract
In this paper, we deal with the asymptotics and oscillation of the solutions of
higher-order nonlinear dynamic equations with Laplacian and mixed nonlinearities of
the form

{
rn–1(t)φαn–1

[
(rn–2(t)(· · · (r1(t)φα1

[
x�(t)

]
)
� · · · )�)

�]}�

+
N∑

ν=0

pν (t)φγν (x(gν (t))) = 0

on an above-unbounded time scale. By using a generalized Riccati transformation
and integral averaging technique we study asymptotic behavior and derive some
new oscillation criteria for the cases without any restrictions on g(t) and σ (t) and
when n is even and odd. Our results obtained here extend and improve the results of
Chen and Qu (J. Appl. Math. Comput. 44(1-2):357-377, 2014) and Zhang et al. (Appl.
Math. Comput. 275:324-334, 2016).
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1 Introduction
We are concerned with the asymptotic and oscillatory behavior of the higher-order non-
linear functional dynamic equation

{
rn–(t)φαn–

[(
rn–(t)

(· · · (r(t)φα

[
x�(t)

])� · · · )�)�]}�

+
N∑

ν=

pν(t)φγν

(
x
(
gν(t)

))
=  (.)

on an above-unbounded time scale T, assuming without loss of generality that t ∈ T. For
A ⊂ T and B ⊂ R, we denote by Crd(A, B) the space of right-dense continuous functions
from A to B and by C

rd(A, B) the set of functions in Crd(A, B) with right-dense continuous
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�-derivatives. We refer the readers to the books by Bohner and Peterson [, ] for an
excellent introduction of calculus of time scales. Throughout this paper, we suppose that:

(i) n, N ∈N, n ≥ , and φβ (u) := |u|β–u, β > ;
(ii) ri ∈ Crd([t,∞)T, (,∞)) for i = , , . . . , n –  are such that

∫ ∞

t

r–/αi
i (τ )�τ = ∞; (.)

(iii) αi > , i = , , . . . , n – , and γν > , ν = , , . . . , N , are constants such that

γν > γ, ν = , , . . . , l and γν < γ, ν = l + , l + , . . . , N ; (.)

(iv) pν ∈ Crd([t,∞)T, [,∞)), ν = , , . . . , N , are such that not all of the pν(t) vanish in
a neighborhood of infinity;

(v) gν : T → T are rd-continuous functions such that limt→∞ gν(t) = ∞, ν = , , . . . , N .
By a solution of equation (.) we mean a function x ∈ C

rd([Tx,∞)T,R) for some Tx ≥ 
such that x[i] ∈ C

rd([Tx,∞)T,R), i = , , . . . , n – , that satisfies equation (.) on [Tx,∞)T,
where

x[i] := riφαi

[(
x[i–])�]

, i = , , . . . , n, with rn = ,αn = , and x[] = x. (.)

A solution x(t) of equation (.) is said to be oscillatory if it is neither eventually positive
nor eventually negative. Otherwise, it is nonoscillatory.

Oscillation criteria for higher-order dynamic equations on time scales have been studied
by many authors. For instance, Grace et al. [] obtained sufficient conditions for oscillation
for the higher-order nonlinear dynamic equation

x�n (t) + p(t)
(
xσ

(
g(t)

))γ = ,

where γ is the quotient of positive odd integers, and where g(t) ≤ t. In [], some compari-
son criteria have been studied when g(t) ≤ t, and some oscillation criteria are given when
n is even and g(t) = t. The results in [] have been proved when

∫ ∞

t

∫ ∞

t

∫ ∞

s
p(u)�u�s�t = ∞. (.)

Wu et al. [] established Kamanev-type oscillation criteria for the higher-order nonlinear
dynamic equation

{
rn–(t)

[(
rn–(t)

(· · · (r(t)x�(t)
)� · · · )�)�]α}� + f

(
t, x

(
g(t)

))
= ,

where α is the quotient of positive odd integers, g : T → T with g(t) > t and limt→∞ g(t) =
∞, and there exists a positive rd-continuous function p(t) such that f (t,u)

uα ≥ p(t) for u �= .
Sun et al. [] proved some criteria for oscillation and asymptotic behavior of the dynamic
equation

{
rn–(t)

[(
rn–(t)

(· · · (r(t)x�(t)
)� · · · )�)�]α}� + f

(
t, x

(
g(t)

))
= ,
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where α ≥  is the quotient of positive odd integers, g : T → T is an increasing differen-
tiable function with g(t) ≤ t, g ◦ σ = σ ◦ g , and limt→∞ g(t) = ∞, and there exists a positive
rd-continuous function p(t) such that f (t,u)

uβ ≥ p(t) for u �=  and β ≥  is the quotient of
positive odd integers. Sun et al. [] studied quasilinear dynamic equations of the form

{
rn–(t)

[(
rn–(t)

(· · · (r(t)x�(t)
)� · · · )�)�]α}� + p(t)xβ (t) = ,

where α, β are the quotients of positive odd integers. Also, the results obtained in [–]
are presented when

∫ ∞

t


rn–(t)

{∫ ∞

t

[


rn–(s)

∫ ∞

s
p(u)�u

]/α

�s
}
�t = ∞. (.)

Hassan and Kong [] obtained asymptotics and oscillation criteria for the nth-order half-
linear dynamic equation

(
x[n–])�(t) + p(t)φα[,n–]

(
x
(
g(t)

))
= ,

where α[, n – ] := α · · ·αn–, and Grace and Hassan [] further studied the asymptotics
and oscillation for the higher-order nonlinear dynamic equation

(
x[n–])�(t) + p(t)φγ

(
xσ

(
g(t)

))
= .

However, the establishment of the results in [] requires the restriction on the time scale
T that g∗ ◦ σ = σ ◦ g∗ with g∗(t) = min{t, g(t)}, which is hardly satisfied. Hassan [] im-
proved the results in [, ] and established oscillation criteria for the higher-order quasi-
linear dynamic equation

(
x[n–])�(t) + p(t)φγ

(
x
(
g(t)

))
= 

when n is even or odd and when α > γ , α = γ , and α < γ with α = α · · ·αn–. Chen and Qu
[] considered the even-order advanced type dynamic equation with mixed nonlinearities

{
r(t)φγ

(
x�n– (t)

)}� +
N∑

ν=

pν(t)φγν

(
x
(
gν(t)

))
= , (.)

where n ≥  is even, γν > , gν(t) ≥ t, and γ > · · · > γl > γ > γl+ > · · · > γN > . Zhang et al.
[] studied the dynamic equation (.), where n ≥  is integer and g�

ν (t) > , and obtained
some of the results in [] when γ ≥ . Also, the results obtained in [, ] are given when

∫ ∞

t

[∫ ∞

v

(

r–(s)
∫ ∞

s

N∑

ν=

pν(τ )�τ

)/γ

�s

]

�v = ∞. (.)

Huang [] extended the work in [] to the neutral advanced dynamic equation

{
r(t)φα

(
y�n–

(t)
)}� +

N∑

ν=

pν(t)φγν

(
x
(
gν(t)

))
= ,
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where n ≥  is integer, y(t) := x(t) + p(t)x(g(t)), γν > , g(t) ≤ t, and gν(t) ≥ t. For more
results on dynamic equations, we refer the reader to the papers [–].

In this paper, we will discuss the higher-order nonlinear dynamic equation (.) with
mixed nonlinearities on a general time scale without any restrictions on g(t) and σ (t) and
also without conditions (.), (.), and (.). The results in this paper improve the results
in [, , –] on the oscillation of various dynamic equations.

2 Main results
We introduce the following notations:

k+ := max{k, }, k– := max{–k, } for any k ∈R,

and

α[h, k] :=

{
αh · · ·αk , h ≤ k,
, h > k,

(.)

with α = γ = α[, n – ] and βi = α[, i]. For any t, s ∈ T and for a fixed m ∈ {, , . . . , n – },
define the functions Rm,j(t, s), j = , , . . . , m, and p̂j(t), j = , , . . . , n – , by the following
recurrence formulas:

Rm,j(t, s) :=

{
, j = ,
∫ t

s [ Rm,j–(τ ,s)
rm–j+(τ ) ]/αm–j+�τ , j = , , . . . , m,

(.)

and

p̂j(t) :=

{∑N
ν= pν(t), j = ,

[ 
rn–j(t)

∫ ∞
t p̂j–(τ )�τ ]/αn–j , j = , , . . . , n – .

For a fixed m ∈ {, . . . , n – }, define the functions p̄m,j(t, s), j = , , , . . . , n – , by the re-
currence formula

p̄m,j(t, s) :=

{
pm(t, s), j = ,
[ 

rn–j(t)
∫ ∞

t p̄m,j–(τ , s)�τ ]/αn–j , j = , , . . . , n – ,
(.)

with

ϕm,ν(t, t) :=

{
, gν(t) ≥ σ (t),
Rm,m(gν (t),t)
Rm,m(σ (t),t) , gν(t) ≤ σ (t),

and

pm(t, s) = p(t)φα

(
ϕm,(t, s)

)
+

N∏

ν=

[
pν(t)φγν (ϕm,ν(t, s))

ην

]ην

such that

N∑

ν=

γνην = α and
N∑

ν=

ην = , (.)
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where

δ(t, s) :=

{
[
∫ ∞

t p̄m,n–m–(τ , s)�τ ]/βm–,  < βm ≤ ,
Rβm–

m,m (t, s), βm ≥ ,

provided that the improper integrals involved are convergent.
In the sequel, we present conditions that guarantee the following conclusions:

(C) (i) every solution of equation (.) is oscillatory if n is even;
(ii) every solution of equation (.) either is oscillatory or tends to zero eventually if

n is odd.

Theorem . Let conditions (i)-(v) hold. Furthermore, for each i ∈ {, , . . . , n – } and suf-
ficiently large T , T ∈ [t,∞)T, one of the following conditions is satisfied:

(a) either
∫ ∞

T p̄i,n–i–(τ , T)�τ = ∞, or
∫ ∞

T p̄i,n–i–(τ , T)�τ < ∞ and either

lim sup
t→∞

Rβi
i,i (t, T)

∫ ∞

t
p̄i,n–i–(τ , T)�τ > 

or

lim sup
t→∞

Ri,i(t, T)
(∫ ∞

t
p̄i,n–i–(τ , T)�τ

)/βi

> ;

(b) there exists ρi ∈ C
rd([t,∞)T, (,∞)) such that

lim sup
t→∞

∫ t

T

[
ρi(τ )p̄i,n–i–(τ , T) –

(ρ�
i (τ ))+

Rβi
i,i (σ (τ ), T)

]
�τ = ∞; (.)

(c) there exists ρi ∈ C
rd([t,∞)T, (,∞)) such that

lim sup
t→∞

∫ t

T

[
ρi(τ )p̄i,n–i–(τ , T)

–


ρ
βi
i (τ )

[
(ρ�

i (τ ))+

 + βi

]+βi[ r(τ )
Ri,i–(τ , T)

]βi/α]
�τ = ∞; (.)

(d) there exist ρi ∈ C
rd([t,∞)T, (,∞)) and Hi, hi ∈ Crd(D,R), where

D ≡ {(t, τ ) : t ≥ τ ≥ t}, such that

Hi(t, t) = , t ≥ t, Hi(t, τ ) > , t > τ ≥ t, (.)

and Hi has a nonpositive continuous �-partial derivative H�τ
i (t, τ ) with respect to

the second variable and satisfies

H�τ
i (t, τ ) + Hi(t, τ )

ρ�
i (τ )

ρσ
i (τ )

= –
hi(t, τ )
ρσ

i (τ )
Hβi/(+βi)

i (t, τ ) (.)
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and

lim sup
t→∞


Hi(t, T)

∫ t

T

[
ρi(τ )p̄i,n–i–(τ , T)Hi(t, τ )

–


ρ
βi
i (τ )

[
(hi(t, τ ))–

 + βi

]+βi[ r(τ )
Ri,i–(τ , T)

]βi/α]
�τ = ∞; (.)

(e) there exists ρi ∈ C
rd([t,∞)T, (,∞)) such that

lim sup
t→∞

∫ t

T

[
ρi(τ )p̄i,n–i–(τ , T)

–
(ρ�

i (τ ))

βiρi(τ )δσ (τ , T)

[
r(τ )

Ri,i–(τ , T)

]/α]
�τ = ∞; (.)

(f ) there exist ρi ∈ C
rd([t,∞)T, (,∞)) and Hi, hi ∈ Crd(D,R), where

D ≡ {(t, τ ) : t ≥ τ ≥ t}, such that (.) holds and Hi has a nonpositive continuous
�-partial derivative H�τ

i (t, τ ) with respect to the second variable and satisfies

H�τ
i (t, τ ) + Hi(t, τ )

ρ�
i (τ )

ρσ
i (τ )

= –
hi(t, τ )
ρσ

i (τ )
√

Hi(t, τ ) (.)

and

lim sup
t→∞


Hi(t, T)

∫ t

T

[
ρi(τ )p̄i,n–i–(τ , T)Hi(t, τ )

–
[(hi(t, τ ))–]

βiρi(τ )δσ (τ , T)

[
r(τ )

Ri,i–(τ , T)

]/α]
�τ = ∞. (.)

Moreover, for the case where n is odd, assume that, for an integer j ∈ {, , . . . , n – },

∫ ∞

T
p̂j(τ )�τ = ∞. (.)

Then conclusions (C) hold.

Example . Consider the higher-order nonlinear dynamic equation (.), where βi =
α[, i] ≤  and r(t) := tξ

β
with

ξ =

{
> if n is even,
≤ if n is odd,

and where

ri(t) :=
tαi

βi
, i = , . . . , n –  and p(t) :=

ζ

tα+φα(ϕi,(t, t))
with ζ > .

Choose an n-tuple (η,η, . . . ,ηn) with  < ηj <  satisfying (.). It is clear that conditions
(.) hold since

∫ ∞

t

r–/α
 (τ )�τ = β

/β


∫ ∞

t

�τ

τξ /α
= ∞ and

∫ ∞

t

r–/αi
i (τ )�τ = β

/αi
i

∫ ∞

t

�τ

τ
= ∞
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by [], Example .. By the Pötzsche chain rule we get

p̂(t) =
[


rn–(t)

∫ ∞

t
p̂(τ )�τ

]/αn–

≥ ζ /αn–

[
βn–

tαn–

∫ ∞

t


τβn–+ �τ

]/αn–

≥ ζ /αn–

[


tαn–

∫ ∞

t

(
–

τβn–

)�

�τ

]/αn–

=
ζ /αn–

tβn–+ =
ζ /α[n–,n–]

tβn–+ .

Also, since (.) implies limt→∞
ϕi,ν (t,T)
ϕi,ν (t,t) = , we obtain

p̄i,(t, T) =
[


rn–(t)

∫ ∞

t
p̄i,(τ , T)�τ

]/αn–

≥ ζ /αn–

[
βn–

tαn–

∫ ∞

t


τβn–+ �τ

]/αn–

≥ ζ /α[n–,n–]

tβn–+ .

It is easy to see that

p̂j(t), p̄i,j(t, T) ≥ ζ /α[n–j,n–]

tβn–j–+ , j = , , . . . , n – .

Therefore, we can find T∗ ≥ T ≥ T such that Ri,i–(t, T) ≥  for t ≥ T∗. Let us take ρi(t) =
tβi . Then, by the Pötzsche chain rule,

ρ�
i (t) =

(
tβi

)� = βi

∫ 



(
t + hμ(t)

)βi– dh ≤ βitβi–.

Hence,

lim sup
t→∞

∫ t

T

[
ρi(τ )p̄i,n–i–(τ , T)

–


ρ
βi
i (τ )

[
(ρ�

i (τ ))+

 + βi

]+βi[ r(τ )
Ri,i–(τ , T)

]βi/α]
�τ

≥
[
ζ /α[i+,n–] –

[

α

]βi/α[ βi

 + βi

]+βi]
lim sup

t→∞

∫ t

T∗


τ

�τ

= ∞

if

ζ /α[i+,n–] >
[


α

]βi/α[ βi

 + βi

]+βi

,
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and hence (.) holds. Also,

p̂n–(t) =
[


r(t)

∫ ∞

t
p̂n–(τ )�τ

]/α

≥ ζ /α
[

α

tξ

∫ ∞

t


τα+ �τ

]/α

≥ ζ /α
[


tξ

∫ ∞

t

(
–
τα

)�

�τ

]/α

=
ζ /α

t+ξ /α
.

If n is odd, then

∫ ∞

T
p̂n–(τ )�τ = ζ /α

∫ ∞

T

�τ

τ +ξ /α
= ∞,

so that condition (.) holds. Then, by Theorem .(c) conclusions (C) hold if

ζ /α[i+,n–] >
[


α

]βi/α[ βi

 + βi

]+βi

.

3 Lemmas
In order to prove the main results, we need the following lemmas. The first two lemmas
are extensions of Lemmas  and  in [] to the nonlinear equation (.) with exactly the
same proof.

Lemma . Let x(t) ∈ Cn
rd(T, [,∞)). Assume that (x[n–])�(t) is of eventually one sign and

not identically zero. Then there exists an integer m ∈ {, , . . . , n – } with m + n odd for
(x[n–])�(t) ≤  or with m + n even for (x[n–])�(t) ≥  such that

x[k](t) >  for k = , , . . . , m (.)

and

(–)m+kx[k](t) >  for k = m, m + , . . . , n –  (.)

eventually.

Lemma . Assume that equation (.) has an eventually positive solution x(t) and m ∈
{, , . . . , n – } is given in Lemma . such that (.) and (.) hold for t ∈ [t,∞)T for some
t ∈ [t,∞)T. Then the following hold for t ∈ (t,∞)T:

(a) for i = , , . . . , m,

x[m–i](t)
Rm,i(t, t)

is strictly decreasing; (.)

(b) for i ∈ {, , . . . , m} and j = , , . . . , m – i,

x[j](t) ≥ φ–
α[j+,m–i]

[
x[m–i](t)
Rm,i(t, t)

]
Rm,m–j(t, t). (.)
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Lemma . Assume that equation (.) has an eventually positive solution x(t) and m
is given in Lemma . such that m ∈ {, , . . . , n – } and (.) and (.) hold for t ≥ t ∈
[t,∞)T. Then, for t ∈ [t,∞)T, where gν(t) > t for t ≥ t, and for j = m, m + , . . . , n – ,

∫ ∞

t
p̄m,n–j–(τ , t)�τ < ∞

and

(–)m+jx[j](t) ≥ φα[,j]
(
xσ (t)

)∫ ∞

t
p̄m,n–j–(τ , t)�τ . (.)

Proof We show it by a backward induction. By Lemma . with m ≥  we see that x(t)
is strictly increasing on [t,∞)T. As a result, (.) and (.) hold for t ∈ [t,∞)T. Let
t ∈ [t,∞)T be fixed. Then, for ν = , , . . . , N , if gν(t) ≥ σ (t), then x(gν(t)) ≥ x(t) by the
fact that x(t) is strictly increasing. Now consider the case where gν(t) ≤ σ (t). In view of
Lemma .(a), we see that for i = m, x(t)

Rm,m(t,t) is decreasing on (t,∞)T and that there exists
t ≥ t such that gν(t) > t for t ≥ t, so that

x
(
gν(t)

) ≥ Rm,m(gν(t), t)
Rm,m(σ (t), t)

xσ (t) for t ∈ [t,∞)T.

In both cases, we have

x
(
gν(t)

) ≥ ϕm,ν(t, t)xσ (t) for t ∈ [t,∞)T.

Therefore,

N∑

ν=

pν(t)φγν

(
x
(
gν(t)

)) ≥
N∑

ν=

pν(t)φγν

(
ϕm,ν(t, t)

)[
xσ (t)

]γν

= φα

(
xσ (t)

) N∑

ν=

pν(t)φγν

(
ϕm,ν(t, t)

)[
xσ (t)

]γν–α .

Using the arithmetic-geometric mean inequality (see [], p.), we have

N∑

ν=

ηνvν ≥
N∏

ν=

vην
ν for any vν ≥ ,ν = , . . . , N .

Then, for t ≥ T,

N∑

ν=

pν(t)φγν

(
ϕm,ν(t, t)

)[
xσ (t)

]γν–α

= p(t)φα

(
ϕm,(t, t)

)
+

N∑

ν=

ην

pν(t)φγν (ϕm,ν(t, t))
ην

[
xσ (t)

]γν–α

≥ p(t)φα

(
ϕm,(t, t)

)
+

N∏

ν=

[
pν(t)φγν (ϕm,ν(t, t))

ην

]ην [
xσ (t)

]ην (γν–α).
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In view of (.), we have

N∑

ν=

γνην – α

N∑

ν=

ην = .

Hence,

N∑

ν=

pν(t)φγν

(
ϕm,ν(t, t)

)[
xσ (t)

]γν–α

≥ p(t)φα

(
ϕm,(t, t)

)
+

N∏

ν=

[
pν(t)φγν (ϕm,ν(t, t))

ην

]ην

= p(t, t).

This, together with (.), shows that, for t ∈ [t,∞)T,

–
(
x[n–](t)

)� ≥ p(t, t)φα

(
xσ (t)

)
= p̄m,(t, t)φα

(
xσ (t)

)
. (.)

Replacing t by τ in (.), integrating from t ∈ [t,∞)T to v ∈ [t,∞)T, and using (.), we
have

x[n–](t) > –x[n–](v) + x[n–](t) ≥
∫ v

t
p̄m,(τ , t)φα

(
xσ (τ )

)
�τ

≥ φα

(
xσ (t)

)∫ v

t
p̄m,(τ , t)�τ .

Hence, by taking limits as v → ∞ we obtain that

x[n–](t) ≥ φα

(
xσ (t)

)∫ ∞

t
p̄m,(τ , t)�τ .

This shows that
∫ ∞

t p̄m,(τ , t)�τ < ∞ and (.) holds for j = n – . Assume that
∫ ∞

t p̄m,n–j–(τ , t)�τ < ∞ and (.) holds for some j ∈ {m + , m + , . . . , n – }. Then, for
(.),

(–)m+j[x[j–](t)
]� = (–)m+jφ–

αj

[
x[j](t)
rj(t)

]

≥ φ–
αj

{
φα[,j]

(
xσ (t)

)}[ 
rj(t)

∫ ∞

t
p̄m,n–j–(τ , t)�τ

]/αj

= φα[,j–]
(
xσ (t)

)
p̄m,n–j(t, t).

Replacing t by τ and then integrating it from t ∈ [t,∞)T to v ∈ [t,∞)T, we have

(–)m+j–x[j–](t) > (–)m+j(x[j–](v) – x[j–](t)
)

≥
∫ v

t
φα[,j–]

(
xσ (τ )

)
p̄m,n–j(τ , t)�τ

≥ φα[,j–]
(
xσ (t)

)∫ v

t
p̄m,n–j(τ , t)�τ .
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Taking limits as v → ∞, we obtain that

(–)m+j–x[j–](t) ≥ φα[,j–]
(
xσ (t)

)∫ ∞

t
p̄m,n–j(τ , t)�τ .

This shows that
∫ ∞

t p̄m,n–j(τ , t)�τ < ∞ and (.) holds for j – . Therefore, the conclusion
holds. �

The following lemma improves [], Lemma ; also see [–].

Lemma . Let (.) hold. Then, there exists an N-tuple (η,η, . . . ,ηN ) with ην >  satis-
fying (.).

Lemma . (see []) Let ω(u) = au – bu+/β , where a, u ≥  and b,β > . Then

ω(u) ≤
(

β

b

)β(
a

 + β

)+β

.

4 Proofs of main results
Proof of Theorem . Assume that equation (.) has a nonoscillatory solution x(t). Then,
without loss of generality, assume that x(t) >  and x(gν(t)) >  for t ∈ [t,∞)T. It follows
from Lemma . that there exists an integer m ∈ {, , . . . , n – } with m + n odd such that
(.) and (.) hold for t ∈ [t,∞)T for some t ∈ [t,∞)T. Let t ≥ t be such that gν(t) > t

for t ∈ [t,∞)T.
(i) Assume that m ≥ .
Part I: Assume that (a) holds. By Lemma . we have that, for j = m,

∫ ∞

t
p̄m,n–m–(τ , t)�τ < ∞,

which contradicts
∫ ∞

t p̄m,n–m–(τ , t)�τ = ∞. If
∫ ∞

t p̄m,n–m–(τ , t)�τ < ∞, then by Lem-
ma . we have that, for j = m,

x[m](t) ≥ φα[,m]
(
xσ (t)

)∫ ∞

t
p̄m,n–m–(τ , t)�τ

≥ φβm

(
x(t)

)∫ ∞

t
p̄m,n–m–(τ , t)�τ . (.)

By Lemma .(b) with i =  and j =  we get

x(t) ≥ φ–
α[,m]

(
x[m](t)

)
Rm,m(t, t)

= φ–
βm

(
x[m](t)

)
Rm,m(t, t). (.)

Substituting (.) into (.), we obtain that

 ≥ Rβm
m,m(t, t)

∫ ∞

t
p̄m,n–m–(τ , t)�τ ,
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which contradicts lim supt→∞ Rβm
m,m(t, t)

∫ ∞
t p̄m,n–m–(τ , t)�τ > . Substituting (.) into

(.), we obtain that

 ≥ Rm,m(t, t)
(∫ ∞

t
p̄m,n–m–(τ , t)�τ

)/βm

,

which contradicts lim supt→∞ Rm,m(t, t)(
∫ ∞

t p̄m,n–m–(τ , t)�τ )/βm > .
Part II: Assume that (b) holds. Define

wm(t) := ρm(t)
x[m](t)
xβm (t)

. (.)

By the product rule and the quotient rule we have

w�
m(t) = ρm(t)

(
x[m](t)
xβm (t)

)�

+ ρ�
m(t)

(
x[m](t)
xβm (t)

)σ

= ρm(t)
(

xβm (t)(x[m](t))� – (xβm (t))�x[m](t)
(xβm (t))σ xβm (t)

)
+ ρ�

m(t)
(

x[m](t)
xβm (t)

)σ

= ρm(t)
(x[m](t))�

(xβm (t))σ
– ρm(t)

(xβm (t))�

(xβm (t))σ
x[m](t)
xβm (t)

+ ρ�
m(t)

(
x[m](t)
xβm (t)

)σ

. (.)

From Lemma . with j = m +  we have

–x[m+](t) ≥ φα[,m+]
(
xσ (t)

) ∫ ∞

t
p̄m,n–m–(τ , t) �τ , (.)

which, together with (.), implies that, for t ∈ [t,∞)T,

–
(
x[m](t)

)� ≥ φα[,m]
(
xσ (t)

)[ 
rm+(t)

∫ ∞

t
p̄m,n–m–(τ , t) �τ

]/αm+

= φβm

(
xσ (t)

)
p̄m,n–m–(t, t). (.)

Substituting (.) into (.), we obtain

w�
m(t) ≤ –ρm(t) p̄m,n–m–(t, t) + ρ�

m(t)
(

x[m](t)
xβm (t)

)σ

– ρm(t)
(xβm (t))�

(xβm (t))σ
x[m](t)
xβm (t)

.

When  < βm ≤ , since x(t) is strictly increasing, by Pötzsche chain rule ([], Thm. .)
we obtain

(
xβm (t)

)� = βm

∫ 



[
x(t) + h μ(t)x�(t)

]βm– dh x�(t)

= βm

∫ 



[
( – h)x(t) + h xσ (t)

]βm– dh x�(t)

≥ βm
[
xσ (t)

]βm–x�(t).
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Hence,

w�
m(t) ≤ –ρm(t) p̄m,n–m–(t, t) + ρ�

m(t)
(

x[m](t)
xβm (t)

)σ

– βmρm(t)
x�(t)
xσ (t)

(
x[m](t)
xβm (t)

)σ

≤ –ρm(t) p̄m,n–m–(t, t) + ρ�
m(t)

(
x[m](t)
xβm (t)

)σ

. (.)

When βm ≥ , since x(t) is strictly increasing, again by Pötzsche chain rule we obtain

(
xβm (t)

)� = βm

∫ 



[
x(t) + h μ(t)x�(t)

]βm– dh x�(t)

= βm

∫ 



[
( – h)x(t) + h xσ (t)

]βm– dh x�(t)

≥ βm
[
x(t)

]βm–x�(t).

Therefore,

w�
m(t) ≤ –ρm(t) p̄m,n–m–(t, t) + ρ�

m(t)
(

x[m](t)
xβm (t)

)σ

– βmρm(t)
x�(t)
x(t)

(
x[m](t)
xβm (t)

)σ

≤ –ρm(t) p̄m,n–m–(t, t) + ρ�
m(t)

(
x[m](t)
xβm (t)

)σ

. (.)

Then, for βm > ,

w�
m(t) ≤ –ρm(t) p̄m,n–m–(t, t) + ρ�

m(t)
(

x[m](t)
xβm (t)

)σ

. (.)

By using Lemma . (b) with i =  and j =  we see that

x(t) ≥ φ–
α[,m]

(
x[m](t)

)
Rm,m(t, t),

which implies

x[m](t)
xβm (t)

≤ 
Rβm

m,m(t, t)
. (.)

Substituting (.) into (.), we get

w�
m(t) ≤ –ρm(t) p̄m,n–m–(t, t) +

ρ�
m(t)

Rβm
m,m(σ (t), t)

≤ –ρm(t) p̄m,n–m–(t, t) +
(ρ�

m(t))+

Rβm
m,m(σ (t), t)

for t ∈ [t,∞)T.

Integrating both sides from t to t we get

∫ t

t

[
ρm(τ ) p̄m,n–m–(τ , t) –

(ρ�
m(τ ))+

Rβm
m,m(σ (τ ), t)

]
�τ ≤ wm(t) – wm(t) ≤ wm(t),

which contradicts (.).
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Part III: Assume that (c) holds. When  < βm ≤ , by the definition of wm(t), since x(t) is
strictly increasing, (.) can be written as

w�
m(t) ≤ –ρm(t) p̄m,n–m–(t, t) + ρ�

m(t)
(

wm(t)
ρm(t)

)σ

– βmρm(t)
x�(t)
xσ (t)

(
wm(t)
ρm(t)

)σ

. (.)

By using Lemma . (b) with i =  and j =  we see that

x[](t) ≥ φ–
α[,m]

(
x[m](t)

)
Rm,m–(t, t), (.)

which implies

x�(t)
xσ (t)

≥ φ–
α[,m](x

[m](t))
xσ (t)

[
Rm,m–(t, t)

r(t)

]/α

≥ φ–
α[,m](x

[m](t))
xσ (t)

[
Rm,m–(t, t)

r(t)

]/α

≥
[(

x[m](t)
xβm (t)

)σ]/βm[
Rm,m–(t, t)

r(t)

]/α

=
[(

wm(t)
ρm(t)

)σ ]/βm[
Rm,m–(t, t)

r(t)

]/α

. (.)

Substituting (.) into (.), we get, for  < βm ≤ ,

w�
m(t) ≤ –ρm(t) p̄m,n–m–(t, t) + ρ�

m(t)
(

wm(t)
ρm(t)

)σ

– βmρm(t)
[

Rm,m–(t, t)
r(t)

]/α[(
wm(t)
ρm(t)

)σ ]+/βm

.

When βm ≥ , by the definition of wm(t), (.) can be written as

w�
m(t) ≤ –ρm(t) p̄m,n–m–(t, t) + ρ�

m(t)
(

wm(t)
ρm(t)

)σ

– βmρm(t)
x�(t)
x(t)

(
wm(t)
ρm(t)

)σ

. (.)

By using Lemma . (b) with i =  and j =  we see that

x[](t) ≥ φ–
α[,m]

(
x[m](t)

)
Rm,m–(t, t),

which implies

x�(t)
x(t)

=
x�(t)
x(t)

≥ φ–
α[,m](x

[m](t))
x(t)

[
Rm,m–(t, t)

r(t)

]/α

≥ φ–
α[,m](x

[m](t))
x(t)

[
Rm,m–(t, t)

r(t)

]/α

=
[(

x[m](t)
xβm (t)

)σ]/βm[
Rm,m–(t, t)

r(t)

]/α

=
[(

wm(t)
ρm(t)

)σ ]/βm[
Rm,m–(t, t)

r(t)

]/α

. (.)
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Substituting (.) into (.), we get, for βm ≥ ,

w�
m(t) ≤ –ρm(t) p̄m,n–m–(t, t) + ρ�

m(t)
(

wm(t)
ρm(t)

)σ

– βmρm(t)
[

Rm,m–(t, t)
r(t)

]/α[(
wm(t)
ρm(t)

)σ ]+/βm

.

Hence, for βm >  and t ∈ [t,∞)T,

w�
m(t) ≤ –ρm(t) p̄m,n–m–(t, t) + ρ�

m(t)
(

wm(t)
ρm(t)

)σ

– βmρm(t)
[

Rm,m–(t, t)
r(t)

]/α[(
wm(t)
ρm(t)

)σ ]+/βm

(.)

≤ –ρm(t) p̄m,n–m–(t, t) +
(
ρ�

m(t)
)

+

(
wm(t)
ρm(t)

)σ

– βmρm(t)
[

Rm,m–(t, t)
r(t)

]/α[(
wm(t)
ρm(t)

)σ ]+/βm

. (.)

Using Lemma . with

a :=
(
ρ�

m(t)
)

+, b := βmρm(t)
[

Rm,m–(t, t)
r(t)

]/α

, β := βm and u :=
(

wm(t)
ρm(t)

)σ

,

we obtain

(
ρ�

m(t)
)

+

(
wm(t)
ρm(t)

)σ

– βmρm(t)
[

Rm,m–(t, t)
r(t)

]/α[(
wm(t)
ρm(t)

)σ]+/βm

≤
(

βm

βmρm(t)

[
r(t)

Rm,m–(t, t)

]/α)βm[
(ρ�

m(t))+

 + βm

]+βm

=


ρ
βm
m (t)

[
(ρ�

m(t))+

 + βm

]+βm[
r(t)

Rm,m–(t, t)

]βm/α

.

From this and from (.) we have

w�
m(t) ≤ –ρm(t)p̄m,n–m–(t, t) +


ρ

βm
m (t)

[
(ρ�

m(t))+

 + βm

]+βm[
r(t)

Rm,m–(t, t)

]βm/α

.

Integrating both sides from t to t, we get

∫ t

t

[
ρm(τ )p̄m,n–m–(τ , t)

–


ρ
βm
m (τ )

[
(ρ�

m(τ ))+

 + βm

]+βm[
r(τ )

Rm,m–(τ , t)

]βm/α]
�τ ≤ wm(t) – wm(t) ≤ wm(t),

which contradicts (.).
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Part IV: Assume that (d) holds. Multiplying both sides of (.), with t replaced by τ , by
Hm(t, τ ) and integrating with respect to τ from t to t ∈ [t,∞)T, we have

∫ t

t

ρm(τ )p̄m,n–m–(τ , t)Hm(t, τ )�τ

≤ –
∫ t

t

Hm(t, τ )w�
m(τ )�τ

+
∫ t

t

Hm(t, τ )ρ�
m(τ )

(
wm(τ )
ρm(τ )

)σ

�τ

– βm

∫ t

t

ρm(τ )Hm(t, τ )
[

Rm,m–(τ , t)
r(τ )

]/α[(
wm(τ )
ρm(τ )

)σ ]+/βm

�τ .

Integrating by parts and using (.) and (.), we obtain
∫ t

t

ρm(τ )p̄m,n–m–(τ , t)Hm(t, τ )�τ

≤ Hm(t, t)wm(t) +
∫ t

t

H�τ
m (t, τ )wσ

m(τ )�τ

+
∫ t

t

Hm(t, τ )ρ�
m(τ )

(
wm(τ )
ρm(τ )

)σ

�τ

– βm

∫ t

t

ρm(τ )Hm(t, τ )
[

Rm,m–(τ , t)
r(τ )

]/α[(
wm(τ )
ρm(τ )

)σ ]+/βm

�τ

≤ Hm(t, t)w(t) +
∫ t

t

[(
hm(t, τ )

)
–

(
Hm(t, τ )

) βm
+βm

(
wm(τ )
ρm(τ )

)σ

– βmρm(τ )Hm(t, τ )
[

Rm,m–(τ , t)
r(τ )

]/α[(
wm(τ )
ρm(τ )

)σ ]+/βm]
�τ . (.)

Using Lemma . with

a :=
(
hm(t, τ )

)
–

(
Hm(t, τ )

) βm
+βm , b := βmρm(τ )Hm(t, τ )

[
Rm,m–(τ , t)

r(τ )

]/α

,

and

β := βm, u :=
(

wm(t)
ρm(t)

)σ

,

we get

(
hm(t, τ )

)
–

(
Hm(t, τ )

) βm
+βm

(
wm(τ )
ρm(τ )

)σ

– βmρm(τ )Hm(t, τ )
[

Rm,m–(τ , t)
r(τ )

]/α[(
wm(τ )
ρm(τ )

)σ ]+/βm

≤ 
( + βm)+βm

[(hm(t, τ ))–]+βm

ρ
βm
m (τ )

[
r(τ )

Rm,m–(τ , t)

]βm/α

=


ρ
βm
m (τ )

[
(hm(t, τ ))–

 + βm

]+βm[
r(τ )

Rm,m–(τ , t)

]βm/α

.
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From this last inequality and from (.) we have
∫ t

t

[
ρm(τ )p̄m,n–m–(τ , t)Hm(t, τ )

–


ρ
βm
m (τ )

[
(hm(t, τ ))–

 + βm

]+βm[
r(τ )

Rm,m–(τ , t)

]βm/α]
�τ ≤ Hm(t, t)wm(t),

which implies that


Hm(t, t)

∫ t

t

[
ρm(τ )p̄m,n–m–(τ , t)Hm(t, τ )

–


ρ
βm
m (τ )

[
(hm(t, τ ))–

 + βm

]+βm[
r(τ )

Rm,m–(τ , t)

]βm/α]
�τ ≤ wm(t),

contradicting assumption (.).
Part V: Assume that (e) holds. From (.) we have

w�
m(t) ≤ –ρm(t)p̄m,n–m–(t, t) + ρ�

m(t)
(

wm(t)
ρm(t)

)σ

– βmρm(t)
[

Rm,m–(t, t)
r(t)

]/α[(
wm(t)
ρm(t)

)σ ]+/βm

≤ –ρm(t)p̄m,n–m–(t, t) + ρ�
m(t)

(
wm(t)
ρm(t)

)σ

– βmρm(t)
[

Rm,m–(t, t)
r(t)

]/α[(
wm(t)
ρm(t)

)σ ]/βm–[(
wm(t)
ρm(t)

)σ ]

. (.)

When  < βm ≤ , in view of the definition of w and (.), we get

[(
wm(t)
ρm(t)

)σ ]/βm–

=
[(

x[m](t)
xβm (t)

)σ ]/βm–

≥
[∫ ∞

σ (t)
p̄m,n–m–(τ , t)�τ

]/βm–

. (.)

When βm ≥ , in view of the definition of w and (.), we get

[(
wm(t)
ρm(t)

)σ ]/βm–

=
[(

x[m](t)
xβm (t)

)σ ]/βm–

≥ [
Rσ

m,m(t, t)
]βm–. (.)

Thus, by (.), (.), and the definition of δ(t, t), (.) becomes

w�
m(t) ≤ –ρm(t)p̄m,n–m–(t, t) + ρ�

m(t)
(

wm(t)
ρm(t)

)σ

– βmρm(t)δσ (t, t)
[

Rm,m–(t, t)
r(t)

]/α[(
wm(t)
ρm(t)

)σ]

. (.)

Now,

ρ�
m(t)

(
wm(t)
ρm(t)

)σ

– βmρm(t)δσ (t, t)
[

Rm,m–(t, t)
r(t)

]/α[(
wm(t)
ρm(t)

)σ ]

=
(ρ�

m(t))

βmρm(t)δσ (t, t)

[
r(t)

Rm,m–(t, t)

]/α
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–
[√

βmρm(t)δσ (t, t)
[

Rm,m–(t, t)
r(t)

]/α[(
wm(t)
ρm(t)

)σ ]

–
ρ�

m(t)


√

βmρm(t)δσ (t, t)[ Rm,m–(t,t)
r(t) ]/α

]

≤ (ρ�
m(t))

βmρm(t)δσ (t, t)

[
r(t)

Rm,m–(t, t)

]/α

.

Therefore,

w�
m(t) ≤ –ρm(t)p̄m,n–m–(t, t) +

(ρ�
m(t))

βmρm(t)δσ (t, t)

[
r(t)

Rm,m–(t, t)

]/α

.

Integrating both sides from t to t, we get

∫ t

t

[
ρm(τ )p̄m,n–m–(τ , t)

–
(ρ�

m(τ ))

βmρm(τ )δσ (τ , t)

[
r(τ )

Rm,m–(τ , t)

]/α]
�τ ≤ wm(t) – wm(t) ≤ wm(t),

which contradicts (.).
Part VI: Assume that (f ) holds. Multiplying both sides of (.), with t replaced by τ , by

Hm(t, τ ) and integrating with respect to τ from t to t ∈ [t,∞)T, we have

∫ t

t

ρm(τ )p̄m,n–m–(τ , t)Hm(t, τ )�τ

≤ –
∫ t

t

Hm(t, τ )w�
m(τ )�τ +

∫ t

t

Hm(t, τ )ρ�
m(τ )

(
wm(τ )
ρm(τ )

)σ

�τ

– βm

∫ t

t

ρm(τ )Hm(t, τ )δσ (τ , t)
[

Rm,m–(τ , t)
r(τ )

]/α[(
wm(τ )
ρm(τ )

)σ]

�τ .

Integrating by parts and using (.) and (.), we obtain

∫ t

t

ρm(τ )p̄m,n–m–(τ , t)Hm(t, τ )�τ

≤ Hm(t, t)wm(t) +
∫ t

t

H�τ
m (t, τ )wσ

m(τ )�τ +
∫ t

t

Hm(t, τ )ρ�
m(τ )

(
wm(τ )
ρm(τ )

)σ

�τ

– βm

∫ t

t

ρm(τ )Hm(t, τ )δσ (τ , t)
[

Rm,m–(τ , t)
r(τ )

]/α[(
wm(τ )
ρm(τ )

)σ ]

�τ

≤ Hm(t, t)w(t)

–
∫ t

t

[
βmρm(τ )Hm(t, τ )δσ (τ , t)

[
Rm,m–(τ , t)

r(τ )

]/α[(
wm(τ )
ρm(τ )

)σ ]

–
(
hm(t, τ )

)
–

√
Hm(t, τ )

(
wm(τ )
ρm(τ )

)σ ]
�τ .
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Now,

βmρm(τ )Hm(t, τ )δσ (τ , t)
[

Rm,m–(τ , t)
r(τ )

]/α[(
wm(τ )
ρm(τ )

)σ ]

–
(
hm(t, τ )

)
–

√
Hm(t, τ )

(
wm(τ )
ρm(τ )

)σ

=
[√

βmρm(τ )Hm(t, τ )δσ (τ , t)
[

Rm,m–(τ , t)
r(τ )

]/α(wm(τ )
ρm(τ )

)σ

–
(hm(t, τ ))–


√

βmρm(τ )δσ (τ , t)[ Rm,m–(τ ,t)
r(τ ) ]/α

]

–
[(hm(t, τ ))–]

βmρm(τ )δσ (τ , t)

[
r(τ )

Rm,m–(τ , t)

]/α

≥ –
[(hm(t, τ ))–]

βmρm(τ )δσ (τ , t)

[
r(τ )

Rm,m–(τ , t)

]/α

.

Consequently,


Hm(t, t)

∫ t

t

[
ρm(τ )p̄m,n–m–(τ , t)Hm(t, τ )

–
[(hm(t, τ ))–]

βmρm(τ )δσ (τ , t)

[
r(τ )

Rm,m–(τ , t)

]/α]
�τ ≤ wm(t),

which contradicts assumption (.).
(ii) We show that if m = , then limt→∞ x(t) = . In fact, from Lemma . we see that it

is only possible when n is odd. In this case,

(–)kx[k](t) >  and
(
(–)kx[k](t)

)� <  for t ∈ [t,∞)T and k = , , . . . , n – .
(.)

Hence,

lim
t→∞(–)kx[k](t) = lk ≥  for k = , , . . . , n – .

We claim that limt→∞ x(t) = l = . Assume that l > . Then, for sufficiently large t ∈
[t,∞)T, we have x(gν(t)) ≥ l for t ≥ t. It follows that

φγν

(
x
(
gν(t)

)) ≥ lγν

 ≥ L for t ∈ [t,∞)T,

where L := minN
ν={lγν

 } > . Then from (.) we obtain

–
(
x[n–](t)

)� ≥ L
N∑

ν=

pν(t) = Lp̂(t).
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Integrating this from t to v ∈ [t,∞)T, we get

–x[n–](v) + x[n–](t) ≥ L
∫ v

t
p̂(τ )�τ ,

and by (.) we see that x[n–](v) > . Hence, by taking limits as v → ∞ we have

x[n–](t) ≥ L
∫ ∞

t
p̂(τ )�τ .

If
∫ ∞

t p̂(τ )�τ = ∞, then we have reached a contradiction. Otherwise,

(
x[n–](t)

)� ≥ L/αn–

[


rn–(t)

∫ ∞

t
p̂(τ )�τ

]/αn–

= L/αn– p̂(t).

Integrating this from t to v ∈ [t,∞)T and letting v → ∞, by (.) we get

–x[n–](t) ≥ L/αn–

∫ ∞

t
p̂(τ )�τ .

If
∫ ∞

t p̂(τ )�τ = ∞, then we have reached a contradiction. Otherwise,

–
(
x[n–](t)

)� ≥ L/α[n–,n–]
[


rn–(t)

∫ ∞

t
p̂(τ )�τ

]/αn–

= L/α[n–,n–]p̂(t).

Continuing this process, we get

–x[](t) ≥ L/α[,n–]
∫ ∞

t
p̂n–(τ )�τ .

If
∫ ∞

t p̂n–(τ )�τ = ∞, then we have reached a contradiction. Otherwise,

–x�(t) ≥ L/α[,n–]
[


r(t)

∫ ∞

t
p̂n–(τ )�τ

]/α

= L/αp̂n–(t).

Again, integrating from t to t ∈ [t,∞)T, we get

–x(t) + x(t) ≥ L/α
∫ t

t

p̂n–(τ )�τ .

If
∫ ∞

t p̂n–(τ )�τ = ∞, then we have limt→∞ x(t) = –∞, which contradicts the assumption
that x(t) >  eventually. This shows that if m = , then limt→∞ x(t) = . This completes the
proof. �
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