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Abstract
We consider a nonautonomous discrete competition system with nonlinear
interinhibition terms and feedback controls. By constructing a suitable Lyapunov
function, we obtain some criteria about the extinction of one of the two species and
the corresponding feedback controls varieties. Our conclusions not only supplement
but also improve some existing ones. Numerical simulations are used to illustrate our
analytic analysis. We show that feedback control variables play an important role in
the extinction property of the system.
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1 Introduction
Recently, much attention has been paid to the competition systems. For example, Wang et
al. [] considered the following two-species competition system with nonlinear interinhi-
bition terms:

⎧
⎨

⎩

ẋ(t) = x(t){r(t) – a(t)x(t) – c(t)x(t)
+x(t) },

ẋ(t) = x(t){r(t) – a(t)x(t) – c(t)x(t)
+x(t) },

(.)

where x(t), x(t) are the population densities of two competing species, a(t), a(t) are
the intraspecific competition rate of the first and second species, c(t), c(t) represent the
interspecific competing rates and r(t), r(t) are the intrinsic growth rates of species. Wang
et al. [] showed the existence and global asymptotic stability of positive almost periodic
solutions of model (.). For the ecological sense of model (.), we refer to [] and the
references therein.

Considering that the discrete-time models governed by difference equations are more
appropriate than the continuous ones when the populations have a short life expectancy
and nonoverlapping generations, Qin et al. [] introduced the following discrete analogue
of system (.):

⎧
⎨

⎩

x(n + ) = x(n) exp{r(n) – a(n)x(n) – c(n)x(n)
+x(n) },

x(n + ) = x(n) exp{r(n) – a(n)x(n) – c(n)x(n)
+x(n) }.

(.)

A good understanding of the permanence, existence, and global stability of positive pe-
riodic solutions was obtained in []. As for the almost periodic case, Wang and Liu []
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further studied the existence, uniqueness, and uniformly asymptotic stability of a positive
almost periodic solution of system (.). Extinction of species and the stability property
of another species were considered in []. Yue [] investigated system (.) with one toxin
producing species. Sufficient conditions that guarantee the extinction of one of the com-
ponents and the global attractivity of the other one were obtained in [].

Noting that ecosystems in the real world are often distributed by unpredictable forces
that can result in changes in biological parameters, Wang et al. [] proposed the following
model, system (.) with feedback controls:

⎧
⎪⎪⎨

⎪⎪⎩

x(n + ) = x(n) exp{r(n) – a(n)x(n) – c(n)x(n)
+x(n) – e(n)u(n)},

x(n + ) = x(n) exp{r(n) – a(n)x(n) – c(n)x(n)
+x(n) – e(n)u(n)},

�u(n) = –b(n)u(n) + d(n)x(n),�u(n) = –b(n)u(n) + d(n)x(n).

(.)

Wang et al. [] established a criterion for the existence and uniformly asymptotic stability
of unique positive almost periodic solution of system (.) with almost periodic parame-
ters. Yu [] further considered the influence of feedback control variables on the persistent
property of the system. On the other hand, as we all know, the extinction property is also
an important topic in the study of mathematical biology; however, until now there are still
no scholars investigating this property of system (.). Indeed, in this paper, we apply the
analysis technique of Chen et al. [], Xu et al. [], and Zhang et al. [] to obtain a set of
sufficient conditions that guarantee one of the two species and the corresponding feed-
back controls varieties will be driven to extinction. For more works in this direction, we
refer to [–] and the references therein.

For any bounded sequence {g(n)}, we denote gL = infn∈Z{g(n)}, gM = supn∈Z{g(n)}. For
convenience, we introduce the following assumptions:

(H) {ri(n)}, i = , , are bounded sequences defined on Z, and {ai(n)}, {ci(n)}, {di(n)}, and
{ei(n)}, i = , , are bounded nonnegative sequences defined on Z.

(H) Sequences {bi(n)} satisfy  < bL
i ≤ bM

i <  for all n ∈ Z.
(H) There exists a positive integer ω such that, for each i = , ,

lim inf
n→∞

n+ω–∑

s=n
ri(s) > .

(H) There exists a positive integer ρ such that, for each i = , ,

lim sup
n→∞

n+ρ–∏

s=n

(
 – bi(s)

)
< .

As regards the biological background, we focus our discussion on the positive solutions
of system (.). So, we consider (.) together with the following initial conditions:

xi() > , ui() > , i = , . (.)

It is obvious that the solutions of (.)-(.) are well defined and satisfy

xi(n) > , ui(n) > , i = , , for n ∈ Z. (.)
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The rest of this paper is organized as follows. In the next section, we study the extinc-
tion of one species and the corresponding feedback control varieties of system (.). Some
examples together with their numerical simulations are carried out to show the feasibility
of our results in Section . We end this paper with a brief discussion.

2 Extinction
In this section, we’ll establish sufficient conditions on the extinction of one of the two
species and the corresponding feedback controls varieties of system (.). Wang et al. []
showed that the positive solutions of system (.) were bounded eventually:

Lemma . (see []) Any positive solution (x(n), x(n), u(n), u(n))T of system (.) satis-
fies

lim sup
n→∞

xi(n) ≤ Bi, lim sup
n→∞

ui(n) ≤ Di, (.)

where Bi = exp(rM
i –)

aL
i

and Di = BidM
i

bL
i

for i = , .

We now come to study the extinction of species x and the feedback controls varieties
u of system (.).

Theorem . In addition to (H)-(H), further suppose that:

(H) lim sup
n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

< lim inf
n→∞

a(n)
c(n)

and

(H) lim sup
n→∞

e(n)
b(n)

< lim inf
n→∞

(
c(n)

( + B)d(n)
lim inf

n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

–
a(n)
d(n)

)

,

where B is defined in Lemma .. Then x and u will be driven to extinction, that is,
for any positive solution (x(n), x(n), u(n), u(n))T of system (.), limn→∞ x(n) =  and
limn→∞ u(n) = .

Proof According to Lemma ., for any ε >  small enough, there exists n >  large enough
such that, for n ≥ n,

x(n) ≤ B + ε, u(n) ≤ D, u(n) ≤ D, (.)

where D = max{D +ε, D +ε}. Thus, it follows from (H) that there exist positive constants
η and n ≥ n such that

n+ω–∑

s=n
ri(s) ≥ η for all n ≥ n.

By (H), (H), and (H) we can obtain that

lim inf
n→∞

e(n)
b(n)

> lim sup
n→∞

(
c(n)
d(n)

lim sup
n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

–
a(n)
d(n)

)

. (.)
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For the same ε, according to (H)-(H) and (.), we can choose positive constants
α,β ,γ , δ, and n ≥ n such that

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

<
α

β
– ε <

α

β
<

a(n)
c(n)

,

e(n)
b(n)

<
γ

α
<

βc(n) – α( + B + ε)a(n)
α( + B + ε)d(n)

and

e(n)
b(n)

>
δ

β
>

αc(n) – βa(n)
βd(n)

for all n ≥ n. Hence, we have:

n+ω–∑

s=n

(
βr(s) – αr(s)

)
< –εβη, (.)

αe(n) – γ b(n) < , (.)

αa(n) –
βc(n)

 + B + ε
+ γ d(n) < , (.)

δb(n) – βe(n) < , (.)

αc(n) – βa(n) – δd(n) < . (.)

Consider the Lyapunov function

V (n) = x–α
 (n)xβ

 (n) exp
{
γ u(n) – δu(n)

}
. (.)

By calculating we get

V (n + )
V (n)

= exp

{

βr(n) – αr(n) +
(
αe(n) – γ b(n)

)
u(n)

+
(
δb(n) – βe(n)

)
u(n) +

(

αa(n) –
βc(n)

 + x(n)
+ γ d(n)

)

x(n)

+
(

αc(n)
 + x(n)

– βa(n) – δd(n)
)

x(n)
}

≤ exp

{

βr(n) – αr(n) +
(
αe(n) – γ b(n)

)
u(n)

+
(
δb(n) – βe(n)

)
u(n) +

(

αa(n) –
βc(n)

 + B + ε
+ γ d(n)

)

x(n)

+
(
αc(n) – βa(n) – δd(n)

)
x(n)

}

.

It follows that from (.)-(.) that

V (n + ) ≤ V (n) exp
{
βr(n) – αr(n)

}
for all n ≥ n. (.)
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For any n ≥ n, we choose an integer m ≥  such that n ∈ [n + mω, n + (m + )ω). Inte-
grating (.) from n to n –  leads to

V (n) ≤ V (n) exp

{ n–∑

s=n

(
βr(s) – αr(s)

)
}

≤ V (n) exp

{n+mω–∑

s=n

+
n–∑

s=n+mω–

}
(
βr(s) – αr(s)

)

≤ V (n) exp{–εβηm + M}

≤ V (n) exp

{

–εβη

(
n – n

ω
– 

)

+ M

}

≤ V (n) exp

{

–
εβηn

ω
+ M∗



}

, (.)

where M∗
 = εβηn

ω
+ εβη + M and M = supn∈Z |βr(n) – αr(n)|ω. Relations (.), (.),

and (.) imply that that, for n ≥ n,

x(n) <
[
x–α

 (n)xβ
 (n) exp

{
(γ + δ)D

}
(B + ε)α exp

{
M∗


}] 

β exp

{

–
εηn
ω

}

. (.)

Hence, x(n) →  exponentially as n → ∞. Similarly to corresponding proof of Theo-
rem . in Chen et al. [], we can easily see that u(n) →  as n → ∞. This ends the proof
of Theorem .. �

Now, let us investigate the extinction property of species x and the feedback controls
varieties u in system (.), which is also an interesting problem, and we obtain the follow-
ing result.

Theorem . Let (x(n), x(n), u(n), u(n))T be any positive solution of system (.). Sup-
pose that (H)-(H) and the following inequalities hold:

(H) lim inf
n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

> lim sup
n→∞

c(n)
a(n)

,

(H) lim sup
n→∞

e(n)
b(n)

< lim inf
n→∞

(
c(n)

( + B)d(n)
lim inf

n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

–
a(n)
d(n)

)

,

where B is defined in Lemma .. Then limn→∞ x(n) =  and limn→∞ u(n) = .

Proof According to Lemma ., for any ε >  small enough, there exists a positive constant
n > n such that, for n ≥ n,

x(n) ≤ B + ε. (.)

By (H), (H), and (H) we obtain that

lim inf
n→∞

e(n)
b(n)

> lim sup
n→∞

(
c(n)
d(n)

lim sup
n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

–
a(n)
d(n)

)

. (.)
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For the same ε, according to (H)-(H) and (.), we can choose positive constants
α,β ,γ , δ, and n ≥ n such that:

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

>
α

β
+ ε >

α

β
>

a(n)
c(n)

,

e(n)
b(n)

<
δ

β
<

αc(n) – β( + B + ε)a(n)
β( + B + ε)d(n)

and

e(n)
b(n)

>
γ

α
>

βc(n) – αa(n)
αd(n)

for all n ≥ n. Hence, we have:

n+ω–∑

s=n

(
αr(s) – βr(s)

)
< –εβη, (.)

βe(n) – δb(n) < , (.)

–
αc(n)

 + B + ε
+ βa(n) + δd(n) < , (.)

γ b(n) – αe(n) < , (.)

–αa(n) + βc(n) – γ d(n) < . (.)

Consider the Lyapunov function

V (n) = xα
 (n)x–β

 (n) exp
{
δu(n) – γ u(n)

}
. (.)

By calculating and inequalities (.)-(.) we obtain that

V (n + )
V (n)

= exp

{

αr(n) – βr(n) +
(
γ b(n) – αe(n)

)
u(n)

+
(
βe(n) – δb(n)

)
u(n) +

(

–αa(n) +
βc(n)

 + x(n)
– γ d(n)

)

x(n)

+
(

–
αc(n)

 + x(n)
+ βa(n) + δd(n)

)

x(n)
}

≤ exp

{

αr(n) – βr(n) +
(
γ b(n) – αe(n)

)
u(n)

+
(
βe(n) – δb(n)

)
u(n) +

(
–αa(n) + βc(n) – γ d(n)

)
x(n)

+
(

–
αc(n)

 + B + ε
+ βa(n) + δd(n)

)

x(n)
}

≤ exp
{
αr(n) – βr(n)

}
. (.)

From (.), similarly to the analysis of of Theorem ., we can get the conclusion that
x(n) →  and u(n) →  as n → ∞. This ends the proof of Theorem .. �
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When ei(n) = bi(n) = di(n) =  (i = , ), (.) becomes (.), as discussed in []. Similarly
to the proofs of Theorems . and ., we can obtain the following:

Corrolary . In addition to (H)-(H), further suppose that

(H) lim sup
n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

< min

{

lim inf
n→∞

a(n)
c(n)

, lim inf
n→∞

c(n)
( + B)a(n)

}

,

where Bi (i = , ) are defined in Lemma .. Then the species x will be driven to extinction,
that is, for any positive solution (x(n), x(n))T of system (.), limn→∞ x(n) = .

Corrolary . Let (x(n), x(n))T be any positive solution of system (.). Suppose that

(H) lim inf
n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

> max

{

lim sup
n→∞

c(n)
a(n)

, lim sup
n→∞

( + B)a(n)
c(n)

}

,

where B is defined in Lemma .. Then limn→∞ x(n) = .

Remark . Comparing with Assumptions (H) and (H) given in [], we can see that our
assumptions in Corollaries . and . are weaker.

3 Example and numeric simulation
In this section, we give the following two examples to illustrate our main results.

Example . Consider the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(n + ) = x(n) exp{. – .x(n) – (+. sin(n))x(n)
+x(n) – .u(n)},

x(n + ) = x(n) exp{. – .x(n) – (+ cos(n))x(n)
+x(n) – .u(n)},

�u(n) = –(. + . sin(n))u(n) + .x(n),

�u(n) = –(. + . cos(n))u(n) + .x(n).

(.)

In this case, we have that (H)-(H) hold and B = exp(rM
 –)

aL


≈ ., and hence

lim sup
n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

= . < lim inf
n→∞

a(n)
c(n)

≈ ,

lim sup
n→∞

e(n)
b(n)

≈ .,

lim inf
n→∞

(
c(n)

( + B)d(n)
lim inf

n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

–
a(n)
d(n)

)

≈ ..

So all conditions in Theorem . ares satisfied, and x and u in system (.) are extinct.
Our numerical simulation supports this result (see Figure ).
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Figure 1 Dynamic behavior of system (3.1) with the initial conditions
(x1(0), x2(0), u1(0), u2(0)) = (0.1, 0.3, 0.2, 0.04)T and (0.2, 0.1, 0.6, 0.5)T .

Example . Consider the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(n + ) = x(n) exp{. – .x(n) – (.+. sin(n))x(n)
+x(n) – .u(n)},

x(n + ) = x(n) exp{. – .x(n) – (+cos(n))x(n)
+x(n) – .u(n)},

�u(n) = –(. + . sin(n))u(n) + .x(n),

�u(n) = –(. + . cos(n))u(n) + .x(n).

(.)

In this case, we have that (H)-(H) hold and B = exp(rM
 –)

aL


≈ ., and hence

lim inf
n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

=  > lim sup
n→∞

c(n)
a(n)

≈ .,

lim sup
n→∞

e(n)
b(n)

≈ ,

lim inf
n→∞

(
c(n)

( + B)d(n)
lim inf

n→∞

∑n+ω–
s=n r(s)

∑n+ω–
s=n r(s)

–
a(n)
d(n)

)

≈ ..

So all conditions in Theorem . are satisfied, and x and u in system (.) are extinct.
Numerical simulation also confirms our result (see Figure ).

4 Discussion
In this paper, we consider a two-species nonautonomous discrete competition system with
nonlinear interinhibition terms and feedback controls, that is, (.) which was discussed in
[, ]. However, until now, there are still no scholars investigating the extinction property
of system (.), which is also an important topic in mathematical biology. By developing the
analysis technique of Chen et al. [], Xu et al. [], and Zhang et al. [] we obtain sufficient
conditions that guarantee the extinction of one of the components and the corresponding
feedback controls varieties. When ei(n) = bi(n) = di(n) =  (i = , ), (.) becomes (.),
as discussed in [–]. As direct results of Theorems . and ., Corollaries . and .
improve and supplement those of [, , ]. Moreover, by comparing Theorem . with
Corollary ., and Theorem . with Corollary . we also found that, for such a kind of
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Figure 2 Dynamic behavior of system (3.1) with the initial conditions
(x1(0), x2(0), u1(0), u2(0)) = (0.1, 0.3, 0.2, 0.04)T and (0.2, 0.1, 0.6, 0.5)T .

systems, feedback control variables play an important role in the extinction property of
the system.
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