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Abstract
The purpose of this paper is to study oscillation of Runge-Kutta methods for linear
advanced impulsive differential equations with piecewise constant arguments. We
obtain conditions of oscillation and nonoscillation for Runge-Kutta methods.
Moreover, we prove that the oscillation of the exact solution is preserved by the
θ -methods. It turns out that the zeros of the piecewise linear interpolation functions
of the numerical solution converge to the zeros of the exact solution. We give some
numerical examples to confirm the theoretical results.
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1 Introduction
In the past three decades, the theory of differential equations with piecewise constant ar-
guments has been intensively studied. In , Cooke and Wiener [] studied differential
equations without impulses and noted that such equations were related to impulsive and
difference equations. Later, oscillation of discontinuous solutions of differential equations
with piecewise constant arguments has been proposed by Wiener as an open problem
[], p.. In recent years, the Euler method for impulsive and stochastic delay differen-
tial equations has been studied in [] and [], and impulsive delay difference equations
have been studied in []. Especially, oscillation of advanced impulsive differential equa-
tions with piecewise constant arguments has been studied in []. Furthermore, in [],
asymptotical stability of Runge-Kutta methods for the advanced linear impulsive differ-
ential equation with piecewise constant arguments was studied. In the present paper, we
study oscillation of Runge-Kutta methods for the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) + ax(t) + bx([t]) + cx([t + ]) = , t ≥ , t �= k, k = , , . . . ,

�x(k) = dx(k), k = , , . . . ,

x() = x,

(.)

where a, b, c, d, and x are real constants, �x(k) = x(k) – x(k–), and [·] denotes the greatest
integer function.

The rest of the paper is organized as follows. In Section , the results about oscillation of
the exact solutions of (.) in [] are introduced. In Section , the conditions of oscillation
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and nonoscillation for Runge-Kutta methods are obtained. In Section , the conditions of
oscillation and nonoscillation for θ -methods are obtained. Moreover, it is proved that the
oscillation of the exact solution is preserved by the θ -methods. It turns out that the zeros
of the piecewise linear interpolation functions of the numerical solution converge to the
zeros of the exact solution with the order of accuracy  (θ �= 

 ) and  (θ = 
 ). In the last

section, two simple numerical examples are given to confirm the theoretical results.

2 Preliminaries
Definition . (See [, ]) A function x(t) defined on [,∞) is said to be a solution of (.)
if it satisfies the following conditions:

() x : [,∞) → R is continuous for t ∈ [, +∞) with the possible exception of the
points [t] ∈ [,∞),

() x(t) is right continuous and has left-hand limit at the points [t] ∈ [,∞),
() x(t) is differentiable and satisfies x′(t) + ax(t) + bx([t]) + cx([t + ]) =  for any t ∈ R

+

with the possible exception of the points [t] ∈ [,∞) where one-sided derivatives
exist,

() x(n) satisfies �x(n) = dx(n) for n ∈ N and x() = x.

Theorem . (See [, ]) When a �= , Eq. (.) has on t ∈ [n, n + ), n = , , , . . . , a unique
solution x(t) defined by

x(t) = m
({t})x(n) + m

({t})x(n + ), (.)

( – d)x(n + ) – m()x(n) – m()x(n + ) = , (.)

where {t} = t – [t], m(t) = e–at + b
a (e–at – ), and m(t) = c

a (e–at – ).

Definition . (See []) The solution x(t) of (.) is said to be oscillatory if there exist
two real-valued sequences (tn)n≥, (t′

n)n≥ ⊆ [,∞) such that tn → ∞, t′
n → ∞ as n → ∞

and x(tn) ≤  ≤ x(t′
n) for n ≥ N with N sufficiently large. Otherwise, the solution is called

nonoscillatory.

Remark . When –d > , Definition . is equivalent to the following one: The solution
x(t) of (.) is said to be oscillatory if x(t) has arbitrarily large zeros, that is, for every T > ,
there exists a point t̂ > T such that x(t̂) = .

Theorem . (See []) Let a �= , c > , and  – d > . Then, all solutions of (.) are oscil-
latory if and only if

b ≥ a
ea – 

. (.)

3 Runge-Kutta methods
3.1 Oscillation of Runge-Kutta methods
Consider the Runge-Kutta methods for (.):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk,l+ = xk,l – h
∑v

i= bi(aY i
k,l + bxk, + cxk+,), k = , , . . . ,

Y i
k,l = xk,l – h

∑v
j= aij(aY j

k,l + bxk, + cxk+,), l = , . . . , m – ,

( – d)xk+, = xk,m,

x, = x,

(.)
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where h = 
m , m ≥ , m is an integer, and v is referred to as the number of stages. The

weights bi, the abscissaes ci =
∑v

j= aij, and the matrix A = [aij]v
i,j= will be denoted by

(A, b, c). Define

xn = xkm+l = xk,l, k = , , , . . . , l = , , . . . , m – , (.)

where n = km + l, and xn is an approximation of the solution x(nh) of (.), n = , , . . . .
For the above-mentioned Runge-Kutta methods, in the following, we always assume that

there exist δ <  and δ >  such that  < R(z) <  for δ < z <  and R(z) >  for  < z < δ,
which means that

R(z) – 
z

>  for δ < z < δ, (.)

where z = –ah, R(z) =  + zbT (I – zA)–e, and e = (, , . . . , )T is a vector of dimension v.

Definition . A nontrivial solution xn of (.)-(.) is said to be oscillatory if there ex-
ists a sequence nk such that nk → ∞ as k → ∞ and xnk xnk+ ≤ ; otherwise, it is called
nonoscillatory. We say that the Runge-Kutta method (.)-(.) for (.) is oscillatory
if all the nontrivial solutions of (.)-(.) are oscillatory; we say that the Runge-Kutta
method (.)-(.) for (.) is non-oscillatory if all the nontrivial solutions of (.)-(.)
are nonoscillatory.

Definition . We say that the Runge-Kutta method preserves oscillations of (.) if (.)
oscillates and there is h such that (.)-(.) oscillates for h < h.

Theorem . When a �= , c > , and  – d > , then the Runge-Kutta method (.)-(.)
for (.) is oscillatory if I – zA is invertible and

b ≥ aR(z)m

 – R(z)m (.)

for δ < z < δ.

Proof Assume that I – zA is invertible. For k = , , . . . and l = , , . . . , m, we can obtain that

xk,l = R(z)xk,l– +
b
a
(
R(z) – 

)
xk, +

c
a
(
R(z) – 

)
xk+,

=
(

R(z)l +
b
a
(
R(z)l – 

)
)

xk, +
c
a
(
R(z)l – 

)
xk+,,

which implies

xk+, =
R(z)m + b

a (R(z)m – )
 – d – c

a (R(z)m – )
· xk,. (.)

For δ < z < δ, equation (.) implies R(z)m + b
a (R(z)m – ) ≤  and – c

a (R(z)m – ) > . So
a �= , c > , –d > , and (.) imply xk,xk+, ≤ , that is, xkmx(k+)m ≤ . Hence, (.)-(.)
is oscillatory. �
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Lemma . (See [–]) The (j, k)-Padé approximation to ez is given by

R(z) =
Pj(z)
Qk(z)

, (.)

where

Pj(z) =  +
j

j + k
· z +

j(j – )
(j + k)(j + k – )

· z

!
+ · · · +

j!k!
(j + k)!

· zj

j!
,

Qk(z) =  –
k

j + k
· z +

k(k – )
(j + k)(j + k – )

· z

!
+ · · · + (–)k · k!j!

(j + k)!
· zk

k!
,

with error

ez – R(z) = (–)k · j!k!
(j + k)!(j + k + )!

· zj+k+ + O
(
zj+k+).

It is the unique rational approximation to ez of order j+k such that the degrees of numerator
and denominator are j and k, respectively.

Lemma . (See [, ]) Let R(z) be the (j, k)-Padé approximation to ez . Then, for z > 
(a < , z = –ah),

(i) R(z) < ez for all z >  if and only if k is even,
(ii) R(z) > ez for  < z < η if and only if k is odd;

and, for z <  (a > , z = –ah),
(i) R(z) > ez for all z <  if and only if j is even,

(ii) R(z) < ez for ς < z <  if and only if j is odd,
where η is a real zero of Qk(z), and ς is a real zero of Pj(z).

Theorem . If a �= , c > ,  – d > , and b ≥ a
ea– , then the Runge-Kutta method (.)-

(.) for (.) is oscillatory if any one of the following conditions holds:
() a < , and k is odd for h = 

m < min{ η

–a , δ
–a };

() a > , and j is odd for h = 
m < min{ ζ

–a , δ
–a }.

Proof When a <  and k is odd, by Lemma . we obtain that

R(z) > ez for  < z = –ah < η,

which implies that

e–a

 – e–a <
R(z)m

 – R(z)m <  for  < z = –ah < min{η, δ} and h =

m

,

which also implies that

aR(z)m

 – R(z)m <
ae–a

 – e–a =
a

ea – 
≤ b.

Hence, (.)-(.) is oscillatory by Theorem .. �
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3.2 Nonoscillation of Runge-Kutta methods
Lemma . If a �= , c > ,  – d > , and b < a

ea– , then the Runge-Kutta method (.)
satisfies b < aR(z)l

–R(z)l , that is, R(z)l + b
a (R(z)l – ) > , l = , , . . . , m, if any one of the following

conditions holds:
() a < , and k is even for h = 

m < – δ
a ;

() a > , and j is even for h = 
m < – δ

a .

Proof For brevity, we prove only part () of the lemma. When a <  and k is even, by
Lemma . we obtain that

 < R(z) < ez for  < z = –ah < δ,

which implies that, for l = , , . . . , m –  and h = 
m ,

R(z)l

 – R(z)l <
R(z)m

 – R(z)m <
e–a

 – e–a < ,

which also implies that

ae–a

 – e–a <
aR(z)m

 – R(z)m <
aR(z)l

 – R(z)l .

Hence, we obtain that

b <
a

ea – 
=

ae–a

 – e–a <
aR(z)m

 – R(z)m <
aR(z)l

 – R(z)l , l = , , . . . , m – . �

Lemma . If c > , x + b
a (x – ) > , and f (x) = – c

a (x–)
x+ b

a (x–)
, then

() f (x) is decreasing if a < ;
() f (x) is increasing if a > .

Proof It follows from c > , x + b
a (x – ) > , and

f ′(x) =
– c

a (x + b
a (x – )) + c

a (x – )( + b
a )

(x + b
a (x – ))

=
– c

a

(x + b
a (x – ))

that f ′(x) >  if a <  and f ′(x) <  if a > . Hence,
() f (x) is decreasing if a < ,
() f (x) is increasing if a > . �

Theorem . If a �= , c > ,  – d > , and b < a
ea– , then the Runge-Kutta method (.)-

(.) for (.) is nonoscillatory if any one of the following conditions holds:
() a < , and k is even for h = 

m < – δ
a ;

() a > , and j is even for h = 
m < – δ

a .

Proof For brevity, we prove only part () of the lemma. Without loss of generality, as-
sume that x > . Obviously, the conditions of Lemma . are fulfilled, and hence R(z)m +
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b
a (R(z)m – ) > . It follows from (.) that – c

a (R(z)m – ) > . Therefore, we can obtain that

xk, =
(R(z)m + b

a (R(z)m – )
 – d – c

a (R(z)m – )

)k

x > , k = , , . . . ,

which implies

xk,m = ( – d)xk+, > , k = , , , . . . ,

which also implies

xk,m =
(

R(z)m +
b
a
(
R(z)m – 

)
)

xk, +
c
a
(
R(z)m – 

)
xk+, > .

Consequently, we have

xk,

xk+,
=

– c
a (R(z)m – )

R(z)m + b
a (R(z)m – )

> .

By Lemma . we obtain that, for l = , , . . . , m, k = , , , . . . ,

– c
a (Rl(z) – )

R(z)l + b
a (R(z)l – )

>
– c

a (R(z)m – )
R(z)m + b

a (R(z)m – )
=

xk,

xk+,
> ,

which means that

xk,l =
(

R(z)l +
b
a
(
R(z)l – 

)
)

xk, +
c
a
(
R(z)l – 

)
xk+, > .

Hence, the Runge-Kutta method (.)-(.) is nonoscillatory. �

4 Piecewise linear interpolation of θ -methods
4.1 Oscillation of θ -methods
Consider the following θ -methods for (.):

⎧
⎪⎪⎨

⎪⎪⎩

xk,l+ = xk,l – ha( – θ )xk,l – haθxk,l+ – hbxk, – hcxk+,, l = , . . . , m – ,

( – d)xk+, = xk,m, k = , . . . ,

x, = x,

(.)

where h = 
m with integer m ≥ . Define

xn = xkm+l = xk,l, l = , , . . . , m – , k = , , , . . . , (.)

which is an approximation of the solution x(nh) of (.), n = , , . . . .

Lemma . For all m > |a|, we have
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(i) for a > ,

(

 +
z

 – zθ

)m

≥ e–a if and only if ϕ(–) ≤ θ ≤ ,

(

 +
z

 – zθ

)m

≤ e–a if and only if  ≤ θ ≤ 


;

(ii) for a < ,

(

 +
z

 – zθ

)m

≥ e–a if and only if



≤ θ ≤ ,

(

 +
z

 – zθ

)m

≤ e–a if and only if  ≤ θ ≤ ϕ(),

where ϕ(x) = 
x – 

ex– .

Applying Lemma ., we can obtain the following two results.

Theorem . If a �= , c > , –d > , and b ≥ a
ea– , th the en θ -method (.)-(.) preserves

the oscillation of (.) if any of the following conditions is satisfied:
() 

 ≤ θ ≤  and a <  for h = 
m , m > –a;

()  ≤ θ ≤ 
 and a >  for h = 

m , m > a.

Theorem . If a �= , c > ,  – d > , and b < a
ea– , then the θ -method (.)-(.) preserves

the nonoscillation of (.) if any of the following conditions is satisfied:
()  ≤ θ ≤ ϕ() and a <  for h = 

m , m > –a;
() ϕ(–) ≤ θ ≤  and a >  for h = 

m , m > a.

4.2 Piecewise linear interpolation of θ -methods
For convenience, define the functions yk(t) on the closed intervals [k, k + ], k = , , , . . . ,
as follows:

yk(t) =

⎧
⎨

⎩

x(t), t ∈ [k, k + ),

limt→k+– x(t), t = k + ,

where x(t) is the exact solution of (.). Obviously,

x(k + ) =


 – r
· x

(
k + –)

=


 – r
· yk(k + ).

Theorem . Let a �= , c > ,  – d > , and b > a
ea– . For any integer k, we have

() x(k)x(k + ) < ;
() x(t) has at most one zero at [k, k + ].

Proof () If a �= , c > ,  – d > , and b > a
ea– , then

e–a + b
a (e–a – )

 – d – c
a (e–a – )

< .
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By (.), that is,

x(k + ) =
e–a + b

a (e–a – )
 – d – c

a (e–a – )
· x(k),

we have

x(k + ) · x(k) < .

() Let t = k +α, α ∈ [, ]. For convenience, define Ak = x(k). It follows from Theorem .
that

yk(k + α) = Akm(α) + Ak+m(α). (.)

Suppose that xk(t) has two zeros k + α, k + α, and α �= α, α,α ∈ [, ]. Then we have

yk(k + α) = Akm(α) + Ak+m(α) = ,

yk(k + α) = Akm(α) + Ak+m(α) = .

It follows from
(

m(α) m(α)
m(α) m(α)

)

=
q
p
(
e–pα – e–pα

) �= 

that Ak = Ak+ = , which implies yk(t) ≡ . Hence, yk(t) has at most one zero at [k, k + ],
which implies that x(t) has at most one zero at [k, k + ]. �

Let x̄k(t), t ∈ [k, k + ], be the linear interpolation of (xk,l)l=,,...,m given by

x̄k(tk,l + ξh) = ξxk,l+ + ( – ξ )xk,l, (.)

where ξ ∈ [, ]. Define

x̄(t) = x̄k(t) for t ∈ [k, k + ), k = , , , . . . , (.)

which is a piecewise continuous numerical solution of (.). The following theorems give
the properties of x̄(t), t ≥ .

Theorem . Under the conditions of Theorem ., the piecewise linear interpolation
function x̄(t) defined by (.)-(.) satisfies

() x̄(t) – x(t) = O(h) (θ �= 
 ), x̄(t) – x(t) = O(h) (θ = 

 );
() x̄(t) has at most one zero in [k, k + ] for any integer k.

Proof () Obviously, by mathematical induction we can prove that, for any nonnegative
integer k,

x̄k(t) – yk(t) = O(h)
(

θ �= 


)

, x̄k(t) – yk(t) = O
(
h)

(

θ =



)

,
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which implies

x̄(t) – x(t) = O(h)
(

θ �= 


)

, x̄(t) – x(t) = O
(
h)

(

θ =



)

.

() Suppose that x̄k(t) has two zeros t = tk,l + ηh, t = tk,l + ηh. Then by (.) we have

mxk, + mxk+, = ,

mxk, + mxk+, = ,

where

m =
(

 +
z

 – zθ

)l(

 – η + η

(

 +
z

 – zθ

))

,

m =
q
p

((

 +
z

 – zθ

)l(

 – η + η

(

 +
z

 – zθ

))

– 
)

,

m =
(

 +
z

 – zθ

)l(

 – η + η

(

 +
z

 – zθ

))

,

m =
q
p

((

 +
z

 – zθ

)l(

 – η + η

(

 +
z

 – zθ

))

– 
)

.

Hence,

M = det

(
m m

m m

)

=
q
p

(

 +
z

 – zθ

)l(

 – η + η

(

 +
z

 – zθ

))

–
q
p

(

 +
z

 – zθ

)l(

 – η + η

(

 +
z

 – zθ

))

.

In the following, we will prove that M �= .
• If l = l, η �= η, then

M =
q
p

(

 +
z

 – zθ

)l
· (η – η)

(
z

 – zθ

)

�= .

• Else, if l �= l, η = η, then

M =
q
p

(

 – η + η

(

 +
z

 – zθ

))((

 +
z

 – zθ

)l
–

(

 +
z

 – zθ

)l)

�= .

• Else, if l �= l, η �= η, then, without loss of generality, let l > l and M = . Then

 +
z

 – zθ
<

(

 +
z

 – zθ

)l–l
=

 – η + η( + z
–zθ )

 – η + η( + z
–zθ )

<  – η + η

(

 +
z

 – zθ

)

<  +
z

 – zθ
(z > ),
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 +
z

 – zθ
>

(

 +
z

 – zθ

)l–l
=

 – η + η( + z
–zθ )

 – η + η( + z
–zθ )

>  – η + η

(

 +
z

 – zθ

)

>  +
z

 – zθ
(z < ),

and these contradictions lead to M �= .
Consequently, xk, = xk+, = , which implies x̄k(t) ≡ , which is a contradiction to part

() of the theorem. Hence, x̄k(t) has at most one zero in [k, k + ], which implies x̄(t) has at
most one zero in [k, k + ] for any integer k. �

Theorem . Assume that the conditions of Theorem . hold and x(t) = . Then there is
h >  such that, for h < h, there is a unique t̄ such that

() x̄(t̄) = ; moreover, t – t̄ = O(h) (θ �= 
 ), t – t̄ = O(h) (θ = 

 );
() x̄(t) intersects the axis of abscissas at t̄, that is, x̄(t̄) = ,

(i) x̄(k + (l + )h)x̄(k + (l – )h) <  for t̄ = k + lh,
(ii) x̄(k + (l + )h)x̄(k + lh) <  for t̄ = k + (l + μ)h ( < μ < ).

Proof () Assume that x(t) = , t ∈ (k, k + ). Then it follows from Theorem . that

x(k) · x(k + ) <  for t = k + α,  < α < .

Hence, by Theorem . there is h such that, for h < h,

x̄(k) · x̄(k + ) <  for t = k + α,  < α < .

It is easy to see from Theorem . that there is a unique t̄ ∈ (k, k + ) such that x̄(t̄) = .
Assume that t �= t̄. By Theorem . we obtain that

x(t) – x(t̄) = x(t) – x̄(t̄) +
(
x̄(t̄) – x(t̄)

)
= x(t) – x̄(t̄) + O(h)

= O(h)
(

θ �= 


)

,

x(t) – x(t̄) = x(t) – x̄(t̄) +
(
x̄(t̄) – x(t̄)

)
= x(t) – x̄(t̄) + O

(
h)

= O
(
h)

(

θ =



)

.

On the other hand,

x(t) – x(t̄) = x′(ξ )(t – t̄),

where ξ is in between t and t̄. So x′(ξ ) �= ; otherwise, x(t̄) = , which is contrary to Theo-
rem .. Hence,

|t – t̄| = O(h)
(

θ �= 


)

,

|t – t̄| = O
(
h)

(

θ =



)

.
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() • Assume that x̄(k + lh) = ,  ≤ l < m. Obviously, the first equation in (.) can be
rewritten as

xk,l+ = R(z)xk,l +
b
a
(
R(z) – 

)
xk, +

c
a
(
R(z) – 

)
xk+,

=
b
a
(
R(z) – 

)
xk, +

c
a
(
R(z) – 

)
xk+,, (.)

where R(z) =  + z
–zθ , z = –ah. Similarly, we can obtain

R(z)xk,l– = –
(

b
a
(
R(z) – 

)
xk, +

c
a
(
R(z) – 

)
xk+,

)

. (.)

It follows from (.) and (.) that

R(z)xk,l–xk,l+ = –
(

b
a
(
R(z) – 

)
xk, +

c
a
(
R(z) – 

)
xk+,

)

≤ .

Hence, since R(z) �= , by Theorem .() we immediately have xk,l–xk,l+ < , that is, x̄(k +
(l + )h)x̄(k + (l – )h) < .

• Assume that x̄(k + (l + μ)h) = ,  < μ < ,  ≤ l < m. It follows from Theorem .()
and x̄(k + (l + μ)h) = μxk,l+ + ( – μ)xk,l =  that

x̄
(
k + (l + )h

)
x̄(k + lh) < . �

5 Numerical experiments
Example . Consider the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) + x(t) + 
e– · x([t]) + cx([t + ]) = , t ≥ , t �= k, k ∈ Z

+,

�x(t) = d · x(t), t = k, k ∈ Z
+,

x() = x,

(.)

where x > , c > , and  – d > . Solving this equation, we get

x(t) =

⎧
⎨

⎩

(e–t + 
e– · (e–t – ))x, t ∈ [, ),

 t ≥ .

Obviously, the exact solution x(t) of (.) is oscillatory, which can also be proved by The-
orem .. By Theorem .(), the Runge-Kutta method (.)-(.) for (.) is oscillatory
since j is odd for h = 

m < min{–ζ , –δ} with integer m. All the numerical methods in the
last line of Table  preserve oscillation of (.), and by Theorem .(), the θ -method (.)-
(.) for (.) is oscillatory as  ≤ θ ≤ 

 for h = 
m with integer m > .

On the other hand, the Runge-Kutta method (.)-(.) for (.) is nonoscillatory as j is
an even positive integer, even though the stepsize h is very small. In fact, all the numerical
solutions of the Runge-Kutta method (.)-(.) for (.) are positive as j is even for h =

m < –δ with integer m, which can be proved similarly as in the proof of Theorem ..
Hence, all the numerical methods in the last line of Table  for (.) are nonoscillatory for
h = 

m < –δ with integer m.
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Table 1 Preservation of oscillation for six methods

Gauss-Legendre Radau IA, IIA Lobatto IIIA, IIIB Lobatto IIIC

(v, v) (v – 1, v) (v – 1, v – 1) (v – 2, v)
a < 0 v is odd v is odd v is even v is odd
a > 0 v is odd v is even v is even v is odd

Table 2 Preservation of nonoscillation for six methods

Gauss-Legendre Radau IA, IIA Lobatto IIIA, IIIB Lobatto IIIC

(v, v) (v – 1, v) (v – 1, v – 1) (v – 2, v)
a < 0 v is even v is even v is odd v is even
a > 0 v is even v is odd v is odd v is even

Table 3 The errors of the first zero between numerical solutions and exact solution of (5.2)

m Explicit Euler Trapezoidal rule Implicit Euler

AE RE AE RE AE RE

100 0.0020 0.0025 9.1599e–06 1.1672e–05 0.0020 0.0025
200 9.9290e–04 0.0013 2.2900e–06 2.9180e–06 9.9369e–04 0.0013
400 4.9657e–04 6.3277e–04 5.7249e–07 7.2951e–07 4.9673e–04 6.3296e–04
800 2.4833e–04 3.1644e–04 1.4312e–07 1.8238e–07 2.4832e–04 3.1643e–04

1,600 1.2418e–04 1.5824e–04 3.3076e–08 4.2148e–08 1.2421e–04 1.5828e–04
3,200 6.2108e–05 7.9142e–05 8.2691e–09 1.0537e–08 6.2109e–05 7.9144e–05
Ratio 1.9992 1.9992 4.0654 4.0654 2.0009 2.0009

Table 4 The errors of the third zero between numerical solutions and exact solution of (5.2)

m Explicit Euler Trapezoidal rule Implicit Euler

AE RE AE RE AE RE

100 0.0020 7.1229e–04 9.1599e–06 3.2893e–06 0.0020 7.1532e–04
200 9.9290e–04 3.5655e–04 2.2900e–06 8.2233e–07 9.9369e–04 3.5683e–04
400 4.9657e–04 1.7832e–04 5.1768e–07 1.8590e–07 4.9673e–04 1.7837e–04
800 2.4833e–04 8.9173e–05 6.8482e–08 2.4592e–08 2.4832e–04 8.9172e–05

1,600 1.2418e–04 4.4594e–05 3.3076e–08 1.1878e–08 1.2421e–04 4.4604e–05
3,200 6.2108e–05 2.2303e–05 5.6725e–09 2.0370e–09 6.2109e–05 2.2303e–05
Ratio 1.9992 1.9992 4.7769 4.7769 2.0009 2.0009

Example . Consider the following example from []:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) + x(t) + 
e– · x([t]) + x([t + ]) = , t ≥ , t �= k, k ∈ Z

+,

�x(t) = 
 · x(t), t = k, k ∈ Z

+,

x() = x.

(.)

By Theorem . we obtain that the exact solution x(t) of (.) is oscillatory. By The-
orem .() the Runge-Kutta method (.)-(.) for (.) is oscillatory as j is odd for
h = 

m < min{–ζ , –δ} with integer m. All the numerical methods in the last line of Table 
preserve oscillation of (.).

By Theorem .() the θ -method (.)-(.) for (.) is oscillatory as  ≤ θ ≤ 
 for h = 

m
with integer m > . Tables  and  roughly illustrate that the zeros of the piecewise linear
interpolation of θ -methods converge to the corresponding zeros of the exact solution with
the order of accuracy  (θ �= 

 ) and  (θ = 
 ), which is in agreement with Theorem ..
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