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Abstract
This paper is concerned with the problem of a passivity analysis for a class of
memristor-based neural networks with multiple proportional delays and the state
estimator is designed for the memristive system through the available output
measurements. By constructing a proper Lyapunov-Krasovskii functional, new criteria
are obtained for the passivity and state estimation of the memristive neural networks.
Finally, a numerical example is given to illustrate the feasibility of the theoretical
results.
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1 Introduction
In , the memristor was proposed by Chua [] as the fourth passive circuit element.
Compared with the three conventional fundamental circuit elements (resistor, inductor,
and capacitor), the memristor is a nonlinear time-varying element. The first practical
memristor device was found by Strukov et al. [] in . The memristor presents the
relationship between the charge (q) and flux (ϕ), i.e., dϕ = M dq. The memristor retains
its most recent value when the voltage is turned off, so it re-expresses the retained value
when it is turned on. This feature makes them useful as energy-saving devices that can
compete with flash memory and other static memory devices. Some classes of memris-
tors also have nonlinear response characteristics which makes them doubly suitable as
artificial neurons.

Existing results show that the electronic synapses and neurons can represent important
functionalities of their biological counterparts []. Recently, the simulation of different
kinds of memristors has developed rapidly and the studies of memristive neural networks
have aroused more attention [–]. In [], Wang et al. considered the following mem-
ristive neurodynamic system:

ẋi(t) = –

Ci

[ n∑
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Rij

× signij +
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]
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where xi(t) is the voltage of the capacitor Ci at time t, Rij denotes the resistor through the
feedback function gi(xi(t)) and xi(t), Ri represents the parallel-resistor corresponding the
capacitor Ci, and

signij =

{
, i �= j,
–, i = j.

Based on two kinds of memductance functions, finite-time stability criteria were obtained
for memristive neural networks with stochastic perturbations. The analysis employed dif-
ferential inclusions theory, finite-time stability theorem, linear matrix inequalities, and
the Lyapunov functional method.

In practice, due to the finite speed of information processing and the inherent commu-
nication time of neurons, time delays are frequently encountered in many biological and
artificial neural networks. As correctly pointed out in [–], time delays may cause un-
desirable dynamical network behaviors such as oscillations, divergences, and so on. Con-
sequently, it is valuable to investigate the problems of dynamics analysis for neural net-
works with time delay. By using different approaches, many significant results have been
reported such as the global robust passivity analysis in [] and the passivity analysis in
[–]. In order to investigate the effect of time delay upon the dynamics of the memris-
tive neural networks, Wu and Zeng [] considered the following system:

ẋi(t) = –xi(t) +
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j=

aij
(
xi(t)

)
fj
(
xj(t)

)
+

n∑
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)
fj
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+ ui(t),

zi(t) = fi
(
xi(t)

)
+ fi

(
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)
+ ui(t), t ≥ , i = , , . . . , n,

(.)

where τj is the time delay that satisfies  ≤ τj ≤ τ (τ ≥  is a constant). ui(t) and zi(t) denote
external input and output, respectively, fj(·) is the neuron activation function satisfying
fj() = , aij(xi(t)) and bij(xi(t)) represent memristor-based weights. Based on the theories
of nonsmooth analysis and linear matrix inequalities, by using a suitable Lyapunov func-
tional, the exponential passivity was studied for the memristive neural networks with time
delays.

Proportional delay is a time-varying delay with time proportionality, which is usually re-
quired in web quality of service routing decisions. Different from the constant time delay,
bounded time-varying delay, and distributed delay, the proportional delay is unbounded
and time-varying. Recently, routing algorithms were obtained in [, ] based on neural
networks. These routing algorithms were proven to be able to get the exact solutions for
the problems which have a high parallelism. As well known, there exists a spatial extent in
neural networks as the presence of parallel pathways of different axonal sizes and lengths.
Accordingly, it is reasonable to use continuously proportional delays to describe the topol-
ogy structure and parameters of neural networks. The proportional delayed systems have
aroused many scholars’ attention [, , ]. In [], Wang et al. investigated the following
memristive neural networks with multiple proportional delays:
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Liu and Xu Advances in Difference Equations  (2017) 2017:34 Page 3 of 20

where

aij
(
xi(t)

)
=
Mij

Ci
× signij, bij

(
xi(t)

)
=
Wij

Ci
× signij, signij =

{
, i �= j,
–, i = j,

xi(t) is the voltage of the capacitor Ci at time t, Mij and Wij denote the memductances
of memristor Rij and R̂ij, respectively. Rij represents the memristor between the neu-
ron activation function fj(xj(t)) and xi(t). R̂ij represents the memristor between the neu-
ron activation functions fj(xj(qjt)) and xi(t). qjt is a proportional delay factor satisfying
qjt = t – ( – qj)t, in which ( – qj)t corresponds to the time delay required in processing
and transmitting a signal from the jth neuron to the ith neuron. By using the differential in-
clusion theory to handle the memristive neural networks with discontinuous right-hand
side, several criteria ensuring anti-synchronization of memristive neural networks with
multiple proportional delays were presented.

As well known, memristor-based neural networks are state-dependent switched nonlin-
ear systems. The passivity theory, originating from circuit theory, is the most important
issue in the analysis and design of switched systems. In the passivity theory, the passivity
means that systems can keep internally stable. Therefore, the passivity theory provides
a tool to analyze the stability of control systems and it has been applied in many areas.
Based on the passivity theory, the authors in [] dealt with the problems of sliding mode
control for uncertain singular time-delay systems. In [], the authors designed a mode-
dependent state feedback controller by applying the passivity theory. The design of a pas-
sive controller based on the passivity analysis of nonlinear systems has become an effective
way to solve practical engineering problems, for example, passivity-based control of three-
phase AC/DC voltage-source converters. For details, the reader is referred to [, ] and
the references therein. As state-dependent switched nonlinear systems, memristive neural
networks include too many subsystems. The product of input and output is utilized as the
energy provision of the passive systems, which embodies the energy attenuation character.
Passivity analysis of memristive neural networks provides a way to understand the com-
plex brain functionalities with the adoption of memristor-MOS technology designs [].
In recent years, although some research results have been concerned with the passivity
problem for memristive neural networks, little attention has been paid to the problem of
state estimation for memristor-based neural networks with multiple proportional delays
based on passivity theory. Due to the importance of proportional delays in web quality of
service routing decisions, we carry out this work to shorten the gap.

Motivated by the works in [, , ] and the circuit design in [, –], a class of
memristive neural networks with multiple proportional delays is considered. By construct-
ing a proper Lyapunov-Krasovskii functional, passivity criteria are obtained for the given
delayed system, and then the state estimator is designed for the memristive system through
available output measurements based on passivity theory.

The rest of this paper is organized as follows. In Section , the corresponding delayed
neurodynamic equation for the presented memristive circuit is established and prelimi-
naries are given. The theoretic results are derived in Section . In Section , the validity
of the theoretical analysis is discussed through a numerical example.
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2 Model description and preliminaries
In this paper, we consider the following memristor-based neural networks with multiple
proportional delays which is unbounded:

ẋi(t) = –dixi(t) +
n∑
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aij
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fj
(
xj(t)

)
+
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or equivalently
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(
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(
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(
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(
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(.)

System (.) can be implemented by the large-scale integration circuits as shown in Fig-
ure , and system (.) can be obtained using Kirchhoff’s current law. x(t) = [x(t), x(t),
. . . , xn(t)]T ∈ R

n is the voltage of the capacitor Ci at time t, ρ(t) = [ρ(t),ρ(t), . . . ,ρn(t)]T

represents the proportionality delay factor and  < qj ≤ , ρj(t) = t – ( – qj)t, where
( – qj)t is the time delay required in processing and transmitting a signal between neu-
rons and ( – qj)t is a time-varying continuous function satisfying ( – qj)t → +∞ as qj �= ,
t → +∞. fj(xj(t)) and fj(xj(ρj(t))) are the nonlinear neuron activation functions of the
jth neuron at time t and qjt, respectively. I(t) = [I(t), I(t), . . . , In(t)]T is the input vector
at time t, y(t) = [y(t), y(t), . . . , yn(t)]T ∈ R

n denotes the output vector of the networks.
D = diag(d, d, . . . , dn) describes the rate with which each neuron will reset its potential to
the resting state in isolation when disconnected from the networks and external inputs.
A(x(t)) = (aij(xi(t)))n×n and B(x(t)) = (aij(xi(t)))n×n represent the memristor-based connec-

Figure 1 The circuit of memristive neural networks (2.1). xi(t) is the state of the ith subsystem, Rij and Fij
represent the memristors, fj is the amplifier, Ri and Ci are the resistor and capacitor, Ii is the external input, and
i, j = 0, 1, . . . ,n.
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tion weight matrices, and

aij
(
xi(t)

)
=

Wij

Ci
signij, bij

(
xi(t)

)
=

Mij

Ci
signij, signij =

{
, i �= j,
–, i = j,

(.)

in which Wij and Mij denote the memductances of memristors Rij and Fij. Here Rij repre-
sents the memristor across xj(t) and the feedback function fj(xj(t)), and Fij represents the
memristor across xj(t) and the feedback function fj(xj(ρj(t))). According to the feature of
the memristor and the current voltage characteristic, we have

aij
(
xi(t)

)
=

{
âij, sign dfj(xj(t))

dt – dxi(t)
dt ≤ ,

ǎij, sign dfj(xj(t))
dt – dxi(t)

dt > ,

bij
(
xi(t)

)
=

{
b̂ij, sign dfj(xj(ρj(t)))

dt – dxi(t)
dt ≤ ,

b̌ij, sign dfj(xj(ρj(t)))
dt – dxi(t)

dt > 

(.)

for i, j = , , . . . , n, where âij, ǎij, b̂ij and b̌ij are constants. Obviously, the memristive neural
network model (.) is a state-dependent switched nonlinear system.

System (.) is established based on the following assumption:
(A): The neural activation function fi(·) satisfies Lipschitz condition with a Lipschitz

constant ki, i.e.,

∣∣fi(u) – fi(v)
∣∣ ≤ ki|u – v|, i = , , . . . , n,∀u, v ∈ R and u �= v,

where u and v are known constant scalars and fi() = .
Denote D = diag(d, d, . . . , dn). In is an n × n identity matrix. For the symmetric matrix

T, T >  (T < ) means that T is a positive definite (negative definite) matrix, and T ≥
 (T ≤ ) means that T is a semi-positive definite (semi-negative definite) matrix. For
matrices Q = (qij)n×n and H = (hij)n×n, Q 	 H (Q 
 H) means that qij ≥ hij (qij ≤ hij), for
i, j = , , . . . , n. And by the interval matrix [Q, H], it follows that Q 
 H. For any matrix L =
(lij)n×n ∈ [Q, H], it means Q 
 L 
 H, i.e., qij ≤ lij ≤ hij for i, j = , , . . . , n. The symmetric
terms in a symmetric matrix are denoted by ‘∗’.

Definition  ([]) Let G ⊆ R
n, x → H(x) is called a set-valued map from G ↪→ R

n, if, to
each point x of a set G ⊆R

n, there corresponds a nonempty set H(x) ⊆R
n.

Definition  ([]) A set-valued map H with nonempty values is said to be upper semi-
continuous at x ∈ G ⊆ Rn, if for any open set M containing H(x), there exists a neigh-
borhood N of x such that H(N) ⊆ M. H(x) is said to have a closed (convex, compact)
image if, for each x ∈ G, H(x) is closed (convex, compact).

Definition  ([]) For the differential system ẋ = h(t, x), where h(t, x) is discontinuous in
x, the set-valued map of h(t, x) is defined as

H(t, x) =
⋂
ε>

⋂
μ(M)=

co
[
h
(
B(x, ε) \ M

)]
,
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where B(x, ε) = {y : ‖y – x‖ ≤ ε} is the ball of center x and radius ε; the intersection is taken
over all sets M of measure zero and over all ε > ; and μ(M) is the Lebesgue measure of
the set M.

A Filippov solution of system ẋ = h(t, x), with initial condition x() = x is absolutely con-
tinuous on any subinterval t ∈ [t, t] of [, T], which satisfies x() = x, and the differential
inclusion:

ẋ ∈ H(t, x) for a.a. t ∈ [, T].

Definition  A constant vector x∗ = (x∗
 , x∗

, . . . , x∗
n) is said to be an equilibrium point of

system (.), if for i = , , . . . , n,
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+
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))
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j
)
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(
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i
))
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j
)

+ Ii(t),

where K(P) denotes the closure of the convex hull of the set P .

Lemma  ([]) System (.) has at least one equilibrium point.

Proof Consider the following set-valued map:

xi � Hi(t, xi) :=


di(x∗
i )
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K
(
aij

(
x∗

i
))

fj
(
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j
)
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(
bij

(
x∗

i
))

fj
(
x∗

j
)

+ Ii(t)

]
,

i = , , . . . , n.

From Definitions -, we can see that the set-valued map xi � Hi(t, xi) is upper semi-
continuous with nonempty compact convex values, and

H(t, x) =
(
H(t, x), H(t, x), . . . , Hn(t, xn)

)T

is bounded since fj(·) is bounded. According to Kakutani’s fixed point theorem, there exists
at least one fixed point of H(t, x), which is also an equilibrium point of system (.).

Considering the following nonlinear transformation:

zi(t) = xi
(
et), (.)

we can prove that system (.) is equivalent to the following neural networks with multiple
constant delays and time-varying coefficients:

żi(t) = et

[
–dizi(t) +

n∑
j=

aij
(
zi(t)

)
fj
(
zj(t)

)
+

n∑
j=

bij
(
zi(t)

)
fj
(
zj(t – τj)

)
+ ui(t)

]
,

yi(t) = fi
(
zi(t)

)
, t ≥ , i = , , . . . , n,

(.)

in which τj = – log qj ≥ , ui(t) = Ii(et).
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The initial conditions of system (.) are assumed to be

zi(t) = φi(t), t ∈ [–τ , ], τ = max
≤j≤n

{τj}, i, j = , , . . . , n,

where φi(t) = (φ(t),φ(t), . . . ,φn(t)) ∈ C([–τ , ],Rn), Rn is n-dimensional Euclidean space.
C([–ρ, ],Rn) is a Banach space of all continuous functions with the Euclidean norm.

It is easy to see that the weight aij(xi(t)) switches between two different constant values
âij and ǎij, and bij(xi(t)) switches between b̂ij and b̌ij. Consequently, the combination num-
ber of the possible form of the connection weight matrices A(x(t)) and B(x(t)) is n . So,
we can order these n cases in the following way:

(A, B), (A, B), . . . , (An , Bn ).

Then, at any fixed time t ≥ , the form of A(x(t)) and B(x(t)) must be one of the n cases.
For l ∈ {, , . . . , n}, at any fixed time t, we define the characteristic function of Al and
Bl as follows:

πl(t) =

{
, A(x(t)) = Al, B(x(t)) = Bl,
, otherwise.

(.)

We can easily obtain
∑n

l= πl(t) = . Thus, the memristive neural network model (.) can
be rewritten as

ẋ(t) =
n∑
l=

πl(t)
[
–Dx(t) + Alf

(
x(t)

)
+ Blf

(
x(qt)

)
+ I(t)

]
,

y(t) = f
(
x(t)

)
, t ≥ , i = , , . . . , n.

(.)

According to (.) and (.), we can obtain

A
(
x(t)

)
=

n∑
l=

πl(t)Al, B
(
x(t)

)
=

n∑
l=

πl(t)Bl. (.)
�

Definition  ([]) The system (.) is said to be passive if there exists a scalar γ ≥  such
that, for all tp ≥  and all solutions of system (.) with z() = , the formula


∫ tp


yT (s)u(s) ds ≥ –γ

∫ tp


uT (s)u(s) ds

holds, where y(t) = (y(t), y(t), . . . , yn(t))T , u(t) = (u(t), u(t), . . . , un(t))T .

The product of input and output is regarded as the energy provision for the passivity of
the systems in Definition , which embodies the energy attenuation character of system. By
the control theories, we know that the passive properties of systems can keep the systems
internally stable. Passive systems only burn energy while there is no energy production.
Accordingly, by nature, passivity embodies a characteristic of the energy consumption of
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system. We know that the power flow is usually made to meet the energy conservation
and the passive systems do not produce energy [], i.e.,

Einput + Einitial = Eresidual + Edissipated.

3 Main results
In this section, we present our passivity analysis results of system (.) and develop a
passivity-based approach dealing with the state estimation problem for system (.).

Denote by I an n-dimensional identity matrix. For convenience, we use the following
notations:


 = diag

(
d

k
,

d

k
, . . . ,

dn

kn

)
, � = diag(λ,λ, . . . ,λn), K = diag(k, k, . . . , kn),

where

λi =

{
, i = j,
, i �= j.

3.1 Passivity analysis
Theorem . Suppose the assumption (A) holds and

 =

(
� Bl

∗ –I

)
< , (.)

where � = Al + AT
l + � – �
 – 
T�T , system (.) is passive in the sense of Definition .

Proof Define a Lyapunov-Krasovskii functional V (z(t)):

V
(
z(t)

)
= 

n∑
i=

e–t
∫ zi(t)


fi(s) ds +

n∑
i=

∫ t

t–τi

f 
i
(
zi(s)

)
ds. (.)

Calculating the derivative of V (z(t)) along the positive half trajectory of system (.), we
obtain

V̇
(
z(t)

)
– yT (t)u(t) – γ uT (t)u(t)

= –
n∑

i=

e–t
∫ zi(t)


fi(s)ds + 

n∑
i=

e–t fi
(
zi(t)

)
żi(t) +

n∑
i=

f 
i
(
zi(t)

)
–

n∑
i=

f 
i
(
zi(t – τi)

)

– yT (t)u(t) – γ uT (t)u(t)

≤ 
n∑

i=

e–t fi
(
zi(t)

)
żi(t) +

n∑
i=

f 
i
(
zi(t)

)
–

n∑
i=

f 
i
(
zi(t – τi)

)
– yT (t)u(t) – γ uT (t)u(t)

= 
n∑

i=

fi
(
zi(t)

)[
–dizi(t) +

n∑
j=

aij
(
zi(t)

)
fj
(
zj(t)

)
+

n∑
j=

bij
(
zi(t)

)
fj
(
zj(t – τj)

)
+ ui(t)

]

+
n∑

i=

f 
i
(
zi(t)

)
–

n∑
i=

f 
i
(
zi(t – τi)

)
– yT (t)u(t) – γ uT (t)u(t)
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= 
n∑

i=

[
–dizi(t)fi

(
zi(t)

)
+

n∑
j=

aij
(
zi(t)

)
fi
(
zi(t)

)
fj
(
zj(t)

)

+
n∑

j=

bij
(
zi(t)

)
fi
(
zi(t)

)
fj
(
zj(t – τj)

)]

+
n∑

i=

f 
i
(
zi(t)

)
–

n∑
i=

f 
i
(
zi(t – τi)

)
– γ uT (t)u(t)

≤ 
n∑

i=

[(



–
di

ki

)
f 
i
(
zi(t)

)
+

n∑
j=

aij
(
zi(t)

)
fi
(
zi(t)

)
fj
(
zj(t)

)

+
n∑

j=

bij
(
zi(t)

)
fi
(
zi(t)

)
fj
(
zj(t – τj)

)]

–
n∑

i=

f 
i
(
zi(t – τi)

)
– γ uT (t)u(t)

= 
n∑

i=

[ n∑
j=

(
aij

(
zi(t)

)
+ λij

(



–
di

ki

))
fi
(
zi(t)

)
fj
(
zj(t)

)

+
n∑

j=

bij
(
zi(t)

)
fi
(
zi(t)

)
fj
(
zj(t – τj)

)]

–
n∑

i=

f 
i
(
zi(t – τi)

)
– γ uT (t)u(t)

= ηT (t)�̃η(t), (.)

where

η(t) =
[
f
(
z(t)

)
, f

(
z(t – τ )

)
, u(t)

]T , �̃ =

⎛
⎜⎝

�̃ B(z(t)) 
∗ –I 
∗ ∗ –γ

⎞
⎟⎠ ,

in which �̃ = A(z(t)) + AT (z(t)) + � – �
 – 
T�T .
According to (.), we obtain

�̃ =
n∑
l=

πl(t)

(
 
∗ –γ

)
< . (.)

It follows from (.) and (.) that

V̇
(
z(t)

)
– yT (t)u(t) – γ uT (t)u(t) ≤ . (.)

Integrating (.) with respect to t over the time period from  to tp, we have


∫ tp


yT (s)u(s) ds ≥ V

(
tp, z(tp)

)
– V

(
, z()

)
– γ

∫ tp


uT (t)u(t) ds
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for z() = . Since V (, z()) =  and V (tp, z(tp)) ≥ , we get


∫ tp


yT (s)u(s) ds ≥ –γ

∫ tp


uT (t)u(t) ds.

Therefore, the memristive neural network (.) is passive in the sense of Definition . This
completes the proof. �

Remark  In Theorem ., Lyapunov stability theory is employed to investigate the pas-
sivity of system (.). Actually, we can find that passivity is a higher abstraction level of
stability in the process of the proof, and the corresponding Lyapunov function (.) can
be regarded as the storage function.

When the input is I(t) = (I(t), I(t), . . . , In(t))T = (, , . . . , )T , by using standard argu-
ments as Theorem ., we can derive the stability conditions for system (.).

Corollary . Suppose the assumption (A) holds and

 =

(
� Bl

∗ –I

)
< , (.)

where � = Al + AT
l + � – �
 – 
T�T , system (.) is globally asymptotically stable while

the input I(t) = (I(t), I(t), . . . , In(t))T = (, , . . . , )T .

3.2 State estimation based on passivity
In the following, we design a state estimator for neural networks (.) based on passivity
theory as follows:

ẋi(t) = –dixi(t) +
n∑

j=

aij
(
xi(t)

)
fj
(
xj(t)

)
+

n∑
j=

bij
(
xi(t)

)
fj
(
xj

(
ρj(t)

))
+ Ii(t)

+ mi
(
yi(t) – yi(t)

)
– Ji(t), (.)

yi(t) = fi
(
xi(t)

)
, t ≥ , i = , , . . . , n,

where xi(t) is the estimation of the ith neuron state, yi(t) is the output vector of the ith
state estimator, Ji(t) is the control input vector, mi is the estimation gain weight, and mi is
a known constant.

Define the estimation error r(t) = x(t) – x(t) and the output error ỹ = y(t) – y(t). Then the
error state system can be expressed by

ṙi(t) = –diri(t) +
n∑

j=

aij
(
ri(t)

)
f j

(
rj(t)

)
+

n∑
j=

bij
(
ri(t)

)
f j

(
rj
(
ρj(t)

))

– mif i
(
ri(t)

)
+ Ji(t), (.)

ỹi(t) = f i
(
ri(t)

)
, t ≥ , i = , , . . . , n,

where aij(ri(t)) = aij(xi(t)) – aij(xi(t)), bij(ri(t)) = bij(xi(t)) – bij(xi(t)), f i(ri(t)) = fi(xi(t)) –
fi(xi(t)), f i(ri(ρj(t))) = fi(xi(ρj(t))) – fi(xi(ρj(t))).
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Define

wi(t) = ri
(
et), (.)

then system (.) is equivalent to the following neural networks with multiple constant
delays:

ẇi(t) = et

[
–diwi(t) +

n∑
j=

aij
(
wi(t)

)
f j

(
wj(t)

)
+

n∑
j=

bij
(
wi(t)

)
f j

(
wj(t – τj)

)

– mif i
(
wi(t)

)
+ ui(t)

]
, (.)

ỹi(t) = f i
(
wi(t)

)
, t ≥ , i = , , . . . , n,

in which τj = – log qj ≥ , ui(t) = Ji(et).
The initial conditions of system (.) are assumed to be

wi(t) = ϕi(t), t ∈ [–τ , ], τ = max
≤j≤n

{τj}, i, j = , , . . . , n,

where ϕi(t) = (ϕ(t),ϕ(t), . . . ,ϕn(t)) ∈ C([–τ , ],Rn), Rn is n-dimensional Euclidean space.
C([–ρ, ],Rn) is Banach space of all continuous functions with the Euclidean norm.

Theorem . Suppose the assumption (A) holds. If there exists M = diag(m, m, . . . , mn)
such that

 =

(
� Bl

∗ –I

)
< , (.)

where � = Al + AT
l + � – �
 – 
T�T – �M – MT�T , the estimation error system (.) is

passive and M is the gain matrix of the state estimator (.).

Proof Define a Lyapunov-Krasovskii functional V (x(t)):

V
(
w(t)

)
= 

n∑
i=

e–t
∫ wi(t)


f i(s) ds +

n∑
i=

∫ t

t–τi

f 
i
(
wi(s)

)
ds. (.)

Calculating the derivative of V (w(t)) along the positive half trajectory of system (.), we
obtain

V̇
(
w(t)

)
– ỹT (t)u(t) – γ uT (t)u(t)

= –
n∑

i=

e–t
∫ wi(t)


f i(s)ds + 

n∑
i=

e–t f i
(
wi(t)

)
ẇi(t)

+
n∑

i=

f 
i
(
wi(t)

)
–

n∑
i=

f 
i
(
wi(t – τi)

)
– ỹT (t)u(t) – γ uT (t)u(t)
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≤ 
n∑

i=

e–t f i
(
wi(t)

)
ẇi(t) +

n∑
i=

f 
i
(
wi(t)

)

–
n∑

i=

f 
i
(
wi(t – τi)

)
– ỹT (t)u(t) – γ uT (t)u(t)

= 
n∑

i=

f i
(
wi(t)

)[
–diwi(t) +

n∑
j=

aij
(
wi(t)

)
f j

(
wj(t)

)
+

n∑
j=

bij
(
wi(t)

)
f j

(
wj(t – τj)

)

– mif i
(
wi(t)

)
+ ui(t)

]
+

n∑
i=

f 
i
(
wi(t)

)
–

n∑
i=

f 
i
(
wi(t – τi)

)

– ỹT (t)u(t) – γ uT (t)u(t)

≤ 
n∑

i=

[(



–
di

ki
– mi

)
f 

i
(
wi(t)

)
+

n∑
j=

aij
(
wi(t)

)
f i

(
wi(t)

)
f j

(
wj(t)

)

+
n∑

j=

bij
(
wi(t)

)
f i

(
wi(t)

)
f j

(
wj(t – τj)

)]
–

n∑
i=

f 
i
(
wi(t – τi)

)
– γ uT (t)u(t)

= 
n∑

i=

[ n∑
j=

(
aij

(
wi(t)

)
+ λij

(



–
di

ki
– mi

))
f i

(
wi(t)

)
f j

(
wj(t)

)

+
n∑

j=

bij
(
wi(t)

)
f i

(
wi(t)

)
f j

(
wj(t – τj)

)]
–

n∑
i=

f 
i
(
wi(t – τi)

)
– γ uT (t)u(t)

= ηT (t)�̃η(t), (.)

where

η(t) =
[
f
(
w(t)

)
, f

(
w(t – τ )

)
, u(t)

]T , �̃ =

⎛
⎜⎝

�̃ B(w(t)) 
∗ –I 
∗ ∗ –γ

⎞
⎟⎠ ,

in which �̃ = A(w(t)) + AT (w(t)) + � – �
 – 
T�T – �M – MT�T .
According to (.), we obtain

�̃ =
n∑
l=

πl(t)

(
 
∗ –γ

)
≤ . (.)

It follows from (.) and (.) that

V̇
(
w(t)

)
– yT (t)u(t) – γ uT (t)u(t) ≤ . (.)

Integrating (.) with respect to t over the time period from  to tp, we have


∫ tp


yT (s)u(s) ds ≥ V

(
tp, w(tp)

)
– V

(
, w()

)
– γ

∫ tp


uT (t)u(t) ds
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for w() = . Since V (, w()) =  and V (tp, w(tp)) ≥ , we get


∫ tp


yT (s)u(s) ds ≥ –γ

∫ tp


uT (t)u(t) ds.

Therefore, the estimation error system (.) is passive in the sense of Definition . This
completes the proof. �

When the control input J(t) = (J(t), J(t), . . . , Jn(t))T = (, , . . . , )T , by using standard
arguments as Theorem ., we can derive the stability conditions for system (.).

Corollary . Suppose the assumption (A) holds. If there exists M = diag(m, m, . . . , mn)
such that

 =

(
� Bl

∗ –I

)
< , (.)

where �̃ = Al + AT
l + � – �
 – 
T�T – �M – MT�T , the estimation error system (.)

is globally asymptotically stable, while the control input is J(t) = (J(t), J(t), . . . , Jn(t))T =
(, , . . . , )T and M is the gain matrix of the state estimator (.).

4 Numerical simulation
In this section, we give an example to illustrate the feasibility of the theoretical results.

Example . Consider the two-neuron memristive uncertain neural network model

ẋ(t) = –x(t) + a
(
x(t)

)
f
(
x(t)

)
+ a

(
x(t)

)
f

(
x(t)

)
+ b

(
x(t)

)
f
(
x

(
ρ(t)

))
+ b

(
x(t)

)
f

(
x

(
ρ(t)

))
+ I(t),

ẋ(t) = –x(t) + a
(
x(t)

)
f
(
x(t)

)
+ a

(
x(t)

)
f

(
x(t)

)
+ b

(
x(t)

)
f
(
x

(
ρ(t)

))
+ b

(
x(t)

)
f

(
x

(
ρ(t)

))
+ I(t),

(.)

where f(x) = f(x) = 
 (|x + | – |x – |), ρ(t) = t – ( – q)t, ρ(t) = t – ( – q)t, q = .,

q = ., and

a
(
x(t)

)
=

{
–., – df(x(t))

dt – dx(t)
dt ≤ ,

–., – df(x(t))
dt – dx(t)

dt > ,

a
(
x(t)

)
=

{
., df(x(t))

dt – dx(t)
dt ≤ ,

., df(x(t))
dt – dx(t)

dt > ,

b
(
x(t)

)
=

{
–., – df(x(ρ(t)))

dt – dx(t)
dt ≤ ,

–., – df(x(ρ(t)))
dt – dx(t)

dt > ,

b
(
x(t)

)
=

{
., df(x(ρ(t)))

dt – dx(t)
dt ≤ ,

., df(x(ρ(t)))
dt – dx(t)

dt > ,
(.)

a
(
x(t)

)
=

{
., df(x(t))

dt – dx(t)
dt ≤ ,

., df(x(t))
dt – dx(t)

dt > ,
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a
(
x(t)

)
=

{
–., – df(x(t))

dt – dx(t)
dt ≤ ,

–., – df(x(t))
dt – dx(t)

dt > ,

b
(
x(t)

)
=

{
., df(x(ρ(t)))

dt – dx(t)
dt ≤ ,

., df(x(ρ(t)))
dt – dx(t)

dt > ,

b
(
x(t)

)
=

{
–., – df(x(ρ(t)))

dt – dx(t)
dt ≤ ,

–., – df(x(ρ(t)))
dt – dx(t)

dt > .

In system (.), we derive that

 =

⎛
⎜⎜⎜⎝

–. . –. .
. –. . –.
∗ ∗ – 
∗ ∗ ∗ –

⎞
⎟⎟⎟⎠ (.)

is negative definite.
By applying Theorem ., the passivity of system (.) can be achieved with the input

I(t) =  + sin t, I(t) =  + sin t. Meanwhile, according to the Corollary ., system (.) is
globally asymptotically stable with the input I(t) = I(t) = . The simulations of the state
curves for system (.) with and without the input are depicted in Figure  and Figure ,
respectively. Obviously, system (.) is a state-dependent switched system. By Figure ,
we see that system (.) with input I(t) = ( + sin(t),  + sin(t))T can keep internally stable.
By adopting the product of input and output as the energy provision, it embodies energy
attenuation character. That is, the passive system (.) will not produce energy by itself.
From Figure , it follows that system (.) with input I(t) = (, )T is globally stable. One
might see that passivity is at a higher abstraction level of stability by contrast.

We develop a state estimator for neural networks (.) as follows:

ẋ(t) = –x(t) + a
(
x(t)

)
f
(
x(t)

)
+ a

(
x(t)

)
f

(
x(t)

)
+ b

(
x(t)

)
f
(
x

(
ρ(t)

))
+ b

(
x(t)

)
f

(
x

(
ρ(t)

))
+ I(t)

+ y(t) – y(t) – J(t),

ẋ(t) = –x(t) + a
(
x(t)

)
f
(
x(t)

)
+ a

(
x(t)

)
f

(
x(t)

)
+ b

(
x(t)

)
f
(
x

(
ρ(t)

))
+ b

(
x(t)

)
f

(
x

(
ρ(t)

))
+ I(t)

+ y(t) – y(t) – J(t),

(.)

where J(t) =  + sin(t), J(t) =  + sin(t) and the other parameters are the same as system
(.). Then the error state system can be expressed by

ṙ(t) = –r(t) + a
(
r(t)

)
f 

(
r(t)

)
+ a

(
r(t)

)
f 

(
r(t)

)
+ b

(
r(t)

)
f 

(
r

(
ρ(t)

))
+ b

(
r(t)

)
f 

(
r

(
ρ(t)

))
– f 

(
r(t)

)
+ J(t),

ṙ(t) = –r(t) + a
(
r(t)

)
f 

(
r(t)

)
+ a

(
r(t)

)
f 

(
r(t)

)
+ b

(
r(t)

)
f 

(
r

(
ρ(t)

))
+ b

(
r(t)

)
f 

(
r

(
ρ(t)

))
– f 

(
r(t)

)
+ J(t).

(.)
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Figure 2 The state curves of system (4.1) with input I(t) = (1 + sin(t), 2 + sin(t))T and different initial
values.

Figure 3 The state curves of system (4.1) with different initial values and the input I(t) = (0, 0)T .
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Figure 4 The state curves of error system (4.5) with control input J(t) = (1 + sin(t), 2 + sin(t))T and
different initial values.

In system (.), we derived

 =

⎛
⎜⎜⎜⎝

–. . –. .
. –. . –.
∗ ∗ – 
∗ ∗ ∗ –

⎞
⎟⎟⎟⎠ , (.)

which is negative definite.
By applying Theorem ., the passivity of system (.) can be achieved with the con-

trol input J(t) =  + sin t, J(t) =  + sin t (see Figure ). Meanwhile, according to the
Corollary ., the system (.) is globally asymptotically stable with the control input
J(t) = J(t) = . The responses of the error dynamics (.), which converges to zero with
the estimation gain matrix K = I can be seen in Figure  when the control input J(t) = ,
i.e., the effectiveness of the state estimator for neural networks (.) is demonstrated.

It must be pointed out that, in system (.), if we let

a
(
x(t)

)
=

{
–., – df(x(t))

dt – dx(t)
dt ≤ ,

–., – df(x(t))
dt – dx(t)

dt > ,
(.)

and the other parameters are the same as above, we obtain

 =

⎛
⎜⎜⎜⎝

–. . –. .
. –. . –.
∗ ∗ – 
∗ ∗ ∗ –

⎞
⎟⎟⎟⎠ .
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Figure 5 The contrast curves of system (4.1) and (4.5) and their error states without control input and
the initial value x1 = 2, x2 = 3, x1 = –1, x2 = –3.

Figure 6 The state curves of system (4.1) with input I(t) = (1 + sin(t), 2 + sin(t))T and different initial
values when a22(x2(t)) is given in (4.7).
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Figure 7 The state curves of system (4.1) with different initial values and the input I(t) = (0, 0)T when
a22(x2(t)) is given in (4.7).

We see that  is not negative definite, i.e., the conditions in Theorem . and Corollary .
are not satisfied. From Figure  and Figure , we can see that system (.) is still passive
and stable for the input I(t) = ( + sin(t),  + sin(t))T and I(t) = (, )T , respectively. That is
to say, conditions in Theorem . and Corollary . are sufficient but not necessary.

5 Concluding remarks
In this paper, we considered a class of memristor-based neural networks with unbounded
multiple proportional delays for the designed circuits. By combining differential inclusions
with set-valued maps, we obtained the existence of the solutions for the given delayed sys-
tem. Based on the Lyapunov-Krasovskii functional method, passivity criteria were given
and the state estimator was designed for the memristive system through available output
measurements based on passivity theory. In system (.), we assumed that the decay pro-
cess of neurons is instantaneous, while, in fact, time is required to isolate the static state.
Time delay in the leakage term is introduced to describe the phenomenon which has a
great negative impact on the stability of neural networks. On the other hand, distributed
delays have caused attention to describe the existence of distribution of conduction veloc-
ities along parallel pathways or distribution of propagation delays over a period of time.
Accordingly, time delay in the leakage term and distributed delays should be taken into
consideration. In the near future, we will analyze memristor-based neural networks with
leakage delay and distributed delays, which may reveal more electric properties of the
memristor.
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