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Abstract
We investigate nonexistence results of nontrivial solutions of fractional differential
inequalities of the form

(FSm
q ):

{
Dq
0/txi –�H(λixi)≥ |η|αi+1 |xi+1|βi+1 , (η, t) ∈H

N× ]0, +∞[, 1≤ i ≤ m,
xm+1 = x1,

where Dq
0/t is the time-fractional derivative of order q ∈ (1, 2) in the sense of Caputo,

�H is the Laplacian in the (2N + 1)-dimensional Heisenberg groupH
N , |η| is the

distance from η inH
N to the origin,m ≥ 2, αm+1 = α1, βm+1 = β1, and

λi ∈ L∞(HN× ]0, +∞[), 1≤ i ≤ m. The main results are concerned with Q ≡ 2N + 2,
less than the critical exponents that depend on q, αi , and βi , 1≤ i ≤ m. For q = 2, we
deduce the results given by El Hamidi and Kirane (Abstr. Appl. Anal. 2004(2):155-164,
2004) and El Hamidi and Obeid (J. Math. Anal. Appl. 208(1):77-90, 2003) from the
hyperbolic systems. Form = 1, we study the scalar case

(FIq): Dq
0/tx –�H(λx) ≥ |η|α|x|β ,

where β > 1, α are real parameters. In the last case, for q = 2, we return to the
approach of Pohozaev and Véron (Manuscr. Math. 102:85-99, 2000) from the
hyperbolic inequalities.
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1 Introduction
Pohozaev and Véron [] have established the question of nonexistence results for solutions
of semilinear hyperbolic inequalities of the type

∂x
∂t – �H(λx) ≥ |η|α

H
|x|β , ()

it is shown that no weak solution x exists provided that
∫
RN+

x(η) dη ≥ , α > – and  < β ≤ Q +  + α

Q – 
()
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In [], El Hamidi and Kirane presented analogous results for a system of m hyperbolic
semilinear inequalities of the form

(
HSm)

:

⎧⎪⎨
⎪⎩

∂xi
∂t – �H(λixi) ≥ |η|αi+ |xi+|βi+ ,

(η, t) ∈H
N× ], +∞[,  ≤ i ≤ m,

xm+ = x,
()

and expressed the Fujita exponent (see [–]), which ensures the system (HSm) admits no
solution defined in H

N whenever Q ≤  + max(X, X, . . . , Xm), where (X, X, . . . , Xm)T for
the solution of the linear system ().

Their results have been generalized by El Hamidi and Obeid [] to a system of m semi-
linear inequalities with higher-order time derivative of the type

(
Sm

k
)
:

⎧⎪⎨
⎪⎩

∂k xi
∂tk – �H(λixi) ≥ |η|αi+ |xi+|βi+ ,

(η, t) ∈H
N× ], +∞[,  ≤ i ≤ m,

xm+ = x, k = , , . . . ,
()

where they proved that the system (Sm
k ) admits no solution defined in H

N whenever Q ≤
( – 

k ) + max(X, X, . . . , Xm). Different works on the importance of inequalities can be
found in [, ].

In this paper, we generalize these results (for (HSm)) to an evolution system with tem-
poral fractional derivative of the form

(
FSm

q
)
:

⎧⎪⎨
⎪⎩

Dq
/txi – �H(λixi) ≥ |η|αi+ |xi+|βi+ ,

(η, t) ∈H
N× ], +∞[,  ≤ i ≤ m,

xm+ = xq ∈ (, ),
()

and we show under certain initial conditions that the system (FSm
q ) admits no solution

defined in H
N whenever Q < Q•

q = ( – 
q ) + max(X, X, . . . , Xm).

This paper is organized as follows. In Section , we present some essential facts from
fractional calculus, more precisely, the definitions of the fractional derivative in the sense
of Riemann-Liouville and in sense of Caputo and their relationship between them, for
some new senses: the reader may refer to [–]. We also give some preliminaries as re-
gards the Heisenberg group H

N and the operator �H. In Section , we study the case of
two inequalities. In Section , we study the general case of m > , and in the last Section ,
we study the scalar case.

2 Notation and preliminaries
In this section, we present some known facts about the time-fractional derivative Dq

/t , the
Heisenberg group H

N and the operator �H.
The left-sided derivative and the right-sided derivative in the sense of Riemann-Liouville

for ψ ∈ L(, T), of order q ∈ (, ) are defined, respectively, as follows:

(
Dq

/tψ
)
(t) =


	( – q)

(
d
dt

) ∫ t



ψ(σ )
(t – σ )q– dσ ,

(
Dq

t/Tψ
)
(t) =


	( – q)

(
d
dt

) ∫ T

t

ψ(σ )
(σ – t)q– dσ ,

where 	 is the Euler gamma function.
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If ψ ′′ ∈ L(, T), the derivative in the sense of Caputo of order q ∈ (, ) is defined by

(
Dq

/tψ
)
(t) =


	( – q)

∫ t



ψ ′′(σ )
(t – σ )q– dσ ,

which is related to the Riemann-Liouville derivative by

Dq
/tψ(t) = Dq

/t
(
ψ(t) – ψ() – tψ ′()

)
.

We also recall the formula of integration by parts if  < δ < :

∫ T


ϕ(t)

(
Dδ

/tψ
)
(t) dt =

∫ T



(
Dδ

t/Tϕ
)
(t)ψ(t) dt.

To derive the weak formulations, we have made use of the relations (see (.) and (.),
p. in[]):

D+q
o/t ψ = DDq

o/tψ , q ∈ (, ), ()

D+q
t/T ψ = –DDq

t/Tψ , q ∈ (, ), ()

we also have the following formula (see Lemma ., p. in []), for any δ ∈ (, ):

Dδ
t/Tψ(t) =


	( – δ)

(
ψ(T)

(T – t)δ
–

∫ T

t

ψ ′(σ )
(σ – t)δ

dσ

)
. ()

More details of fractional derivatives can be found in [, , ]; see also [–].
The Heisenberg group H

n of the dimension (N + ) is the space

R
N+ =

{
η = (x, y, τ ) ∈R

N ×R
N ×R

}

equipped with the group operation ‘◦’ defined by

η ◦ η̃ =

(
x + x̃, y + ỹ, τ + τ̃ + 

N∑
i=

(xiỹi – x̃iyi)

)
, ()

where

η = (x, y, τ ) = (x, x, . . . , xN , y, y, . . . , yN , τ ),

η̃ = (x̃, ỹ, τ̃ ) = (x̃, x̃, . . . , x̃N , ỹ, ỹ, . . . , ỹN , τ̃ ),

this group operation makes Hn have the structure of a Lie group.
The subelliptic Laplacian �H over Hn is defined by

�H =
N∑

i=

(
X

i + Y 
i
)
, ()
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where

Xi =
∂

∂xi
+ yi

∂

∂τ
and Yi =

∂

∂yi
– xi

∂

∂τ
;

with a simple calculation, we can write

�H =
N∑

i=

(
∂

∂x
i

+
∂

∂y
i

+ yi
∂

∂xi ∂τ
– xi

∂

∂yi ∂τ
+ 

(
x

i + y
i
) ∂

∂τ 

)
.

The operator �H is a degenerate elliptic operator satisfying the Hörmander condition
of order  (see []). It is invariant with respect to the left multiplication in the group
since

�H

(
x(η ◦ η̃)

)
= (�Hx)(η ◦ η̃) ∀(η, η̃) ∈H

N ×H
N .

The distance between a point and the origin in H
N is defined by

|η|H =

(
τ  +

N∑
i=

(
x

i + y
i
)

)/

.

The application η → |η|H is homogeneous of degree one with respect to the natural
group of dilatations

δλ(η) =
(
λx,λy,λt

)
. ()

We also know that the operator �H is homogeneous of degree  relative to the distance
δλ given in (), that is,

�H = λδλ(�H).

Obviously, the action of �H where the functions only depend on ρ = |η|H is

�Hx(ρ) = a(η)
(

dx
dρ +

(Q – )
ρ

dx
dρ

)
,

where

a(η) =
N∑

i=

(x
i + y

i )
ρ and Q = N + .

The number Q defined above is called the homogeneous dimension H
N .

We also identify the points HN with those of RN+, and we refer to the natural measure-
ment of Hâar in H

N similar to that of Lebesgue dη = dx dy dτ in R
N+. Readers can refer

to [–] for more details of the analysis of the Heisenberg group.
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3 Systems of two inequalities
In this section, we are interested with systems of type

(
FS

q
)
:

{
Dq

/tx – �H(λx) ≥ |η|α
H

|y|β in H
n ×R

+,
Dq

/ty – �H(λy) ≥ |η|α
H

|x|β in H
n ×R

+,
()

where Dq
/t denotes the time-fractional derivative of order q ∈ (, ), in the sense of Caputo.

The functions λ and λ introduced in () are assumed to be measurable and bounded
functions on H

n × R
+, where the exponents α, α and β,β >  are real numbers. We

denote by Dq
/t , the time-fractional derivative of order q ∈ (, ) in the sense of Riemann-

Liouville. The following holds.

Definition . Let λ and λ be two bounded measurable functions in QT = R
N+ ×

(, T). A weak solution (x, y) of the system (FS
q) with positive initial data x, x, y, y ∈

L
loc(RN+) is a pair of locally integrable functions (x, y) such that (x, y) ∈ Lβ (QT ,

|η|α
H

dη dt) × Lβ (QT , |η|α
H

dη dt) satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
QT

(
–xDq

t/Tϕ + λx�Hϕ + |η|α
H

|y|βϕ + x(η)Dq–
t/T ϕ

)
dη dt

+
∫
RN+

x(η)Dq–
t/T ϕ() dη ≤ ,

∫
QT

(
–yDq

t/Tϕ + λy�Hϕ + |η|α
H

|x|βϕ + y(η)Dq–
t/T ϕ

)
dη dt

+
∫
RN+

y(η)Dq–
t/T ϕ() dη ≤ 

()

for any nonnegative test function ϕ ∈ C
c (QT ), such that ϕ(·, T) = Dq–

t/T ϕ(·, T) = .

Remark . We assume that the integrals in () are convergent. In Definition ., if T =
+∞, then the solution is called global.

Theorem . Assume that

Q < Q•
q = 

(
 –


q

)
+


ββ – 

max
(
(α + ) + β(α + ),β(α + ) + (α + )

)
.

Then there is no weak nontrivial solution (x, y) of the system (FS
q).

Proof By contradiction, we suppose (x, y) to be a nontrivial weak solution of (FS
q), which

generally exists in time, that is, (x, y) exists in (, T∗) for an arbitrary T∗.
Let T and R be two positive real numbers such that  < TR < T∗.
Since the initial data x, x, y, y are nonnegative, and Dq–

t/T ϕ ≥  (from ()), the varia-
tional formulation () implies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
QTR

|η|α
H

|y|βϕ dη dt ≤
∫

QTR

xDq
t/TRϕ dη dt –

∫
QTR

λx�Hϕ dη dt,

∫
QTR

|η|α
H

|x|βϕ dη dt ≤
∫

QTR

yDq
t/TRϕ dη dt –

∫
QTR

λy�Hϕ dη dt.
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From the Hölder inequality, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
QTR

|η|α
H

|y|βϕ dη dt

≤
(∫

QTR

|η|α
H

|x|βϕ dη dt
) 

β
(∫

QTR

∣∣Dq
t/TRϕ

∣∣β ′

(|η|α

H
ϕ
)–

β′


β dη dt
) 

β′


+ ‖λ‖∞
(∫

QTR

|η|α
H

|x|βϕ dη dt
) 

β
(∫

QTR

|�Hϕ|β ′

(|η|α

H
ϕ
)–

β′


β dη dt
) 

β′


and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
QTR

|η|α
H

|x|βϕ dη dt

≤
(∫

QTR

|η|α
H

|y|βϕ dη dt
) 

β
(∫

QTR

∣∣Dq
t/TRϕ

∣∣β ′

(|η|α

H
ϕ
)–

β′


β dη dt
) 

β′


+ ‖λ‖∞
(∫

QTR

|η|α
H

|y|βϕ dη dt
) 

β
(∫

QTR

|�Hϕ|β ′

(|η|α

H
ϕ
)–

β′


β dη dt
) 

β′
 .

Next, C denotes a constant which may vary from line to line but is independent on the
terms which will take part in any limit process. So, we obtain

∫
QTR

|η|α
H

|y|βϕ dη dt ≤ C
(∫

QTR

|η|α
H

|x|βϕ dη dt
) 

β
A ()

and

∫
QTR

|η|α
H

|x|βϕ dη dt ≤ C
(∫

QTR

|η|α
H

|y|βϕ dη dt
) 

β
B, ()

where

A =
(∫

QTR

∣∣Dq
t/TRϕ

∣∣β ′

(|η|α

H
ϕ
)–

β′


β dη dt
) 

β′
 +

(∫
QTR

|�Hϕ|β ′

(|η|α

H
ϕ
)–

β′


β dη dt
) 

β′
 ,

B =
(∫

QTR

∣∣Dq
t/TRϕ

∣∣β ′

(|η|α

H
ϕ
)–

β′


β dη dt
) 

β′
 +

(∫
QTR

|�Hϕ|β ′

(|η|α

H
ϕ
)–

β′


β dη dt
) 

β′
 ;

from (), (), we have

(∫
QTR

|η|α
H

|y|βϕ dη dt
)– 

ββ ≤ CB


β A, ()

(∫
QTR

|η|α
H

|x|βϕ dη dt
)– 

ββ ≤ CA

β B. ()

Now, we take

ϕ(η, t) = ϕ(x, y, τ , t) = �

(
τ θ + |x|θ + |y|θ + t

R

)
, ()
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where � ∈D(R+) is a smooth nonnegative test function which satisfies  ≤ � ≤  and

�(r) =

{
 if r ≥ ,
 if  ≤ r ≤ .

()

Then θ > , which will be specified later.
Then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Hϕ(η, t) =
θ�′(ρ)

R

[(
N + (θ – )

)(|x|(θ–) + |y|(θ–))

+ (θ – )τ (θ–)(|x| + |y|)]

+
θ�′′(ρ)

R

[|x|(θ–) + |y|(θ–) + τ θ–〈x, y〉(|x|(θ–) – |y|(θ–))

+ τ (θ–)(|x| + |y|)],

where

ρ =
τ θ + |x|θ + |y|θ + t

R

to estimate A, B (in () and ()), by changing variables: (η, t) = (x, y, τ , t) �−→ (η̃, t̃) =
(x̃, ỹ, τ̃ , t̃) where

x̃ = R– 
θ x, ỹ = R– 

θ y, τ̃ = R– 
θ τ , t̃ = R–t. ()

We choose

� =
{

(η̃, t̃) = (x̃, ỹ, τ̃ , t̃) ∈H
N ×R

+ : τ̃  + |x̃| + |ỹ| + t̃θ < 
}

.

Therefore,

∣∣�Hϕ(η̃, t̃)
∣∣ ≤ C

R

θ

∀(η̃, t̃) ∈ �. ()

As dη dt = R
N+

θ
+ dη̃ dt̃ and |η|H = R


θ |η̃|H, we establish the following estimates:

∫
QTR

∣∣Dq
t/TRϕ

∣∣β ′

(|η|α

H
ϕ
)–

β′


β dη dt

= R–qβ ′
–

αβ′


θβ
+ N+

θ
+

∫
�

∣∣Dq
t̃/T� ◦ ρ̃

∣∣β ′

(|η̃|α

H
� ◦ ρ̃

)–
β′


β dη̃ dt̃ ()

and

∫
QTR

|�Hϕ|β ′

(|η|α

H
ϕ
)–

β′


β dη dt

≤ CR– 
θ
β ′

–
αβ′


θβ

+ N+
θ

+
∫

�

(|η̃|α
H

� ◦ ρ̃
)–

β′


β dη̃ dt̃. ()
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We choose θ as the right-hand side of () and () which are of the same order in R. For
this purpose, we take θ = 

q , therefore

A≤ CR
–q– qα

β
+ q


N+
β′


+ 

β′
 .

Similarly, we can get

B ≤ CR
–q– qα

β
+ q


N+

β′


+ 
β′

 .

From () and (), it follows that

(∫
QTR

|η|α
H

|y|βϕ dη dt
)– 

ββ ≤ CR
–q– qα

β
+ q


N+
β′


+ 

β′


+ 
β

[–q– qα
β

+ q


N+
β′


+ 

β′


]
,

(∫
QTR

|η|α
H

|x|βϕ dη dt
)– 

ββ ≤ CR
–q– qα

β
+ q


N+

β′


+ 
β′


+ 

β
[–q– qα

β
+ q


N+
β′


+ 

β′


]
.

Thus, we have
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

–q –
qα

β
+

q


N + 
β ′


+


β ′


+


β

[
–q –

qα

β
+

q


N + 
β ′


+


β ′



]
< , or

–q –
qα

β
+

q


N + 
β ′


+


β ′


+


β

[
–q –

qα

β
+

q


N + 
β ′


+


β ′



]
< .

()

This condition is equivalent to

Q < Q•
q = 

(
 –


q

)
+


ββ – 

max
(
(α + ) + β(α + ),β(α + ) + (α + )

)
.

Finally, let R → ∞, taking into account the estimations (), () or (), () and using
the Fatou lemma, we get

∫
RN+

∫
R+

|η|β
H
|x|β dη dt ≤ , ()

∫
RN+

∫
R+

|η|β
H
|y|β dη dt ≤ . ()

Therefore, x ≡  and y ≡ , which is a contradiction. �

Corollary . Assume that

Q < Q•
q = 

(
 –


q

)
+ max(X, X),

where the vector (X, X)T is the solution of the linear system

(
– β

β –

)(
X

X

)
=

(
α + 
α + 

)
.

Then there is no weak nontrivial solution (x, y) of the system (FS
q).
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Proof To get our result, we use the fact that the vector (X, X)T is given by
(

X

X

)
=

(
– β

β –

)– (
α + 
α + 

)
=


ββ – 

(
(α + ) + β(α + )
β(α + ) + (α + )

)
. �

4 Systems of m inequalities
Let (X, X, . . . , Xm)T be the solution of the linear system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

– β  . . . 

 – β
. . .

...
...

. . . . . . . . . 

 
. . . . . . βm–

βm  . . .  –

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X

X
...

Xm–

Xm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α + 
α + 

...
αm– + 
αm + 

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ()

where αi and βi >  are given real numbers, i ∈ {, , . . . , m}.
Consider the system

(
FSm

q
)
:

⎧⎪⎨
⎪⎩

Dq
/txi – �H(λixi) ≥ |η|αi+ |xi+|βi+ ,

(η, t) ∈H
N× ], +∞[,  ≤ i ≤ m,

xm+ = x,

where βm+ = β, αm+ = α, and the initial data are
{

xi(η, ) = x()
i ,  ≤ i ≤ m,

∂xi
∂t (η, ) = x()

i ,  ≤ i ≤ m.

Definition . Let λi, i ∈ {, , . . . , m} be m bounded measurable functions in QT =
R

N+ × (, T). A weak solution (x, . . . , xm) of the system (FSm
q ) with positive initial

data (x()
i , x()

i ) ∈ (L
loc(RN+)), i ∈ {, , . . . , m}, is a vector of locally integrable functions

(x, . . . , xm) such that xi ∈ Lβi (QT , |η|αi
H

dη dt), i ∈ {, , . . . , m}, satisfying
⎧⎪⎪⎨
⎪⎪⎩

∫
QT

(
–xiD

q
t/Tϕ + λix�Hϕ + |η|αi+

H
|xi+|βi+ϕ + x()

i (η)Dq–
t/T ϕ

)
dη dt

+
∫
RN+

x()
i (η)Dq–

t/T ϕ() dη ≤ , i ∈ {, , . . . , m – },
()

and
⎧⎪⎪⎨
⎪⎪⎩

∫
QT

(
–xmDq

t/Tϕ + λmx�Hϕ + |η|α
H

|x|βϕ + x()
m (η)Dq–

t/T ϕ
)

dη dt

+
∫
RN+

x()
m (η)Dq–

t/T ϕ() dη ≤ 
()

for any nonnegative test function ϕ ∈ C
c (QT ), such that ϕ(·, T) = Dq–

t/T ϕ(·, T) = .

Theorem . If the following hypothesis holds:

Q < Q•
q = 

(
 –


q

)
+ max(X, X, . . . , Xm),

then the system (FSm
q ) does not have any weak nontrivial solution.
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Proof The proof is to be reduced to the case m = , the general case can be extended
similarly.

Let (x, x, x) be a nontrivial weak solution of (FS
q), as explained in the proof of Theo-

rem ., from the positivity of initial data and Dq–
t/T ϕ ≥ , inequalities () and () imply

that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
QTR

|η|α
H

|x|βϕ dη dt ≤
∫

QTR

xDq
t/TRϕ dη dt –

∫
QTR

λx�Hϕ dη dt,

∫
QTR

|η|α
H

|x|βϕ dη dt ≤
∫

QTR

xDq
t/TRϕ dη dt –

∫
QTR

λx�Hϕ dη dt,

∫
QTR

|η|α
H

|x|βϕ dη dt ≤
∫

QTR

xDq
t/TRϕ dη dt –

∫
QTR

λx�Hϕ dη dt.

According to Hölder’s inequality, we obtain

∫
QTR

|η|α
H

|x|βϕ dη dt ≤ C
(∫

QTR

|η|α
H

|x|βϕ dη dt
) 

β
A, ()

∫
QTR

|η|α
H

|x|βϕ dη dt ≤ C
(∫

QTR

|η|α
H

|x|βϕ dη dt
) 

β
A, ()

and

∫
QTR

|η|α
H

|x|βϕ dη dt ≤ C
(∫

QTR

|η|α
H

|x|βϕ dη dt
) 

β
A, ()

where

Ai =
(∫

QTR

∣∣Dq
t/TRϕ

∣∣β ′
i
(|η|αi

H
ϕ
)–

β′
i

βi dη dt
) 

β′
i

+
(∫

QTR

|�Hϕ|β ′
i
(|η|αi

H
ϕ
)–

β′
i

βi dη dt
) 

β′
i , i = , , .

From (), (), and (), we get

(∫
QTR

|η|α
H

|x|βϕ dη dt
)– 

βββ ≤ CA


ββ
 A


β
 A, ()

(∫
QTR

|η|α
H

|x|βϕ dη dt
)– 

βββ ≤ CA


ββ
 A


β
 A, ()

(∫
QTR

|η|α
H

|x|βϕ dη dt
)– 

βββ ≤ CA


ββ
 A


β
 A. ()

Applying the test function ϕ (), and changing of variables (), given in the proof of
Theorem ., we obtain

Ai ≤ CRσi , i = , , ,



Meneceur et al. Advances in Difference Equations  (2017) 2017:12 Page 11 of 15

such that

σi = –q –
qαi

βi
+

q
β ′

i
Q +


β ′

i
, i = , , .

Therefore, from (), (), and (), we get

(∫
QTR

|η|α
H

|x|βϕ dη dt
)– 

βββ ≤ CRσ+ σ
β

+ σ
ββ , ()

(∫
QTR

|η|α
H

|x|βϕ dη dt
)– 

βββ ≤ CRσ+ σ
β

+ σ
ββ , ()

(∫
QTR

|η|α
H

|x|βϕ dη dt
)– 

βββ ≤ CRσ+ σ
β

+ σ
ββ . ()

To end, the exponents of R in (), (), and () are strictly less than zero if and only if
Q < ( – /q) + max(X, X, X), where the vector (X, X, X)T is the solution of

⎛
⎜⎝

– β 
 – β

β  –

⎞
⎟⎠

⎛
⎜⎝

X

X

X

⎞
⎟⎠ =

⎛
⎜⎝

α + 
α + 
α + 

⎞
⎟⎠ . ()

We conclude that (x, x, x) ≡ (, , ). This contradicts the assertion. �

5 The scalar case
Let us consider the inequality of the form

(FIq):

{
Dq

/t(x) – �H(λx) ≥ |η|α
H
|x|β for (η, t) ∈H

N ×R,
x(η, ) = x(η) ≥ , ∂x

∂t (η, ) = x(η) ≥  for η ∈ H
N ,

()

where λ = λ(η, t) is a function defined and measurable in R
N+ ×R

+ and α, β > , q ∈ (, ),
are real parameters.

Definition . A local weak solution x of the differential inequality () in QT = R
N+ ×

(, T), with positive initial data x, x ∈ L
loc(RN+), is a locally integrable function such

that x ∈ Lβ (QT , |η|α
H

dη dt) satisfying

∫
QT

(
–xDq

t/Tϕ + λx�Hϕ + |η|α
H
|x|βϕ + x(η)Dq–

t/T ϕ
)

dη dt

+
∫
RN+

x(η)Dq–
t/T ϕ() dη ≤  ()

for any nonnegative test function ϕ ∈ C
c (QT ) such that ϕ(·, T) = Dq–

t/T ϕ(·, T) = .

Remark . As in Definition ., it is assumed that the integrals in () are convergent.
In Definition ., if T = +∞, the solution is called global.



Meneceur et al. Advances in Difference Equations  (2017) 2017:12 Page 12 of 15

Theorem . Let N ≥  and β > . Assume that

α > – and  < β <
q(Q + α) + 
q(Q – ) + 

, ()

then there is no weak nontrivial solution x of the system (FIq).

Proof The proof is based on an appropriate choice of the test function. Suppose the prob-
lem () has a nontrivial global weak solution x, let T , R, and θ >  (which will be given
later) be three positive reals, let ϕ be a smooth nonnegative test function, since the initial
data x, x are nonnegative and Dq–

t/T ϕ ≥  (from ()), then the variational formulation ()
implies

∫
QTR/θ

|η|α
H
|x|βϕ dη dt ≤

∫
QTR/θ

xDq
t/TR/θ ϕ dη dt –

∫
QTR/θ

λx�Hϕ dη dt. ()

The test function ϕ should be given to ensure that

∫
QTR/θ

(∣∣Dq
t/Tϕ

∣∣β ′
+ |�Hϕ|β ′)(|η|α

H
ϕ
)–β ′/β dη dt < ∞.

To estimate the right side of (), we apply Young’s inequality for an arbitrary ε > , we
have

∫
QTR/θ

xDq
t/TR/θ ϕ dη dt =

∫
QTR/θ

x
(|η|α

H
ϕ
) 

β
(|η|α

H
ϕ
)– 

β Dq
t/TR/θ ϕ dη dt

≤ ε

∫
QTR/θ

|η|α
H
|x|βϕ dη dt

+ Cε

∫
QTR/θ

∣∣Dq
t/TR/θ ϕ

∣∣β ′(|η|α
H
ϕ
)– β′

β dη dt

and
∫

QTR/θ

λx�Hϕ dη dt =
∫

QTR/θ

λx
(|η|α

H
ϕ
) 

β
(|η|α

H
ϕ
)– 

β �Hϕ dη dt

≤ ε

∫
QTR/θ

|η|α
H
|x|βϕ dη dt

+ Cε‖λ‖β ′
∞

∫
QTR/θ

|�Hϕ|β ′(|η|α
H
ϕ
)– β′

β dη dt.

By considering ε small enough, we have

∫
QTR/θ

|η|α
H
|x|βϕ dη dt ≤ Cε

∫
QTR/θ

(∣∣Dq
t/TR/θ ϕ

∣∣β ′
+ |�Hϕ|β ′)(|η|α

H
ϕ
)– β′

β dη dt. ()

Take

ϕ(η, t) = ϕ(x, y, τ , t) = �

(
τ + |x| + |y| + tθ

R

)
,
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where � ∈D(R+), which satisfies  ≤ � ≤  and (), therefore

�Hϕ(η, t) =
N�′(ρ)

R +
�′′(ρ)

R

[|x| + |y|], ()

where

ρ =
τ + |x| + |y| + |t|θ

R .

To estimate the right-hand side in (), we again change the variables,

t̃ = R–/θ t, τ̃ = R–τ , x̃ = R–x, ỹ = R–y,

we put

ρ̃ = τ̃ + |x̃| + |ỹ| + t̃θ .

To guarantee that supp� ⊆ �, we assume that

� =
{

(η̃, t̃) = (x̃, ỹ, τ̃ , t̃) ∈R
N+ ×R, ρ̃ ≤ 

}
.

Therefore,

∣∣�Hϕ(η̃, t̃)
∣∣ ≤ C

R ∀(η̃, t̃) ∈ �, ()

from dη dt = RN++/θ dη̃ dt̃, |η|H = R|η̃|H, and |Dq
t/TR/θ ϕ| = R

–q
θ |Dq

t/Tϕ|, we have () so
that

∫
QTR/θ

|�Hϕ|β ′(|η|α
H
|x|β)– β′

β dη dt

≤ R–β ′+N++ 
θ

–α
β′
β

∫
�

|�H� ◦ ρ̃|β ′(|η̃|α
H
� ◦ ρ̃

)– β′
β dη̃ dt̃ ()

and
∫

QTR/θ

∣∣Dq
t/TR/θ ϕ

∣∣β ′(|η|α
H
|x|β)– β′

β dη dt

≤ R– q
θ

β ′+N++ 
θ

–α
β′
β

∫
�

∣∣Dq
t/T� ◦ ρ̃

∣∣β ′(|η̃|α
H
� ◦ ρ̃

)– β′
β dη̃ dt̃. ()

For the same exponent of R in () and (), it is convenient to write θ = q, then

∫
QTR/q

|η|α
H
|x|βϕ dη dt ≤ CR–β ′+N++ 

q –α
β′
β , ()

where

C = Cε

∫
�

(∣∣Dq
t/T� ◦ ρ̃

∣∣β ′
+ |�H� ◦ ρ̃|β ′)(|η̃|α

H
� ◦ ρ̃

)– β′
β dη̃ dt̃.
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In the case that

 < β <
q(Q + α) + 
q(Q – ) + 

,

the exponent of R in () is negative, it means that R −→ +∞ is qualified to apply Fatou’s
lemma to get

∫ ∞



∫
RN+

|η|α
H
|x|β dη dt = . ()

Thus, x ≡ , and this contradicts the fact that x is a nontrivial solution of (). �

Remark . The positivity condition on the initial data can be weakened and replaced by

∫
QT

x(η)Dq–
t/T ϕ dη dt +

∫
RN+

x(η)Dq–
t/T ϕ() dη ≥ .

Remark . The assertion α > – and  < β < q(Q+α)+
q(Q–)+ is equivalent to Q < ( – 

q ) + α+
β– ,

which motivates that Theorem . is a special case of Theorem . (in other words (FIq) ≡
(FS

q)).

Remark . q =  covers the case of a hyperbolic inequality of the type

∂x
∂t – �H(λx) ≥ |η|α

H
|x|β

studied by Pohozaev and Véron [].

Remark . By assuming q → ∞, then it is easy to find the well-known critical exponent
β∞ = Q+α

Q– for the elliptic inequalities [, ].
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