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Abstract
It is well known that the set of positive solutions may contain crucial clues for the
stationary patterns. In this paper, we consider a class of diffusive logistic equations
with nonlocal terms subject to the Dirichlet boundary condition in a bounded
domain. We study the existence of positive solutions under certain conditions on the
parameters by using bifurcation theory. Finally, we illustrate the general results by
applications to models with one-dimensional spatial domain.
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1 Introduction
Recently, many researchers pay more attention on the studies of reaction-diffusion equa-
tions; we refer to, for example, [–]. Ecologically, positive solutions correspond to the
existence of steady states of species. It is well known that the set of positive solutions may
contain crucial clues for the stationary patterns. From the mathematical viewpoint, it is
important to derive some information about the set of positive solutions by means of the
coefficients such as the growth rate of the species. Especially, most of the references con-
centrated on diffusive models with a single population (see, e.g., [, , ]). One of the most
classical diffusive logistic equations is

{
ut – �u = λu( – K(x)up) in �,
u =  on ∂�,

(.)

which was regarded as a logistic system of individual species in the ecological studies.
Here, u(x) is the population density at location x ∈ �, λ ∈ R

+ is the growth rate of the
species and is usually deemed to be a variable, K is a positive function denoting the car-
rying capacity, and p > . In (.), we assume that � is surrounded by inhospitable areas,
subjected to the homogeneous Dirichlet boundary conditions.

Later, many scientists found that the movement of an individual species is sometimes de-
termined by surrounding conditions around the point where the species stays. For exam-
ple, we consider movements of animals, where each individual species mutually interacts
by seeing, hearing, and smelling around themselves. That is why interaction by chemical
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means may take place under certain circumstances. Hence, it seems more realistic to take
account of nonlocal effects in the study of species dynamics; see [, , , , , ]. Usually,
this nonlocal effect depends on the value of the population around x, that is, the crowd-
ing effect depends on the series of values of u. In some special cases, this nonlocal effect
also depends on the value in a neighborhood Br(x) of x, where Br(x) represents the ball
centered at x of radius r > . Along these reasons, system (.) is replaced by the following
more general diffusive logistic population models with nonlocal effect:

{
ut – �u = λu( –

∫
�

K(x, y)up(y) dy) in �,
u =  on ∂�,

(.)

and
{

ut – �u = u(λ –
∫
�∩Br (x) K(y)up(y) dy) in �,

u =  on ∂�,
(.)

where p > , and K : � × � → R and K : � → R are nonnegative and nontrivial continu-
ous functions. Chen and Shi [] considered the dynamical behavior of system (.) when
p =  and the kernel function K(x, y) is a continuous and nonnegative function on � × �

satisfying
∫
�

K(x, y)u(y) dy >  for all positive continuous functions u on �. Applying the
implicit function theorem, Chen and Shi [] obtained the existence and uniqueness of a
positive steady-state solution of system (.) when  < λ – λ � , where λ denotes the
first eigenvalue of the minus Laplacian operator under homogeneous Dirichlet boundary
conditions. Some researchers [, , , ] also realized that the kernel function K(x, y) may
have no direct connection with the growth rate λ of the species. For example, Allegretto
and Nistri [] studied the following model:

{
–�u = u(λ –

∫
�

K(x, y)up(y) dy) in �,
u =  on �,

(.)

where K(x, y) vanishes away from the diagonal domain of RN ×R
N . Allegretto and Nistri

[] found that (.) possesses a unique positive solution when λ > λ if K(x, y) = Kδ(|x – y|)
is a mollifier in R

N , that is, Kδ(|x – y|) ∈ C∞
 ,

∫
RN Kδ(|x – y|) dy =  for any x with

Kδ

(|x – y|) =  when |x – y| ≥ δ,

and Kδ(|x – y|) is bounded away from zero when |x – y| < μ < δ. Later, Corrêa et al. []
proved that (.) possesses a unique positive solution if K(x, y) is a separable variable, that
is, K(x, y) = g(x)h(y), where h ≥ , h �= , and g(x) >  in �. Sun et al. [] investigated
the existence of positive solutions of system (.) with K(x, y) = K(|x – y|) and � = (–, ),
where K : [, ] → (,∞) is a nondecreasing and piecewise continuous function satisfying∫
�

K(y) dy > . Besides, Alves et al. [] also studied the existence of a positive solution of
system (.).

In the aforementioned literature, the authors only concentrated on the single species.
For the model with two populations, in particular, for those diffusive Lotka-Volterra sys-
tems without nonlocal terms, the questions posed have been extensively studied in [, ,
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] and references therein. However, the discussion of the dynamical behavior of two inter-
acting species in the presence of nonlocal term effects is more difficult than those models
without nonlocal term effects. Lately, Guo and Yan [] employ Lyapunov-Schmidt reduc-
tion to investigate the existence of the positive solution of the following model:

⎧⎪⎨
⎪⎩

–�u = λu( –
∫
�

A(x, y)u(y) dy –
∫
�

A(x, y)v(y) dy) in �,
–�v = λv( –

∫
�

A(x, y)u(y) dy –
∫
�

A(x, y)v(y) dy) in �,
u = v =  on �,

(.)

where u(x) and v(x) are the population densities at location x, λ >  is a scaling constant,
and � is a connected bounded open domain in R

N (N ≥ ) with a smooth boundary ∂�.
The kernel functions Aij (i, j = , ) describe the dispersal behaviors of the populations.

A natural problem is whether (.) has a positive solution for λ not only near to but also
far away from λ. Moreover, it is very interesting to investigate the following more general
population model with nonlocal delay effect:

⎧⎪⎨
⎪⎩

–�u = u(λ –
∫
�

A(x, y)up(y) dy –
∫
�

A(x, y)vq(y) dy) in �,
–�v = v(λ –

∫
�

A(x, y)up(y) dy –
∫
�

A(x, y)vq(y) dy) in �,
u = v =  on �,

(.)

where � ⊂R
N (N ≥ ) is a bounded domain with a smooth boundary ∂�, p, q are positive

constants, and Aij ∈ L∞(� × �,R), i, j = , . Here u(x) and v(x) can be interpreted as the
densities of prey and predator populations at a spatial position x ∈ �, and the parameter
λ is a positive real number representing the growth rate of the prey and predator.

The purpose of this paper is to find sufficient conditions ensuring the existence of a
positive solution for all λ > λ. Our main approach is global bifurcation theory, which is
different from the method adopted in []. Moreover, we also obtain the stability of the
positive solution by analyzing the distribution of the eigenvalues, which was not consid-
ered by Alves et al. []. Throughout this paper, we impose the following assumptions on
the dispersal kernel functions Aij(x, y), i, j = , .

(C) T and T are positive on the space C+(�) × C+(�) in the sense that
Ti(C+(�) × C+(�)) ⊂ C+(�) × C+(�) \ {(, )}, i = , , where C+(�) represents
the space of positive continuous functions, and

Tj(u, v) =
∫

�

[
Aj(·, y)up(y) + Aj(·, y)vq(y)

]
dy, j = , .

(C) If u, v are measurable and satisfy

{∫
�×�

[A(x, y)| u(y)
‖u‖ |p + A(x, y) |v(y)|q

‖u‖p ]( u(x)
‖u‖ ) dy dx = ,∫

�×�
[A(x, y) |u(y)|p

‖v‖q + A(x, y)| v(y)
‖v‖ |q]( v(x)

‖v‖ ) dy dx = ,

then u = v =  a.e. in �. Here we set u
‖u‖ =  for u =  and denote by ‖ · ‖ the usual

norm in H
(�), that is,

‖u‖ = ‖u‖
H

(�) =
∫

�

|∇u| dx,
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where the space H
(�) = {U ∈ H(�) | U(x) = ,∀x ∈ ∂�} and Hk(�) (k ≥ ) is

the Sobolev space of L-functions f on � with derivatives dnf
dxn (n = , , . . . , k)

belonging to L(�).
Our main results are stated as follows.

Theorem . Suppose that Aij (i, j = , ) satisfy (C) and (C). Then problem (.) has a
positive solution if and only if λ > λ.

In view of Theorem ., we see that system (.) with Aij(x, y) = Aij(x, y)χBr(x) (i, j = , )
has a positive solution if and only if λ > λ, where Aij(x, y) (i, j = , ) are positive functions
on � × �. If Aij (i, j = , ) do not satisfy assumption (C), then Aij (i, j = , ) may vanish
in some neighborhood of the diagonal of � × � (see Section ). In this case, Theorem .
is inapplicable. However, we are also able to investigate the existence and nonexistence of
positive solutions for some value of λ under the following assumptions on the dispersal
kernel functions Aij(x, y), i, j = , .

(C) There are r >  and m connected open sets �,�, . . . ,�m ⊂ � such that
�i ∩ �j = ∅, i �= j, and Aij(x, y) >  for all (x, y) ∈ � × � satisfying x /∈ ⋃m

j= �j and
|x – y| < r, i, j = , .

In view of [], we know that if � ⊂ �, then λ(�) ≥ λ(�). Moreover, the inequality
is strict as soon as � \ � contains a set of positive capacity (since the first eigenfunction
cannot vanish on such a set). Hence, we have the following result.

Theorem . Suppose that Aij (i, j = , ) satisfy (C) and (C). Then, problem (.) has a
positive solution when λ < λ < min{λ(�), . . . ,λ(�m)}, where λ(�i) denotes the principal
eigenvalue of the minus Laplacian operator in �i under homogeneous Dirichlet boundary
conditions, i = , , . . . , m. Moreover, the solution is stable.

The remaining parts of the paper are structured in the following way. In Section , we
employ the global bifurcation theory to obtain the existence and stability of positive so-
lutions of (.) under conditions (C) and (C). Section  is devoted to the case where Aij

(i, j = , ) satisfy condition (C). Section  is devoted to the application of our theoretical
results to some one-dimensional models.

2 Proof of Theorem 1.1
In this section, we introduce some basic results. First, consider the functions φ

ij
p,ω : � →R

(i, j = , ) given by

φij
p,ω(x) =

∫
�

Aij(x, y)
∣∣ω(y)

∣∣p dy, x ∈ �.

If Aij (i, j = , ) and ω are bounded, then φ
ij
p,ω (i, j = , ) are well defined. Moreover, we

have the following observations:

∥∥φij
p,ω

∥∥∞ ≤ ‖Aij‖∞|�|‖ω‖p
∞ for all ω ∈ L∞(�), (.)∥∥φij

p,ω – φij
p,ν

∥∥∞ ≤ ‖Aij‖∞|�|∥∥|ω|p – |ν|p∥∥∞ for all ω,ν ∈ L∞(�), (.)
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and

φij
p : L∞(�) → L∞(�),

φij
p (u) = φij

p,u

(i, j = , ) are uniformly continuous in L∞(�). (.)

Using these notations, it is easy to observe that (u, v) is a positive solution of (.) if and
only if (u, v) is a positive solution of⎧⎪⎨

⎪⎩
–�u = u(λ – φ

p,u – φ
q,v) in �,

–�v = v(λ – φ
p,u – φ

q,v) in �,
u = v =  on ∂�.

(.)

First, we show the nonexistence of a positive solution of (.) for small λ.

Lemma . Suppose that Aij (i, j = , ) satisfy (C) and (C). Then system (.) with λ < λ

has no positive solutions.

Proof We prove this lemma by contradiction. Assume that (.) with λ ≤ λ has a positive
solution (u∗, v∗). Then we have⎧⎪⎨

⎪⎩
–�u∗ = u∗(λ –

∫
�

A(x, y)up
∗(y) dy –

∫
�

A(x, y)vq
∗(y) dy) in �,

–�v∗ = v∗(λ –
∫
�

A(x, y)up
∗(y) dy –

∫
�

A(x, y)vq
∗(y) dy) in �,

u∗ = v∗ =  on ∂�.
(.)

Let (λ,ψ) with ψ >  be the principle eigenpair of the eigenvalue problem{
–�ψ = μψ in �,
ψ =  on ∂�.

(.)

Multiplying (.) by ψ and then integrating it on �, we have
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
�

(λ – λ)ψ(x)u∗(x) dx
=

∫
�×�

[A(x, y)up
∗(y) + A(x, y)vq

∗(y)]u∗(x)ψ(x) dy dx,∫
�

(λ – λ)ψ(x)v∗(x) dx
=

∫
�×�

[A(x, y)up
∗(y) + A(x, y)vq

∗(y)]v∗(x)ψ(x) dy dx.

(.)

Since ψ > , u∗ > , v∗ > , and λ ≤ λ, we find that each of the left-hand sides of the two
equations of (.) is less than  and that each of the right-hand sides of the two equations
is greater than , which is a contradiction. So system (.) has no positive solution for
λ ≤ λ. �

Proposition  ([]) Assume that there exists a pair of positive functions u, v ∈ C(�) ∩
C,δ

 (�), δ ∈ (, ), such that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

–�u – u[λ –
∫
�

A(x, y)up
(y) dy –

∫
�

A(x, y)vq
(y) dy]

+ u
∫
�

[pA(x, y)up–
 (y)u(y) + qA(x, y)vq–

 (y)v(y)] dy > ,
–�v – v[λ –

∫
�

A(x, y)up
(y) dy –

∫
�

A(x, y)vq
(y) dy]

+ v
∫
�

[pA(x, y)up–
 (y)u(y) + qA(x, y)vq–

 (y)v(y)] dy > .

Then the principle eigenvalue of the eigenvalue problem (.) is positive.
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In the following section, we intend to prove the existence of a positive solution for (.)
by using the classical bifurcation result of Rabinowitz []. To this end, we recall that there
exists c∞ = c∞(�) >  such that, for each f ∈ L∞(�), there exists a unique ω ∈ C(�) sat-
isfying

{
–�ω = f (x), x ∈ �,
ω = , x ∈ ∂�,

(.)

and ‖ω‖C(�) ≤ c∞‖f ‖∞. Thus, the solution operator S : C(�) → C(�) can be given by

SU = ω ⇔
{

–�ω = U , x ∈ �,
ω = , x ∈ ∂�.

Obviously, S is well defined, linear, and satisfies

‖SU‖C(�) ≤ c∞‖U‖C(�), ∀U ∈ C(�).

Moreover, by the Schauder imbedding theorem, S : C(�) → C(�) is a compact operator.
In view of the spectrum of S, it is easy to see that

σ (S) =
{
λ–

j | λj is an eigenvalue of the minus Laplacian operator
}

.

On the other hand, define the nonlinear operator F : C(�) → C(�) as

FV = ω ⇔
{

–�ω + V V = , x ∈ �,
ω = , x ∈ ∂�,

where V = (u, v)T ∈ C(�) and

V =

(
φ

p,u + φ
q,v

φ
p,u + φ

q,v

)
.

Obviously, F is continuous and satisfies

‖FV‖C(�) ≤ c∞‖V ‖∞‖V‖C(�), ∀V ∈ C(�),

Using again the Schauder imbedding theorem, we see that F : C(�) → C(�) is compact.
Furthermore, note that

‖FV‖C(�) ≤ ‖FV‖C(�).

Then we have

∥∥∥∥ FV
‖V‖C(�)

∥∥∥∥
C(�)

≤ ‖FV‖C(�)

‖V‖C(�)
≤ c∞‖V ‖∞,
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from which it follows that

lim
V→

FV
‖V‖C(�)

= , i.e., FV = o
(‖V‖C(�)

)
. (.)

Obviously, V = (u, v)T solves (.) if and only if

V = G(λ, V ) � λSV + FV .

In view of [], considering E = C(�), we have the following result.

Theorem . Let E be a Banach space. Suppose that F satisfies (.), S is a compact linear
operator, and λ– ∈ σ (S) with odd algebraic multiplicity. Let

� =
{

(λ, V ) ∈R× E : V = λSV + FV , V �= 
}

,

and let C be a closed connected component of � that contains (λ, ). Then either
() C is unbounded in R× E, or else
() there exists λ̃ �= λ such that (λ̃, ) ∈ C and λ̃– ∈ σ (S).

Remark . Because λ is the principle eigenvalue of the eigenvalue problem (.) with
the associated eigenfunction ψ >  on � and its multiplicity is simple, by the global bi-
furcation theorem there exists a closed connected component C containing (λ, ) and
satisfying () or () for solutions to (.).

In order to prove the existence of positive solutions of (.) with λ > λ, it follows from
Lemma . and Theorem . that it only suffices to prove that conclusion () of Theo-
rem . holds and that V is bounded when λ > λ.

Lemma . There exists ε >  such that if (λ, V ) = (λ, u, v) ∈ C with λ – λ < ε and
‖V‖C(�) < ε where u �=  and v �= , then u and v have definite signals, that is,

(i) u(x) >  and v(x) >  for all x ∈ �, or
(ii) u(x) >  and v(x) <  for all x ∈ �, or

(iii) u(x) <  and v(x) >  for all x ∈ �, or
(iv) u(x) <  and v(x) <  for all x ∈ �.

Proof Take Vn = (un, vn) ∈ C(�) and λn → λ as n → ∞ such that ‖Vn‖C(�×�) →  as
n → ∞ and

Vn = G(λn, Vn).

Let w
n = un

‖un‖C(�)
and w

n = vn
‖vn‖C(�)

. Then we have

⎧⎪⎨
⎪⎩

–�w
n + φ

p,un w
n + φ

q,vn w
n = λnw

n in �,
–�w

n + φ
p,un w

n + φ
q,vn w

n = λnw
n in �,

w
n = w

n =  on ∂�.
(.)
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It follows from (.) that ‖φ
p,un‖∞, ‖φ

q,vn‖∞, ‖φ
p,un‖∞, and ‖φ

q,vn‖∞ are bounded if both
un and vn are bounded in C(�). Thus, it is easy to see that

∥∥w
n
∥∥

C(�) ≤ c∞
[
λn +

∥∥φ
p,un

∥∥∞ +
∥∥φ

q,vn

∥∥∞
]∥∥w

n
∥∥

C(�), ∀n ∈N,∥∥w
n
∥∥

C(�) ≤ c∞
[
λn +

∥∥φ
p,un

∥∥∞ +
∥∥φ

q,vn

∥∥∞
]∥∥w

n
∥∥

C(�), ∀n ∈N.

Note that

∥∥w
n – w

m
∥∥

C(�) ≤ c∞
[∥∥λnw

n – λmw
m
∥∥

C(�) +
(∥∥φ

p,un

∥∥∞ +
∥∥φ

q,vn

∥∥∞
)∥∥w

n – w
m
∥∥

C(�)

+
∥∥φ

p,un – φ
p,um

∥∥∞ +
∥∥φ

q,vn – φ
q,vm

∥∥∞
]
, ∀n ∈N,∥∥w

n – w
m
∥∥

C(�) ≤ c∞
[∥∥λnw

n – λmw
m
∥∥

C(�) +
(∥∥φ

p,un

∥∥∞ +
∥∥φ

q,vn

∥∥∞
)∥∥w

n – w
m
∥∥

C(�)

+
∥∥φ

p,un – φ
p,um

∥∥∞ +
∥∥φ

q,vn – φ
q,vm

∥∥∞
]
, ∀n ∈N.

Then, using the Arzelà-Ascoli theorem, we see that, for each fixed i ∈ {, }, wi
n converge

to some wi ∈ C(�) uniformly in �, and hence there exists a convergent subsequence.
By the definition of wi

n, ‖wi‖C(�) =  implies wi �= , i = , . Multiplying (.) by v and
integrating on �, we have

∫
�

∇w
n∇v dx +

∫
�

(
φ

p,un + φ
q,vn

)
w

nv dx = λn

∫
�

w
nv dx,

∫
�

∇w
n∇v dx +

∫
�

(
φ

p,un + φ
q,vn

)
w

nv dx = λn

∫
�

w
nv dx.

In view of (.), we have φ
p,un w

n,φ
q,vn w

n,φ
p,un w

n,φ
q,vn w

n →  as n → ∞ in C(�). Then

⎧⎪⎨
⎪⎩

–�w = λw in �,
–�w = λw in �,
w = w =  on ∂�.

Since ww �= , it follows from the spectral and limit theory that, for each fixed i ∈ {, },

wi(x) >  or wi(x) < 

for all x ∈ �. In what follows, we only consider the case where w(x) >  and w(x) >  for
all x ∈ � because the other three cases can be discussed analogously. Note that w and w

are the C(�)-limits of w
n and w

n, respectively. Then, on �, wi
n >  and wi

n >  for n large
enough. Thus, the signs of un and vn are the same as those of w

n and w
n for n large enough.

This completes the proof. �

It is easy to check that if (λ, u, v) ∈ �, then the pairs (λ, –u, v), (λ, u, –v), and (λ, –u, –v)
are also in �. In what follows, we decompose C into C = C+,+ ∪ C+,– ∪ C–,+ ∪ C–,–, where

C+,+ =
{

(λ, u, v) ∈ C : u(x) ≥ , v(x) ≥ ,∀x ∈ �
}

;

C+,– =
{

(λ, u, v) ∈ C : u(x) ≥ , v(x) ≤ ,∀x ∈ �
}

;
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C–,+ =
{

(λ, u, v) ∈ C : u(x) ≤ , v(x) ≥ ,∀x ∈ �
}

;

C–,– =
{

(λ, u, v) ∈ C : u(x) ≤ , v(x) ≤ ,∀x ∈ �
}

.

The following lemma tells the fact that system (.) satisfies Theorem .().

Lemma . Each of C+,+, C–,+, C–,+, and C–,– is unbounded.

Proof It is easy to see that if one of C+,+, C–,+, C–,+, and C–,– is unbounded then the others
are also unbounded. Therefore, it suffices to show that C+,+ is unbounded. Suppose that
C+,+ is bounded. Then C is also bounded. In view of the global bifurcation theorem (Theo-
rem .), C satisfies conclusion () of Theorem ., that is, C contains (λ̃, , ), where λ̃ �= λ

and λ̃– ∈ σ (S).
We take {(λn, un, vn)}∞n= ⊆ C+,+ such that unvn �=  and (un, vn) = G(λn, un, vn) and such

that λn → λ̃, ‖un‖C(�) → , and ‖un‖C(�) →  as n → ∞. Letting

w
n =

un

‖un‖C(�)
, w

n =
vn

‖vn‖C(�)

and using similar arguments as in the proof of Lemma ., we get that (w
n, w

n) converges
to (w, w) in C(�) × C(�) as n → ∞, which is a nonzero solution pair of the eigenvalue
problem

⎧⎪⎨
⎪⎩

–�w = λ̃w in �,
–�w = λ̃w in �,
w = w =  on ∂�,

which implies that both w and w are eigenfunctions associated with λ̃. Since λ̃ �= λ, both
w and w change signs in �. Thus, for n large enough, w

n and w
n change signs, and hence

the same results hold for un = ‖un‖C(�)w
n and vn = ‖vn‖C(�)w

n. However, this contradicts
the assumption that (λn, un, vn) ∈ C+,+. This completes the proof. �

Now, we shall prove that system (.) satisfies Theorem .(). It suffices to show that the
connected component C+,+ intersects any set of the form {λ} × H

(�) × H
(�) for λ > λ.

Lemma . Suppose that Aij (i, j = , ) satisfy conditions (C) and (C). For any � > ,
there exists a constant r >  such that ‖u‖C(�) ≤ r and ‖v‖C(�) ≤ r whenever (λ, u, v) ∈ C+,+

and λ ≤ �.

Proof First, we denote by ‖ · ‖ the usual norm in H
(�), that is,

‖u‖ = ‖u‖
H

(�) =
∫

�

|∇u| dx.

Indeed, if this were not true, there would exist {(λn, un, vn)}∞n= ⊂ [,�] × H
(�) × H

(�)
such that

Case . ‖un‖ → ∞, λn → λ ∈ � as n → ∞, ‖vn‖ ≤ r, and (un, vn) = G(λn, un, vn);
Case . ‖vn‖ → ∞, λn → λ ∈ � as n → ∞, ‖un‖ ≤ r, and (un, vn) = G(λn, un, vn);
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Case . ‖un‖ → ∞, ‖vn‖ → ∞ and λn → λ ∈ � as n → ∞, and (un, vn) = G(λn, un, vn).
We only discuss Case  because the other cases can be dealt with analogously. Let

w
n =

un

‖un‖C(�)
, w

n =
vn

‖vn‖C(�)
.

Then we have

{∫
�

∇w
n∇θ dx +

∫
�

(φ
p,un + φ

q,vn )w
nθ dx = λn

∫
�

w
nθ dx,∫

�
∇w

n∇θ dx +
∫
�

(φ
p,un + φ

q,vn )w
nθ dx = λn

∫
�

w
nθ dx.

(.)

Note that {(w
n, w

n)}∞n= are bounded in H
(�) × H

(�). Then, without loss of generality,
we suppose that there is w = (w, w) ∈ H

(�) × H
(�) such that

wi
n → wi as n → ∞ in H

(�), i = , ,

wi
n → wi as n → ∞ in L(�), i = , ,

and wi
n(x) → wi(x) as n → ∞ a.e. in �, i = , . Taking θ = un

‖un‖p+ as a test function in the
first equation of (.) and θ = vn

‖vn‖q+ as a test function in the second equation of (.),
respectively, equations (.) reduce to

⎧⎪⎨
⎪⎩


‖un‖p +

∫
�

(φ
p,w

n
+ φ

q, vn
‖un‖p/q

)(w
n) dx = λn

‖un‖p
∫
�

(w
n) dx,


‖vn‖q +

∫
�

(φ
p, un

‖vn‖q/p
+ φ

q,w
n
)(w

n) dx = λn
‖vn‖q

∫
�

(w
n) dx.

Passing to the limit in these equalities and using the Fatou lemma, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

 ≤ ∫
�

(φ
p,w + φ

q, v
‖u‖p/q

)(w) dx

≤ limn→∞
∫
�

(φ
p,w

n
+ φ

q, vn
‖un‖p/q

)(w
n) dx = ,

 ≤ ∫
�

(φ
p, u

‖v‖q/p
+ φ

q,w )(w) dx

≤ limn→∞
∫
�

(φ
p, un

‖vn‖q/p
+ φ

q,w
n
)(w

n) dx = .

Take into account condition (C), we have w = w = . Namely, w
n and w

n converge to 
in L(�). On the other hand, taking θ = w

n and θ = w
n as test functions in (.), we see

that

{∫
�

|∇w
n| dx +

∫
�

(φ
p,un + φ

q,vn )(w
n) dx = λn

∫
�

(w
n) dx,∫

�
|∇w

n| dx +
∫
�

(φ
p,un + φ

q,vn )(w
n) dx = λn

∫
�

(w
n) dx.

Note that {λn}∞n= is bounded from above by � and

∫
�

(
φ

p,un + φ
q,vn

)(
w

n
) dx ≥ ,

∫
�

(
φ

p,un + φ
q,vn

)(
w

n
) dx ≥ .
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Then we have

{∫
�

|∇w
n| dx ≤ λn

∫
�

(w
n) dx,∫

�
|∇w

n| dx ≤ λn
∫
�

(w
n) dx.

Taking the limit, we conclude that ‖w
n‖ →  and ‖w

n‖ →  as n → ∞, which is absurd
because ‖w

n‖ = ‖w
n‖ =  for all n. This completes the proof. �

3 Proof of Theorem 2.1
We observe that if Aij (i, j = , ) do not satisfy condition (C), that is:

(C) There exists a measurable function ϕ = (ϕ,ϕ) : � →R
 \ {(, )} such that

∫
�

(
φ

p, ϕ‖ϕ‖
+ φ

q, ϕ
‖ϕ‖p/q

)( ϕ

‖ϕ‖
)

dx =  or

∫
�

(
φ

p, ϕ
‖ϕ‖q/p

+ φ
q, ϕ‖ϕ‖

)( ϕ

‖ϕ‖
)

dx = .

(.)

Lemma . If Aij (i, j = , ) satisfy condition (C), then (.) implies that ϕ = ϕ =  a.e.
in � \ U .

Proof In view of equation (.), we have

(
φ

p, ϕ‖ϕ‖
+ φ

q, ϕ
‖ϕ‖p/q

)( ϕ

‖ϕ‖
)

=  a.e. in �,

or

(
φ

p, ϕ
‖ϕ‖q/p

+ φ
q, ϕ‖ϕ‖

)( ϕ

‖ϕ‖
)

=  a.e. in �.

Fixing ε >  and Dε = {x ∈ � \ U : |ϕ| ≥ ε or |ϕ| ≥ ε}, it follows that

 =
(
φ

p, ϕ‖ϕ‖
+ φ

q, ϕ
‖ϕ‖p/q

)( ϕ

‖ϕ‖
)

=
∫

�

[
A(x, y)

∣∣∣∣ϕ(y)
‖ϕ‖

∣∣∣∣
p

+ A(x, y)
|ϕ(y)|q
‖ϕ‖p

]
dy

≥ min

{∫
Dε∩Br

A(x, y)
(

ε

‖ϕ‖
)p

dy,
∫

Dε∩Br

εq

‖ϕ‖p A(x, y) dy
}

,

or

 =
(
φ

p, ϕ
‖ϕ‖q/p

+ φ
q, ϕ‖ϕ‖

)( ϕ

‖ϕ‖
)

=
∫

�

[
A(x, y)

|ϕ(y)|p
‖ϕ‖q + A(x, y)

∣∣∣∣ϕ(y)
‖ϕ‖

∣∣∣∣
q]

dy

≥ min

{∫
Dε∩Br

A(x, y)
εp

‖ϕ‖p dy,
∫

Dε∩Br

A(x, y)
(

ε

‖ϕ‖
)q

dy
}

.
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We conclude that |Dε ∩ Br| =  for all ε >  and r > , where Br(x) � Br is the ball centered
at x of radius r > . Hence, |Dε| =  for all ε > . This completes the proof. �

Hereafter, we proceed as in the proof of Lemma .. Our goal is also to derive an es-
timate of a priori bounds for (λ, u, v) ∈ C+,+, where λ ∈ �̃ = [λ, λ̃] with λ̃ < min{λ(�),
λ(�), . . . ,λ(�n)}.

Lemma . Suppose that Aij (i, j = , ) satisfy conditions (C), (C), and (C). Then there
exists a constant l >  such that ‖u‖C(�) ≤ l and ‖v‖C(�) ≤ l whenever (λ, u, v) ∈ C+,+ and
λ ∈ �̃.

Proof Indeed, arguing by contradiction, if this were not true, then there would exist
{(λn, un, vn)}∞n= ⊂ �̃ × H

(�) × H
(�) such that one of the following three cases holds:

. ‖un‖ → ∞, λn → λ ∈ �̃ as n → ∞, ‖vn‖ ≤ l, and (un, vn) = G(λn, un, vn);
. ‖vn‖ → ∞, λn → λ ∈ �̃ as n → ∞, ‖un‖ ≤ l, and (un, vn) = G(λn, un, vn);
. ‖un‖ → ∞, ‖vn‖ → ∞, λn → λ ∈ �̃ as n → ∞, and (un, vn) = G(λn, un, vn).

We just discuss the case  because the other two cases can be dealt with analogously. Let

ϕn
 =

un

‖un‖C(�)
, ϕn

 =
vn

‖vn‖C(�)
.

Then it follows that{∫
�

∇ϕn
 ∇ρ dx +

∫
�

(φ
p,un + φ

q,vn )ϕ
nρ dx = λn

∫
�

ϕn
 ρ dx,∫

�
∇ϕn

 ∇ρ dx +
∫
�

(φ
p,un + φ

q,vn )w
nρ dx = λn

∫
�

ϕn
 ρ dx.

(.)

Note that {(ϕn
 ,ϕn

 )}∞n= is bounded in H
(�) × H

(�). Then, without loss of generality, we
suppose that there is ϕ = (ϕ,ϕ) ∈ H

(�) × H
(�) such that

ϕn
i → ϕi as n → ∞ in H

(�), i = , ,

ϕn
i → ϕi as n → ∞ in L(�), i = , ,

and ϕn
i → ϕi (i = , ) as n → ∞ a.e. in �.

Using similar arguments as in the proof of Lemma ., we have ϕ �= , which implies that
at least one of ϕ and ϕ is not equal to . Without loss of generality, assume that ϕ �= .
Then by Lemma . there exists some j ∈ {, , . . . , m} such that ϕ|�j �= . In view of the
first equation of (.), for any positive ρ ∈ H

(�j), we have∫
�j

∇ϕn
 ∇ρ dx ≤

∫
�j

∇ϕn
 ∇ρ dx +

∫
�j

(
φ

p,un + φ
q,vn

)
ϕ

nρ dx

= λn

∫
�j

ϕn
 ρ dx ≤ λ̃

∫
�j

ϕn
 ρ dx. (.)

Taking the limit in equation (.) and taking ρ = ψ, where ψ is the first eigenfunction
associated λ(�j), we have

λ(�j)
∫

�j

ϕψ dx ≤ λ̃

∫
�j

ϕψ dx,

which is a contradiction. �
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4 Examples
In this section, we consider system (.) with � = (,π ) to check the validity of the main
results obtained in Sections  and . Notice that λ � σn = n (n ∈ N) are the eigenvalues of
the linear eigenvalue problem u′′ +λu =  with u() = u(π ) =  and sin nx is the eigenfunc-
tion associated with the eigenvalue n, n ∈ N. In particular, σ =  and sin x >  on (,π ).
In what follows, we consider the following example:

Ai,j(x, y) =

{
 if (x, y) ∈ [(, π

 ) × ( π
 ,π )] ∪ [( π

 ,π ) × (, π
 )],

 otherwise

for all i, j = , . Obviously, Aij (i, j = , ) vanish on the diagonal. It follows from Theorem .
that there exists a positive solution for all λ > . In fact, we see that system (.) with
� = (,π ) and given Aij (i, j = , ) has a positive solution u = χ sin x and v = χ sin x, where
χ and χ are positive constants satisfying

λ = (χ)p
∫ π




sinp x dx + (χ)q

∫ π



sinq x dx + .
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