Multiple solutions to impulsive differential equations

Hongmei Bao*

Correspondence:
hmbao001@sina.com
Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P.R. China

Abstract

In this paper, we study the existence of a second-order impulsive differential equations depending on a parameter $\boldsymbol{\lambda}$. By employing a critical point theorem, the existence of at least three solutions is obtained.

MSC: 34A37; 34K10
Keywords: multiple solutions; critical point theorem; impulses

1 Introduction

In recent years, the study of the existence of solutions to impulsive differential equation has aroused extensive interest, we refer the reader to $[1-5]$ and the references therein.
In [1], by using some existing critical point theorems, Xie and Luo investigated the existence of multiple solutions of the following Neumann boundary value problem:

$$
\begin{align*}
& -\left(p(t) u^{\prime}(t)\right)^{\prime}+q(t) u(t)=\lambda f(t, u(t)), \quad t \neq t_{j}, t \in[0,1], \\
& \Delta p\left(t_{j}\right) u^{\prime}\left(t_{j}\right)=I_{j}\left(u\left(t_{j}\right)\right), \quad j=1,2, \ldots, m, \tag{1.1}\\
& u^{\prime}(0)=u^{\prime}(1)=0 .
\end{align*}
$$

In [2], Liang and Zhang considered the following boundary value problems:

$$
\begin{align*}
& -\left(p(t) u^{\prime}(t)\right)^{\prime}=f(t, u(t)), \quad t \neq t_{j}, t \in[0, T], \\
& \Delta p\left(t_{j}\right) u^{\prime}\left(t_{j}\right)=I_{j}\left(u\left(t_{j}\right)\right), \quad j=1,2, \ldots, m, \tag{1.2}\\
& u(0)=u(T), \quad p(0) u^{\prime}(0)=p(T) u^{\prime}(T) .
\end{align*}
$$

The authors gave some criteria to guarantee that the problem has at least one solution under some different conditions.

In [3], Li and Shen were concerned with the existence of three solutions for the following boundary value problems:

$$
\begin{align*}
& -u^{\prime \prime}(t)=\lambda f(u(t)), \quad t \neq t_{j}, t \in[0,1], \\
& \Delta u^{\prime}\left(t_{j}\right)=I_{j}\left(u\left(t_{j}\right)\right), \quad j=1,2, \ldots, m, \tag{1.3}\\
& u(0)=u(1)=0 .
\end{align*}
$$

Motivated by the previous mentioned paper, in this paper, we will study the existence of at least three solutions for the following boundary value problems:

$$
\begin{align*}
& -\left(p(t) u^{\prime}(t)\right)^{\prime}+u(t)=\lambda f(t, u(t)), \quad t \neq t_{j}, t \in[0,1], \\
& \Delta p\left(t_{j}\right) u^{\prime}\left(t_{j}\right)=I_{j}\left(u\left(t_{j}\right)\right), \quad j=1,2, \ldots, m, \tag{1.4}\\
& u^{\prime}(0)=u^{\prime}(1)=0,
\end{align*}
$$

where $0=t_{0}<t_{1}<\cdots<t_{m}<t_{m+1}=1, p \in P C^{1}([0,1]), f \in C([0,1] \times R, R), I_{j} \in C(R, R)$, $j=1,2, \ldots, m, \Delta p\left(t_{j}\right) u^{\prime}\left(t_{j}\right)=p\left(t_{j}^{+}\right) u^{\prime}\left(t_{j}^{+}\right)-p\left(t_{j}^{-}\right) u^{\prime}\left(t_{j}^{-}\right), p\left(t_{j}^{+}\right) u^{\prime}\left(t_{j}^{+}\right)$and $p\left(t_{j}^{-}\right) u^{\prime}\left(t_{j}^{-}\right)$denote the right and the left limits, respectively, $\lambda \in[0,+\infty)$ is a real parameter.

2 Preliminaries

Let $p_{0}=\min _{t \in[0,1]} p(t)>0, M_{0}=\max \left\{\frac{1}{p_{0}}, 1\right\}, X=W^{1,2}[0,1]$ with the norm

$$
\|u\|=\left(\int_{0}^{1}\left(p(t)\left|u^{\prime}(t)\right|^{2}+|u(t)|^{2}\right) d t\right)^{\frac{1}{2}} .
$$

Define the norm in $C([0,1])$ by $\|u\|_{\infty}=\max _{t \in[0,1]}|u(t)|$.
Lemma 2.1 For any $u \in X$, we have $\|u\|_{\infty} \leq \sqrt{2 M_{0}}\|u\|$.
Proof For $u \in X$ by the mean-value theorem, there exists $\tau \in(0,1)$ such that $\int_{0}^{1} u(s) d s=$ $u(\tau)$. Hence, for $t \in[0,1]$, we have

$$
\begin{aligned}
|u(t)| & =\left|u(\tau)+\int_{\tau}^{t} u^{\prime}(s) d s\right| \leq|u(\tau)|+\int_{0}^{1}\left|u^{\prime}(s)\right| d s \\
& \leq \int_{0}^{1}|u(s)| d s+\int_{0}^{1}\left|u^{\prime}(s)\right| d s \\
& \leq\left(\int_{0}^{1}|u(s)|^{2} d s\right)^{\frac{1}{2}}+\sqrt{1 / p_{0}}\left(\int_{0}^{1} p(t)\left|u^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}} \\
& \leq \sqrt{2 M_{0}}\|u\| .
\end{aligned}
$$

For every $u \in X$, we define the functional $\varphi(u): X \rightarrow R$ by

$$
\varphi(u)=\Phi(u)-\lambda \Psi(u) ;
$$

here

$$
\Phi(u)=\frac{1}{2}\|u\|^{2}+\sum_{j=1}^{m} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s
$$

and

$$
\Psi(u)=\int_{0}^{1} F(t, u) d t
$$

where $F(t, u)=\int_{0}^{u(t)} f(t, s) d s$.

We easily show that φ is differentiable at any $u \in X$ and

$$
\varphi^{\prime}(u) v=\int_{0}^{1}\left(p(t) u^{\prime}(t) \nu^{\prime}(t)+u(t) v(t)\right) d t+\sum_{j=1}^{m} I_{j}\left(u\left(t_{j}\right)\right) v\left(t_{j}\right)-\lambda \int_{0}^{1} f(t, u(t)) v(t) d t
$$

Obviously, Φ is a nonnegative continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X^{*}, and Ψ is a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact.

Lemma 2.2 ([1]) If $u \in X$ is a critical point of the functional φ, then u is a classical solution of problem (1.4).

Suppose that $E \subset X$. We denote \bar{E}^{ω} as the weak closure of E, that is, $u \in \bar{E}^{\omega}$ if there exists a sequence $\left\{u_{n}\right\} \subset E$ such that $g\left(u_{n}\right) \rightarrow g(u)$ for every $g \in X^{*}$. Our main tool is the following three critical points theorem obtained in [6].

Lemma 2.3 ([6], Theorem 2.1) Let X be separable and reflexive real Banach space. Φ : $X \rightarrow R$ a nonnegative continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X^{*}. $J: X \rightarrow R$ a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. Assume that there exists $x_{0} \in X$ such that $\Phi\left(x_{0}\right)=J\left(x_{0}\right)=0$ and that
(i) $\lim _{\|x\| \rightarrow+\infty}(\Phi(x)-\lambda J(x))=+\infty$ for all $\lambda \in[0,+\infty)$.

Further, assume that there are $r>0, x_{1} \in X$ such that
(ii) $r<\Phi\left(x_{1}\right)$.
(iii) $\sup _{x \in \overline{\Phi^{-1}((-\infty, r))}} \omega J(x)<\frac{r}{r+\Phi\left(x_{1}\right)} J\left(x_{1}\right)$.

Then, for each

$$
\lambda \in \Lambda_{1}=\left(\frac{\Phi\left(x_{1}\right)}{J\left(x_{1}\right)-\sup _{x \in \overline{\Phi^{-1}((-\infty, r))}} J(x)}, \frac{r}{\sup _{x \in \bar{\Phi}^{-1}((-\infty, r))^{\omega}} \omega(x)}\right),
$$

the equation

$$
\begin{equation*}
\Phi^{\prime}(x)-\lambda J^{\prime}(x)=0 \tag{2.1}
\end{equation*}
$$

has at least three solutions in X and, moreover, for each $h>1$, there exist an open interval

$$
\Lambda_{2} \subseteq\left[0, \frac{h r}{r\left(J\left(x_{1}\right) / \Phi\left(x_{1}\right)\right)-\sup _{x \in \bar{\Phi}^{-1}((-\infty, r))^{2}}^{\omega} J(x)}\right)
$$

and a positive real number σ such that, for each $\lambda \in \Lambda_{2}$, (1.2) has at least three solutions in X whose norms are less than σ.

3 Main results

Theorem 3.1 The following conditions are given.
$\left(\mathrm{H}_{1}\right) \sum_{j=1}^{m} \int_{0}^{u\left(t_{j}\right)} I_{j}(t) d t \geq 0$.
$\left(\mathrm{H}_{2}\right)$ Let $a_{i}>0(i=1,2), M>0$, and $0<\mu<2$ such that

$$
F(t, u) \leq a_{1}|u|^{\mu}-a_{2}, \quad \text { for }|u| \geq M, t \in[0,1]
$$

$\left(\mathrm{H}_{3}\right)$ There exist two positive constants c, c_{1} with $c_{1}>\frac{c}{\sqrt{2 M_{0}}}$, such that

$$
4 M_{0} \int_{0}^{1} \max _{|u| \leq c} F(t, u) d t<c^{2}\left(\frac{c^{2}}{4 M_{0}}+\frac{c_{1}^{2}}{2}+\sum_{j=1}^{m} \int_{0}^{c_{1}} I_{j}(t) d t\right)^{-1} \int_{0}^{1} F\left(t, c_{1}\right) d t
$$

Furthermore, put

$$
\begin{align*}
& \lambda_{1}=\frac{4 M_{0} \int_{0}^{1} \max _{|u| \leq c} F(t, u) d t}{c^{2}}, \\
& \lambda_{2}=\frac{\int_{0}^{1} F\left(t, c_{1}\right) d t-\int_{0}^{1} \max _{|u| \leq c} F(t, u) d t}{\frac{c_{1}^{2}}{2}+\sum_{j=1}^{m} \int_{0}^{c_{1}} I_{j}(s) d s} . \tag{3.1}
\end{align*}
$$

Then, for each $\lambda \in\left(\frac{1}{\lambda_{2}}, \frac{1}{\lambda_{1}}\right)$, problem (1.4) has at least three solutions in X.
Proof Now we show the conditions (i)-(iii) of Lemma 2.3 are satisfied.
For any $u \in X,|u| \geq M$, and $\lambda \geq 0$, and the assumptions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{2}\right)$ we have

$$
\begin{aligned}
\Phi(u)-\lambda \Psi(u) & =\frac{1}{2}\|u\|^{2}+\sum_{j=1}^{m} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s-\lambda \int_{0}^{1} F(t, u(t)) d t \\
& \geq \frac{1}{2}\|u\|^{2}-\lambda\left[a_{1}|u|^{\mu}-a_{2}\right] \\
& \geq \frac{1}{2}\|u\|^{2}-\lambda\left[a_{1}\left(2 M_{0}\right)^{\mu / 2}\|u\|^{\mu}-a_{2}\right],
\end{aligned}
$$

$0<\mu<2$ implies that

$$
\lim _{\|u\| \rightarrow \infty}(\Phi(u)-\lambda J(u))=+\infty,
$$

which shows the condition (i) of Lemma 2.3 is satisfied.
Let $u_{1}=c_{1} \in X$ and $c_{1}>\frac{c}{\sqrt{2 M_{0}}}$. Then

$$
\begin{aligned}
\Phi\left(u_{1}\right) & =\frac{1}{2}\left\|u_{1}\right\|^{2}+\sum_{j=1}^{m} \int_{0}^{u_{1}\left(t_{j}\right)} I_{j}(s) d s \\
& =\frac{1}{2} c_{1}^{2}+\sum_{j=1}^{m} \int_{0}^{c_{1}} I_{j}(s) d s \geq \frac{1}{2} c_{1}^{2}>\frac{c^{2}}{4 M_{0}}=r,
\end{aligned}
$$

so the condition (ii) of Lemma 2.3 is obtained.
By Lemma 2.1, if $\Phi(u) \leq r$, then

$$
|u(t)|^{2} \leq 2 M_{0}\|u\|^{2} \leq 4 M_{0} \Phi(u) \leq 4 M_{0} r=c^{2}, \quad \text { for } t \in[0,1],
$$

which implies that

$$
\Phi^{-1}(-\infty, r) \subseteq\{u \in X,|u(t)| \leq c, t \in[0,1]\} .
$$

So for any $u \in X$, we have

$$
\sup _{u \in \Phi^{-1}(-\infty, r)^{\omega}} \Psi(u)=\sup _{u \in \Phi^{-1}(-\infty, r)} \Psi(u) \leq \int_{0}^{1} \max _{|u| \leq c} F(t, u) d t .
$$

On the other hand, we obtain

$$
\frac{r}{r+\Phi\left(u_{1}\right)} \Psi\left(u_{1}\right)=c^{2}\left[4 M_{0}\left(\frac{c^{2}}{4 M_{0}}+\frac{c_{1}^{2}}{2}+\sum_{j=1}^{m} \int_{0}^{c_{1}} I_{j}(t) d t\right)\right]^{-1} \int_{0}^{1} F\left(t, c_{1}\right) d t .
$$

From the assumption $\left(\mathrm{H}_{3}\right)$ we have

$$
\sup _{u \in \Phi^{-1}(-\infty, r)^{\omega}} \Psi(u)<\frac{r}{r+\Phi\left(u_{1}\right)} \Psi\left(u_{1}\right),
$$

which shows the condition (iii) of Lemma 2.3 is satisfied.
Note that

$$
\begin{aligned}
& \frac{\Phi\left(u_{1}\right)}{\Psi\left(u_{1}\right)-\sup _{u \in \overline{\Phi^{-1}(-\infty, r)}} \omega} \Psi(u)
\end{aligned} \frac{\frac{1}{2} c_{1}^{2}+\sum_{j=1}^{m} \int_{0}^{c_{1}} I_{j}(s) d s}{\int_{0}^{1} F\left(t, c_{1}\right) d t-\int_{0}^{1} \max _{|u| \leq c} F(t, u) d t}=\frac{1}{\lambda_{2}},
$$

The condition $\left(\mathrm{H}_{3}\right)$ implies $\lambda_{2}>\lambda_{1}$. In the light of Lemma 2.3, the problem (1.4) has at least three solutions in X for each $\lambda \in\left(1 / \lambda_{2}, 1 / \lambda_{1}\right)$.

The proof is complete.

4 Examples

Consider the following problem:

$$
\begin{align*}
& -\left(e^{t} u^{\prime}(t)\right)^{\prime}+u(t)=\lambda f(t, u), \quad t \in[0,1], t \neq t_{1}, \\
& \Delta\left(e^{t_{1}} u^{\prime}\left(t_{1}\right)\right)=u\left(t_{1}\right), \quad t_{1}=\frac{1}{2}, \tag{4.1}\\
& u^{\prime}(0)=u^{\prime}(1)=0,
\end{align*}
$$

where

$$
f(t, u)= \begin{cases}e^{2 u}, & u \leq 4 \\ u^{1 / 2}+e^{8}-4, & u>4\end{cases}
$$

then

$$
F(t, u)= \begin{cases}\frac{1}{2}\left(e^{2 u}-1\right), & u \leq 4 \\ \frac{2}{3} u^{3 / 2}+\left(e^{8}-4\right) u+\frac{61}{6}-\frac{7}{2} e^{8}, & u>4\end{cases}
$$

Clearly $M_{0}=1$. Let $c=1, c_{1}=4$, it follows that

$$
\begin{aligned}
& 4 M_{0} \int_{0}^{1} \max _{|u| \leq c} F(t, u) d t \\
& \quad=2\left(e^{2}-1\right)<c^{2}\left(\frac{c^{2}}{4 M_{0}}+\frac{c_{1}^{2}}{2}+\sum_{j=1}^{m} \int_{0}^{c_{1}} I_{j}(s) d s\right)^{-1} \int_{0}^{1} F\left(t, c_{1}\right) d t=\frac{2\left(e^{8}-1\right)}{65}, \\
& \frac{1}{\lambda_{1}}=\frac{1}{2\left(e^{2}-1\right)}, \quad \frac{1}{\lambda_{2}}=\frac{32}{e^{8}-e^{2}}
\end{aligned}
$$

which shows that all conditions of Theorem 3.1 are satisfied, so the problem (4.1) admits at least three solutions for $\lambda \in\left(\frac{32}{e^{8}-e^{2}}, \frac{1}{2\left(e^{2}-1\right)}\right)$.

Competing interests

The author declares that she has no competing interests.
Received: 4 August 2016 Accepted: 6 January 2017 Published online: 18 January 2017

References

1. Xie, J, Luo, Z: Multiple solutions for a second-order impulsive Sturm-Liouville equation. Abstr. Appl. Anal. 2013, Article ID 527082 (2013)
2. Liang, R, Zhang, W: Applications of variational methods to the impulsive equation with non-separated periodic boundary conditions. Adv. Differ. Equ. 2016, 147 (2016)
3. Li, J, Shen, J: Existence of three solutions to impulsive differential equations. J. Integral Equ. Appl. 24, 273-281 (2012)
4. Li, J, Nieto, JJ: Existence of positive solutions for multi-point boundary value problem on the half-line with impulses. Bound. Value Probl. 2009, Article ID 834158 (2009)
5. Li, T, Li, J: Existence results of second-order impulsive neutral functional differential inclusions in Banach spaces. Adv. Differ. Equ. 2015, 309 (2015)
6. Bonanno, G: A critical points theorem and nonlinear differential problems. J. Glob. Optim. 28, 249-258 (2004)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

