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Zijian Luo1, Michal Fečkan2 and JinRong Wang1*

*Correspondence:
jrwang@gzu.edu.cn
1Department of Mathematics,
Guizhou University, Guiyang,
Guizhou 550025, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we apply a new method, a delayed matrix exponential, to study P-type
and D-type learning laws for time-delay controlled systems to track the varying
reference accurately by using a few iterations in a finite time interval. We present
open-loop P- and D-type asymptotic convergence results in the sense of λ-norm by
virtue of spectral radius of matrix. Finally, four examples are given to illustrate our
theoretical results.
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1 Introduction
In the past decades, delay differential equations have been widely used in the fields of eco-
nomics, physics, and engineering control. Existence, stability, and periodic solutions are
studied extensively and there are many interesting and important results; see, for example,
[–].

Since Uchiyama [] and Arimoto [] put forward the iterative learning control (ILC for
short), a wide variety of iterative learning control problems and related issues are proposed
and studied in recent decades. For example, ILC for varying reference trajectories [, ],
ILC for fractional differential systems [, ], ILC for impulsive differential systems [,
], research on the robustness of ILC [, ], and so on.

It is a common phenomenon that time delays exist in many practical engineering issues.
However, the prevalence of the phenomenon to the delay caused a lot of practical engi-
neering problems. So the study of the control problem of time-delay system is paid more
attention. Some effective methods for studying the iterative learning control for time-delay
systems are provided by Sun [–].

After reviewing the previous works dealing with ILC problems for delay systems, we
observe the following facts:

(i) A delay system ẋ(t) = Ax(t) + Bx(t – τ ), t >  is considered mostly as an integral
system, where A, B are suitable matrices.

(ii) A uniform transition matrix associated with A, B is not derived directly and the
structure of solution x(t) is not well characterized on every subintervals
[, τ ], . . . , [nτ , (n + )τ ], n ∈ N .
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(iii) An extended Gronwall inequality is used to derive convergence results instead of
applying direct methods.

It is remarkable that Khusainov and Shuklin in [] initially introduced a delayed expo-
nential matrix method to study the following linear differential equation with one delay
term:

⎧
⎨

⎩

ẋ(t) = Ax(t) + Bx(t – τ ), t ≥ , τ ≥ ,

x(t) = ϕ(t), –τ ≤ t ≤ ,
()

where A and B are matrices and ϕ is an arbitrary continuously differentiable vector func-
tions. A representation of a solution of system () with AB = BA is given by using a so-
called delay exponential matrix, which is defined as follows:

eBt
τ =

⎧
⎪⎪⎨

⎪⎪⎩

�, t < –τ ,

E, –τ ≤ t < ,

E + Bt + B(t–τ )

 + · · · + Bk (t–(k–)τ )k

k! , (k – )τ ≤ t < kτ , k = , , . . . ,

()

for τ > , where � and E are the n-dimensional zero and identity matrices, respectively.
For more recent contributions on oscillating systems with pure delay, relative control-

lability of system with pure delay, asymptotic stability of nonlinear multidelay differential
equations, one can refer to [–] and the references therein.

Inspired by the references mentioned above, in this work, we discuss ILC for time-delay
systems. More precisely, we study the following linear controlled systems with pure delay:

⎧
⎪⎪⎨

⎪⎪⎩

ẋk(t) = Axk(t) + Bxk(t – τ ) + uk(t), t ∈ [, T],

xk(t) = ϕ(t), –τ ≤ t ≤ , τ > ,

yk(t) = Cxk(t) + Duk(t),

()

where T denotes pre-fixed iteration domain length with T = Nτ and N ∈N. Let ϕ ∈ C
τ :=

C([–τ , ],Rn), A and B be two n × n matrices such that AB = BA and C, D be two m × n
matrices, k denotes the kth learning iteration, the variables xk , uk ∈R

n and yk ∈ R
m denote

state, input, and output, respectively. By [], Corollary ., we derive that the state xk(·)
has the form

xk(t) = eA(t+τ )eBt
τ ϕ(–τ ) +

∫ 

–τ

eA(t–τ–s)eB(t–τ–s)
τ eAτ

[
ϕ′(s) – Aϕ(s)

]
ds

+
∫ t


eA(t–τ–s)eB(t–τ–s)

τ eAτ uk(s) ds, ()

where eBt
τ is defined in () and B = e–Aτ B.

By introducing eBt
τ for (), we state some possible advantages of our approach as follows.

(i) The structure of solution x(t) is characterized on every subintervals.
(ii) A direct method is explored to deal with ILC problems by using mathematical

analysis tools.
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Let yd be a desired trajectory and set ek = yd – yk , which denotes output error and δuk =
uk+ – uk .

For the system (), we consider the open-loop P-type ILC updating law

uk+(t) = uk(t) + Poek(t). ()

For the system () with D = �, we consider the open-loop D-type ILC updating law

uk+(t) = uk(t) + Doėk(t), ()

where Po and Do ∈R
n×m are learning gain matrices.

The main objective of this paper is to use delayed exponential matrix to generate the
control input uk such that the time-delay system output yk is tracking the iteratively vary-
ing reference trajectories yd as accurately as possible when k → ∞ uniformly on [, T] in
the sense of the λ-norm by adopting P-type ILC and D-type ILC.

Here we point out that our method is different from the method given in the previous
reference, however, we obtain the same convergence results. Our method relies on a direct
formula solution, so it is constructive.

The rest of this paper is organized as follows. In Section , we give some notations,
concepts, and lemmas. In Sections  and , we give convergence results of P-type ILC and
D-type for system (). Examples are given in Section  to demonstrate the applicability of
our main results.

2 Preliminaries
Let J ⊂ R be a finite interval and L(Rn) be the space of bounded linear operators in R

n.
Denote by C(J ,Rn) the Banach space of vector-value continuous functions from J → R

n

endowed with the ∞-norm ‖x‖ = maxt∈J |x(t)| for a norm | · | on R
n. We also consider

on C(J ,Rn) a λ-norm ‖x‖λ = supt∈J{e–λt|x(t)|}, λ > . We introduce a space C(J ,Rn) =
{x ∈ C(J ,Rn) : ẋ ∈ C(J ,Rn)}. For a matrix A : Rn → R

n, we consider its matrix norm
‖A‖ = max|x|= |Ax| generated by | · |.

Lemma . (see [], .., Chapter ) Let A ∈ L(Rn). For a given ε > , there is a norm
| · | on R

n such that

‖A‖ ≤ ρ(A) + ε,

where ρ(A) denotes the spectral radius of the matrix A.

Next, we give an alternative formula to compute the solution of linear system with pure
delay, which is a direct corollary of [], Corollary ..

Lemma . Let f : J →R
n be a continuous function. The solution x ∈ C(J ,Rn) of

⎧
⎨

⎩

ẋ(t) = Ax(t) + Bx(t – τ ) + f (t), t > , τ ≥ ,

x(t) = ϕ(t), –τ ≤ t ≤ ,
()
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has the form

x(t) = eA(t+τ )eBt
τ ϕ(–τ ) +

∫ 

–τ

eA(t–τ–s)
j–∑

l=

Bl


(t – lτ – s)l

l!
eAτ

[
ϕ′(s) – Aϕ(s)

]
ds

+
∫ t–jτ

–τ

eA(t–τ–s)Bj


(t – jτ – s)j

j!
eAτ

[
ϕ′(s) – Aϕ(s)

]
ds

+
j–∑

i=

∫ t–iτ


eA(t–τ–s)Bi


(t – iτ – s)i

i!
eAτ f (s) ds, ()

where A and B are commutative, B = e–Aτ B and (j – )τ ≤ t < jτ , j = , , . . . , N .

Proof According to the formula () in [], we know the solution of system () has the
form

x(t) = eA(t+τ )eBt
τ ϕ(–τ ) +

∫ 

–τ

eA(t–τ–s)eB(t–τ–s)
τ eAτ

[
ϕ′(s) – Aϕ(s)

]
ds

+
∫ t


eA(t–τ–s)eB(t–τ–s)

τ eAτ f (s) ds. ()

Without loss of generality, we consider (j – )τ ≤ t < jτ , j = , , . . . , N .
Next, we submit the formula of delayed matrix exponential () to () to prove the result.

We divide our proof into two steps.
Step . We prove that

∫ 

–τ

eA(t–τ–s)eB(t–τ–s)
τ eAτ

[
ϕ′(s) – Aϕ(s)

]
ds

=
∫ 

–τ

eA(t–τ–s)
j–∑

l=

Bl


(t – lτ – s)l

l!
eAτ

[
ϕ′(s) – Aϕ(s)

]
ds

+
∫ t–jτ

–τ

eA(t–τ–s)Bj


(t – jτ – s)j

j!
eAτ

[
ϕ′(s) – Aϕ(s)

]
ds. ()

Due to the fact that –τ < s < , we obtain t – τ < t – τ – s < t and (j – )τ < t – τ < t – τ – s <
t < jτ . When –τ < s < t – jτ , we have (j – )τ < t – τ – s < t < jτ . When t – jτ < s < , we have
(j – )τ < t – τ < t – τ – s < (j – )τ . Hence

∫ 

–τ

eA(t–τ–s)eB(t–τ–s)
τ eAτ

[
ϕ′(s) – Aϕ(s)

]
ds

=
∫ t–jτ

–τ

eA(t–τ–s)
j∑

l=

Bl


(t – lτ – s)l

l!
eAτ

[
ϕ′(s) – Aϕ(s)

]
ds

+
∫ 

t–jτ
eA(t–τ–s)

j–∑

l=

Bl


(t – lτ – s)l

l!
eAτ

[
ϕ′(s) – Aϕ(s)

]
ds

=
∫ 

–τ

eA(t–τ–s)
j–∑

l=

Bl


(t – lτ – s)l

l!
eAτ

[
ϕ′(s) – Aϕ(s)

]
ds

+
∫ t–jτ

–τ

eA(t–τ–s)Bj


(t – jτ – s)j

j!
eAτ

[
ϕ′(s) – Aϕ(s)

]
ds.
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Step . We check that

∫ t


eA(t–τ–s)eB(t–τ–s)

τ eAτ f (s) ds =
j–∑

i=

∫ t–iτ


eA(t–τ–s)Bi


(t – iτ – s)i

i!
eAτ f (s) ds. ()

Due to the fact that  < s < t, we obtain –τ < t – τ – s < t – τ . When t – (i + )τ < s < t – iτ ,
we have (i – )τ < t – τ – s < iτ , i = , , . . . , j – . When  < s < t – (j – )τ , we have (j – )τ <
t – τ – s < t – τ < (j – )τ . Hence

∫ t


eA(t–τ–s)eB(t–τ–s)

τ eAτ f (s) ds

=
j–∑

i=

∫ t–iτ

t–(i+)τ
eA(t–τ–s)eB(t–τ–s)

τ eAτ f (s) ds +
∫ t–(j–)τ


eA(t–τ–s)eB(t–τ–s)

τ eAτ f (s) ds

=
j–∑

i=

∫ t–iτ

t–(i+)τ
eA(t–τ–s)

i∑

l=

Bl


(t – lτ – s)l

l!
eAτ f (s) ds

+
∫ t–(j–)τ


eA(t–τ–s)

j–∑

l=

Bl

(t – lτ – s)l

l!
eAτ f (s) ds

=
j–∑

i=

i∑

l=

∫ t–iτ

t–(i+)τ
eA(t–τ–s)Bl


(t – lτ – s)l

l!
eAτ f (s) ds

+
j–∑

l=

∫ t–(j–)τ


eA(t–τ–s)Bl


(t – lτ – s)l

l!
eAτ f (s) ds

=
j–∑

l=

∫ t–lτ

t–(j–)τ
eA(t–τ–s)Bl


(t – lτ – s)l

l!
eAτ f (s) ds

+
j–∑

l=

∫ t–(j–)τ


eA(t–τ–s)Bl


(t – lτ – s)l

l!
eAτ f (s) ds

=
j–∑

i=

∫ t–iτ


eA(t–τ–s)Bi


(t – iτ – s)i

i!
eAτ f (s) ds

+
∫ t–(j–)τ


eA(t–τ–s)Bj–


(t – (j – )τ – s)j–

(j – )!
eAτ f (s) ds

=
j–∑

i=

∫ t–iτ


eA(t–τ–s)Bi


(t – iτ – s)i

i!
eAτ f (s) ds.

Linking (), (), and (), one can get the result (). The proof is finished. �

3 Convergence analysis of P-type
In this section, we give the first convergence result of P-type.

Theorem . Let yd(t), t ∈ [, T] be a desired trajectory for system (). If ρ(E – DPo) < ,
then the P-type ILC law () guarantees limk→∞ yk(t) = yd(t) uniformly on [, T].
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Proof Without loss of generality, we consider (j – )τ ≤ t < jτ , j = , , . . . , N . Linking ()
and (), we have

ek+(t) – ek(t) = yk(t) – yk+(t)

= –C
∫ t


eA(t–τ–s)eB(t–τ–s)

τ eAτ δuk(s) ds – Dδuk(t).

According to () and Lemma ., we have

ek+(t) = (E – DPo)ek(t) – C
j–∑

i=

∫ t–iτ


eA(t–τ–s)Bi


(t – iτ – s)i

i!
eAτ δuk(s) ds. ()

Further, by Lemma . we know that, for a given ε > , there is a norm | · | on R
n such that

‖E – DPo‖ ≤ ρ(E – DPo) + ε.

So by (), we have

∣
∣ek+(t)

∣
∣ ≤ [

ρ(E – DPo) + ε
]∣
∣ek(t)

∣
∣

+ ‖C‖
j–∑

i=

∫ t–iτ



∥
∥eA(t–τ–s)∥∥

∥
∥Bi


∥
∥ (t – iτ – s)i

i!
∥
∥eAτ

∥
∥
∣
∣δuk(s)

∣
∣ds.

Hence, we obtain

∣
∣ek+(t)

∣
∣ ≤ [

ρ(E – DPo) + ε
]∣
∣ek(t)

∣
∣

+ ‖C‖
j–∑

i=

∫ t–iτ


e‖A‖(t–s)‖B‖i (t – iτ – s)i

i!
∣
∣δuk(s)

∣
∣ds. ()

For fixed i, i = , , . . . , j – , we have

∫ t–iτ


e‖A‖(t–s)‖B‖i (t – iτ – s)i

i!
∣
∣δuk(s)

∣
∣ds

=
‖B‖i

i!

∫ t–iτ


e‖A‖(t–s)(t – iτ – s)i∣∣δuk(s)

∣
∣ds

≤ ‖B‖i

i!
e‖A‖t

∫ t–iτ


e(λ–‖A‖)s(t – iτ – s)i ds‖δuk‖λ. ()

For any λ > ‖A‖, we apply integration by parts via mathematical induction to derive

∫ t–iτ


e(λ–‖A‖)s(t – iτ – s)i ds

=


λ – ‖A‖
∫ t–iτ


(t – iτ – s)i de(λ–‖A‖)s

= –


λ – ‖A‖ (t – iτ )i +
i

(λ – ‖A‖)

∫ t–iτ


(t – iτ – s)i– de(λ–‖A‖)s
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= –


λ – ‖A‖ (t – iτ )i –
i

(λ – ‖A‖) (t – iτ )i–

+
i(i – )

(λ – ‖A‖)

∫ t–iτ


(t – iτ – s)i– de(λ–‖A‖)s

...

= –


λ – ‖A‖ (t – iτ )i –
i

(λ – ‖A‖) (t – iτ )i– – · · ·

–
i!

(λ – ‖A‖)i (t – iτ ) +
i!

(λ – ‖A‖)i+

(
e(λ–‖A‖)(t–iτ ) – 

)

= –
i∑

p=

i!(t – iτ )i–p

(i – p)!(λ – ‖A‖)p+ +
i!e(λ–‖A‖)(t–iτ )

(λ – ‖A‖)i+ . ()

Linking (), (), and (), it is not difficult to get

∣
∣ek+(t)

∣
∣ ≤ [

ρ(E – DPo) + ε
]∣
∣ek(t)

∣
∣ + ‖C‖

j–∑

i=

‖B‖i

i!
e‖A‖t

×
[

–
i∑

p=

i!(t – iτ )i–p

(i – p)!(λ – ‖A‖)p+ +
i!e(λ–‖A‖)(t–iτ )

(λ – ‖A‖)i+

]

‖δuk‖λ. ()

By () via (), we have

∣
∣ek+(t)

∣
∣e–λt ≤ [

ρ(E – DPo) + ε
]∣
∣ek(t)

∣
∣e–λt + ‖C‖‖Po‖

j–∑

i=

‖B‖i

i!
e(‖A‖–λ)t

×
[

–
i∑

p=

i!(t – iτ )i–p

(i – p)!(λ – ‖A‖)p+ +
i!e(λ–‖A‖)(t–iτ )

(λ – ‖A‖)i+

]

‖ek‖λ

and, taking the λ-norm, we arrive at

‖ek+‖λ ≤ [
ρ(E – DPo) + ε

]‖ek‖λ + ‖C‖‖Po‖
j–∑

i=

‖B‖i

i!

×
[ i∑

p=

i! max{, Tp}
(i – p)!(λ – ‖A‖)p+ +

i!
(λ – ‖A‖)i+

]

‖ek‖λ.

Since ρ(E – DPo) < , for any ε ∈ (, –ρ(E–DPo)
 ) and λ > ‖A‖ sufficiently large, we have

‖ek+‖λ ≤ (
ρ(E – DPo) + ε

)‖ek‖λ,

which implies limk→∞ ‖ek‖λ = , since ρ(E – DPo) + ε < . In addition, ‖ek‖ ≤ eλT‖ek‖λ.
Hence limk→∞ ‖ek‖ = . The proof is completed. �

Remark . We use a delayed matrix exponential method to obtain convergence of the
P-type ILC algorithm. Next, we applied the norm ‖ · ‖λ just for a technical reason to get
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uniform convergence only under condition ρ(E – DPo) <  in the end of the above proof.
Moreover, fixing ε ∈ (, –ρ(E–DPo)

 ), the smallest suitable λ > ‖A‖ is given by the equation

‖C‖‖Po‖
N–∑

i=

‖B‖i

i!

[ i∑

p=

i! max{, Tp}
(i – p)!(λ – ‖A‖)p+ +

i!
(λ – ‖A‖)i+

]

= ε, ()

which is rather awkward to solve. On the other hand, () has a unique solution for any
ε > . Moreover, it may have any λ > ‖A‖ as a solution by varying ‖C‖‖Po‖.

4 Convergence analysis of D-type
In this section, we discuss the ILC convergence of D-type.

Theorem . Let yd(t), t ∈ [, T], be a desired trajectory for system () with D = �. If ρ(E –
CDo) <  and ek() = , k = , , . . . , then the D-type ILC law () guarantees limk→∞ yk(t) =
yd(t) uniformly on [, T].

Proof First, we consider (j – )τ ≤ t < jτ , j = , , . . . , N . By () and (), we have

ėk+(t) – ėk(t) = C
[
ẋk(t) – ẋk+(t)

]

= CA
[
xk(t) – xk+(t)

]
+ CB

[
xk(t – τ ) – xk+(t – τ )

]
+ C

[
uk(t) – uk+(t)

]

= –CA
∫ t


eA(t–τ–s)eB(t–τ–s)

τ eAτ δuk(s) ds

– CB
∫ t–τ


eA(t–τ–s)eB(t–τ–s)

τ eAτ δuk(s) ds – CDoėk(t).

So we have

ėk+(t) = (E – CDo)ėk(t)

– CA
∫ t


eA(t–τ–s)eB(t–τ–s)

τ eAτ δuk(s) ds

– CB
∫ t–τ


eA(t–τ–s)eB(t–τ–s)

τ eAτ δuk(s) ds.

Similar to the proof of Theorem ., one can apply Lemma . to derive that

ėk+(t) = (E – CDo)ėk(t)

– CA
j∑

i=

∫ t–(i–)τ


eA(t–τ–s)Bi–


(t – (i – )τ – s)i–

(i – )!
eAτ δuk(s) ds

– CB
j∑

l=

∫ t–(l–)τ


eA(t–τ–s)Bl–


(t – (l – )τ – s)l–

(l – )!
eAτ δuk(s) ds.

Obviously, we have

∣
∣ėk+(t)

∣
∣e–λt

≤ [
ρ(E – CDo) + ε

]∣
∣ėk(t)

∣
∣e–λt
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+ ‖CA‖
j∑

i=

‖B‖i–

(i – )!
e(‖A‖–λ)t

∫ t–(i–)τ


e‖A‖(λ–s)(t – (i – )τ – s

)i– ds‖δuk‖λ

+ ‖CB‖
j∑

l=

‖B‖l–

(l – )!
e(‖A‖–λ)t

∫ t–(l–)τ


e‖A‖(λ–τ–s)(t – (l – )τ – s

)l– ds‖δuk‖λ. ()

In analogy to the computation in ()-(), inequality () becomes

∣
∣ėk+(t)

∣
∣e–λt ≤ [

ρ(E – CDo) + ε
]∣
∣ėk(t)

∣
∣e–λt + (W + W)‖Do‖‖ėk‖λ, ()

where

W = ‖CA‖
j∑

i=

‖B‖i–

(i – )!

[ i∑

p=

(i – )!Ti–p

(i – p)!(λ – ‖A‖)p +
(i – )!

(λ – ‖A‖)i

]

and

W = ‖CB‖
j∑

l=

‖B‖l–

(l – )!

[ l∑

q=

(l – )!Tl–q

(l – q)!(λ – ‖A‖)q– +
(l – )!

(λ – ‖A‖)l–

]

.

If j = , which means  ≤ t < τ , then by () and (), we have

ėk+(t) – ėk(t) = C
[
ẋk(t) – ẋk+(t)

]

= CA
[
xk(t) – xk+(t)

]
+ CB

[
xk(t – τ ) – xk+(t – τ )

]
+ C

[
uk(t) – uk+(t)

]

= –CA
∫ t


eA(t–τ–s)eB(t–τ–s)

τ eAτ δuk(s) ds – CDoėk(t).

We can repeat the above arguments to arrive at () with W =  and W = ‖CA‖
λ–‖A‖ . Hence

() holds on the whole [, T], which implies

‖ėk+‖λ ≤ [
ρ(E – CDo) + ε + (W + W)‖Do‖

]‖ėk‖λ.

Note that by ρ(E – CDo) < , we obtain limk→∞ ‖ėk‖λ = . Thus, ‖ėk‖ ≤ ėλT‖ėk‖λ. So
‖ėk‖ →  as k → ∞. Due to the fact that ek() = , we get ‖ek‖ ≤ T‖ėk‖, consequently
we find that ‖ek‖ →  as k → ∞. The proof is completed. �

Remark . Since

ek() = yd() – yk() = yd() – Cxk() = yd() – Cϕ(),

we need yd() = Cϕ(). This gives a compatibility condition for ϕ. Since yd() is arbitrary,
we need C to be surjective.

5 Simulation examples
In this section, four numerical examples are presented to demonstrate the validity of the
designed method. In order to simulate the tracking errors of trajectories, we adopt for sim-
plicity L-norm in our simulations. This L-norm can be used, since by the fact that ‖ek‖ ≤



Luo et al. Advances in Difference Equations  (2017) 2017:35 Page 10 of 14

Figure 1 The system output and the tracking
error for (20).

Table 1 The tracking error of each iteration for (20)

k 1 2 3 4 5 6 7 8 9 10
Error 18.41 4.31 2.68 1.91 1.33 0.95 0.68 0.48 0.34 0.24

eλT‖ek‖λ for a suitable λ > ‖A‖, we obtain ‖ek‖ →  as k → ∞, i.e., limk→∞ supt∈J |ek(t)| =
, which yields ek →  in L(J ,Rn).

Example . Consider

⎧
⎪⎪⎨

⎪⎪⎩

ẋk(t) = xk(t) + xk(t – .) + uk(t), x(t) ∈R, t ≥ ,

xk(t) = t, –. ≤ t ≤ ,

yk(t) = xk(t) + .uk(t),

()

and P-type ILC

uk+(t) = uk(t) + ek(t).

The original reference trajectory is

yd(t) =

⎧
⎨

⎩

 sin(π t), t ∈ [, .],

 sin(π t) +  cos(π t) + , t ∈ [., ].

Set t ∈ [, ], τ = ., ϕ(t) = t. For n = m = , A = , B = , C = , and D = .. It is not
difficult to find that B = e–Aτ B = e–. and

et
. =

⎧
⎨

⎩

 + e–.t, t ∈ [, .],

 + e–.t + e– (t–.)

! , t ∈ [., ].

Next, we set Po = . Obviously, ρ( – DPo) = . < . Thus, all conditions of Theorem .
are satisfied, so yk(t) uniformly converges to yd(t), for t ∈ [, ].

The upper figure of Figure  shows the output yk of equation () of the th iterations
and the reference trajectory yd . The lower figure of Figure  shows the L-norm of the
tracking error (see also Table ) in each iteration.
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Figure 2 The system output and the tracking
error for (21).

Table 2 The tracking error of each iteration for (21)

k 1 2 3 4 5 6 7 8 9 10
Error 18.41 10.80 7.16 4.99 3.60 2.65 1.98 1.49 1.34 0.86

k 11 12 13 14 15 16 17 18 19 20
Error 0.66 0.51 0.39 0.30 0.23 0.18 0.14 0.11 0.08 0.06

Example . Consider

⎧
⎪⎪⎨

⎪⎪⎩

ẋk(t) = xk(t) + xk(t – .) + uk(t), x(t) ∈R, t ≥ ,

xk(t) = t, –. ≤ t ≤ ,

yk(t) = xk(t),

()

and D-type ILC

uk+(t) = uk(t) + .ėk(t).

The original reference trajectory is the same as for Example .. Set t ∈ [, ], τ = .,
ϕ(t) = t. For n = m = , A = , B = , C =  and D = . It is not difficult to find that B and
et

. are the same as for Example .. Next, we set Do = .. Obviously, ρ( – CDo) = . < .
Thus, all conditions of Theorem . are satisfied.

The upper figure of Figure  shows the equation () output yk of the th iterations and
the reference trajectory yd . The lower figure of Figure  shows the L-norm of the tracking
error (see also Table ) in each iteration.

Example . Consider

⎧
⎪⎪⎨

⎪⎪⎩

ẋk(t) = xk(t) + xk(t – .) + uk(t), xk(t), uk(t) ∈R
, t ≥ ,

xk(t) = (et , et)T , –. ≤ t ≤ ,

yk(t) = (, )xk(t) + (, )uk(t),

()

and P-type ILC

uk+(t) = uk(t) +

(
.

–.

)

ek(t).
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Figure 3 The system output and the tracking
error for (22).

Table 3 The tracking error of each iteration for (22)

k 1 2 3 4 5 6 7 8 9 10
Error 10.09 5.41 3.14 1.62 0.76 0.33 0.14 0.06 0.02 0.01

The original reference trajectory is

yd(t) =

⎧
⎨

⎩

 sin(π t), t ∈ [, .],

 sin(π t) +  sin(π t) + , t ∈ [., ].

Set t ∈ [, ], τ = ., ϕ(t) = (et , et)T . Next, n = , m = , A = B = E, E is the identity matrix,
C = (, ) and D = (, ). It is not difficult to find that

B = e–Aτ B =

(
. 

 .

)

,

and

et
. =

⎧
⎪⎪⎨

⎪⎪⎩

E, t ∈ [–., ],

E + Bt, t ∈ [, .],

E + Bt + B


(t–.)

! , t ∈ [., ].

Next, we set Po = (., –.)T . Obviously, ρ(E – DPo) = . < . Thus, all conditions of
Theorem . are satisfied. Then yk(t) uniformly converges to yd(t), for t ∈ [, ].

The upper figure of Figure  shows the equation () output yk of the th iterations and
the reference trajectory yd . The lower figure of Figure  shows the L-norm of the tracking
error (see also Table ) in each iteration.

Example . For system

⎧
⎪⎪⎨

⎪⎪⎩

ẋk(t) = xk(t) + xk(t – .) + uk(t), xk(t), uk(t) ∈R
, t ≥ ,

xk(t) = (t, t)T , –. ≤ t ≤ ,

yk(t) = (, )xk(t),

()
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Figure 4 The system output and the tracking
error for (23).

Table 4 The tracking error of each iteration for (23)

k 1 2 3 4 5 6 7 8 9 10
Error 10.09 6.17 5.18 4.62 4.02 3.40 2.81 2.30 1.87 1.50

k 11 12 13 14 15 16 17 18 19 20
Error 1.21 0.96 0.77 0.61 0.49 0.39 0.31 0.24 0.19 0.15

we take the D-type ILC

uk+(t) = uk(t) +

(


–.

)

ėk(t).

The original reference trajectory is the same as for Example .. Obviously, all conditions
of Theorem . are satisfied. Then yk(t) uniformly converges to yd(t), for t ∈ [, ].

The upper figure of Figure  shows the output yk of equation () of the th iterations
and the reference trajectory yd . The lower figure of Figure  shows the L-norm of the
tracking error (see also Table ) in each iteration.
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