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Abstract

Dolgy et al. introduced the modified degenerate Bernoulli polynomials, which are
different from Carlitz's degenerate Bernoulli polynomials (see Dolgy et al. in Adv. Stud.
Contemp. Math. (Kyungshang) 26(1):1-9, 2016). In this paper, we study some explicit
identities and properties for the modified degenerate g-Bernoulli polynomials arising
from the p-adic invariant integral on Zp..
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1 Introduction

For a fixed prime number p, Z, refers to the ring of p-adic integers, Q, to the field of p-adic
rational numbers, and C, to the completion of algebraic closure of Q,. The p-adic norm
| - | is normalized as |p|, = }7. Let g be in C, with |g-1|, <p_1’%1 and g* = exp(xlogq) for

|x|, < 1. Then the g-analogue of x is defined to be [x], = %.

The Bernoulli polynomials are given by the generating function

t ;e ¢
(ef — 1>ex = ;Bn(x)ﬁ (see [1—25]). 1.1)

When x = 0, B, = B,(0) are called Bernoulli numbers.
Carlitz [4, 5, 8] defined the degenerate Bernoulli polynomials as follows:

¢ PR £
— A+ ADE = (x| A)—. 1.2
(1+/\t)%—1( + At) ;ﬂ (x| )n! (12)

When x =0, 8,(0|A) = B,()) are called Carlitz’s degenerate Bernoulli numbers.
From (1.2) we note that

i ¢ ¢ p
Z lim B,(x|x) = = lim ——————(1+ At)*
s A—0 n!  1—0 (1 + )»t)x -1
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=Y Bux)—. (1.3)

Using the derivation given in (1.3), we have
}iH}) Bu(x|A) = By(x) (1> 0). (1.4)

Let f(x) be a uniformly differentiable function on Z,. Then the p-adic invariant integral

on Zj, (also called the Volkenborn integral on Z,) is defined by

N1
/ f&)dpo@) = lim piN > f@) (see[1,9,10,15,17)). (L5)
Zp e n=0

By using the formula defined in (1.1) we note that

/ FOIZCE / o) =1 © 1.6)
and
/Z o)) - /Z @it =310 17)

where f,(x) = f(x + n) (n € N); see [1, 9, 10, 15, 17].
Thus, by (1.6) we get

[ e ) - et =3 B (18)
Zp n=0

el -1

The modified degenerate Bernoulli polynomials are recently revisited by Dolgy et al,,
and they are formulated with the p-adic invariant integral on Z, to be

(1 + 00 i o) = tt (log(l+k))(l+k)x;
Z, L+AM)7r -1 A
= ;ﬂnlk(x);—r; (see 1), (L9)

where A € C, with ||, <p_1ﬁ.
When x = 0, we call 8,,,(0) = B,,,, the modified degenerate Bernoulli numbers.
Recently, Kim introduced p-adic g-integral on Z, is defined by

1,(f) = i S(x) dpg(x)
' No1 (1.10)

= lim [pi[]q gf(xm" (see [17]).
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The degenerate g-Bernoulli polynomials are also defined by Kim as follows.

lx+y
A

;ﬁn,q,x(x);—r; - /Z W L dug)  (see [20]). (L11)

The generating functions of Stirling numbers are given by

[e¢]

tl

(log@ +1))" =n' Y _Si(l, ng (120) (112)
I=n :
and
& I
(¢ -1)" = Y Sallm) (12 0), (113)
I=n ’

where S;(/, n) are the Stirling numbers of the first kind, and S, (/, #) are the Stirling numbers
of the second kind.

The following diagram illustrates the variations of several types of g-Bernoulli polyno-
mials and numbers. The definitions of the g-Bernoulli polynomials and the degenerate
q-Bernoulli polynomials applied in the given diagram are provided by Carlitz [4, 5, 8] and
Kim [20], respectively. In this paper, we investigate some of the explicit identities to char-

acterize the modified degenerate g-Bernoulli polynomials used in the diagram

pr eltlat diiq(y) fzp g *el¥lat dug(y)
et e
(¢-Bernoulli polynomials) (modified g-Bernoulli polynomials)
[x+y] _y(l )L)[x;y]qtd )
Jz, @+ 20) et diiy(y) Jz,4 ZO: - )t;:q(y
n = © i, x ;
=20 B @) 1n=0Png 1 \X) 3

) ) (modified degenerate
(degenerate g-Bernoulli polynomials) ) .
q-Bernoulli polynomials)

A few studies have identified some of the properties of the degenerate g-Bernoulli poly-
nomials and numbers. This paper defines the modified g-Bernoulli polynomials and num-
bers arising from the p-adic invariant integral on Z, and introduces additional character-
istic properties of these polynomials and numbers, which are defined from the generating

functions and p-adic invariant integral on Z,,.

2 The modified degenerate g-Bernoulli polynomials and numbers
1

In the following discussions, we assume that A,t € C, with 0 < |A] <1 and |¢|, < p 7T.
1 1
Then, as |At], < p 7T, |log(l + At)|, = |At],, and hence |%10g(1 +A)p =1ty <p 7L, it

makes sense to take the limit as A — 0.
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Following (1.3), we define the modified degenerate g-Bernoulli polynomials given by the
generating function

lx+y) 2~
f AN L dug(y) =Y Bgal)—. 2.1)
Zp n=0

When x =0, En,q,)\(O) = E,,,q,,\ are called the modified degenerate g-Bernoulli numbers.
Note that

lim [ 4~ (1+A) e tduq(y)
r—0 Zp

- / q—ye[x+y]qt duq(y)
Zp

00 o
= E Bn,q(x)_'x (22)
n.
n=0

where B, ;(x) are the modified Carlitz g-Bernoulli polynomials.
Now, we consider

/ -y(1+x) "fduq(y)
Zp

[x+y]
:/ que A 1
Zyp

2\ (log(1+2)\" "
= Z( og(; )) /Zp q7[x +y];’ duq(y)%
_ Z(log(i+ )»)) nq(x)_n (2.3)

n=0

tlog(1+1) dblq (y)

By the definitions provided in (2.1), (2.2), and (2.3) we are able to derive the following
theorem.

Theorem 2.1 Forn >0, En,q,k(x) can be written as

En,q,)»(x) = (@)HBWI(QC)' (2.4)

Note that (x), = > ., S1(n, Dx! (n > 0), where S; are the Stirling numbers of the first
kind.
Then, by using (2.1) we are able to state

[x+y]
/ W 1) P duy ()
Z

[x+y]q
Z/Z ( R )A"duq(y)
Z/ -WZSI D) <[x+y] ) %d 4y)
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= i iSl(n, part / Yo+ y1, dug(y)
1=0 n=l Zp
00 00 1 1

=y (Z Si(m, 2" =B q(x))%
=0 n=I

Given the descriptions in (2.1) and (2.5), we have another theorem.

Theorem 2.2 Forn >0, En,q,k(x) can be written as

B )= 3 S10m D3 ’—qu(x)

n=l

We observe that
_ qt
g1+ A) dug(y)
ZI’

%] vl
- / VA +0) T+ 0) 7T dug(y)

Zp

[x] Wl
-1+ A)T”/ G+ 0) 7T dug(y)
Z,

P

log(1+ A t ~ g™
(o) ) (e )
=0

gy log(1 +A)\" "\ ¢
-SSP (2527

n=0 \m=0
The third theorem is obtained by (2.1) and (2.7) as follows.

Theorem 2.3 Forn >0, Ey,,q,k(x) can be written as

n

~ N | .
Brg () = Z <Zl)Bm,q,x [x]g g™ (@)

m=0

Remark 2.4

o e (o2 + 2\
hmqu,\(x —llmZ( ) mq,\[x]q q (gf)

Note that

/ -y(1+x) ‘”duq(y)
Z[’
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(2.6)

(2.7)

(2.8)

(2.9)
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d-1pN-1 [x+a+dy
N—>oo [de q ; yZ(
_ o L ) Hal ) at
A T 2 2
_ Lg | = FHalg[ 5 49) at 7Y
=, 2 FZO(I +2) q"

I
= -
BNY
ing
I
(=}
N
T
|
&
=
+
X
7
X
=
Y
&
=
Y
S
<
N———

5 (15
T d n!

where d € N.
The following theorem is obtained from (2.10).

Theorem 2.5 Forn >0 andd €N, E,,,q,,\(x) can be written as

B () = L) IZBW(";“)

Now, we observe that

[o¢] t"
/ ety (y) = Z Bn,q(x);.
Zp n=0 '

We obtain Theorem 2.1 as follows by substituting ¢ by log(1 + A)% in

f q—ye[x+y]qlog (L+A) % du ()/ / qtduq(y
Zp Zp

= ZBn,q(x)%(log(l + )\)%)"

n=0

log(1+ A)
ZB” o ( ) nt’
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(2.10)

(2.11)

(2.12)

(2.12):

(2.13)

For r € N, we define the modified degenerate q-Bernoulli polynomials of order r as fol-

lows:

[x7 +x9 +++-+axp +x],
f e f q*(xl"'xz*'"""xr)(l + )\’) 172 x 1t duq(xl) duq(xz) . duq(xr)
Zp Zp
o0

Z (x)—.

(2.14)
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When x =0, B 0. (0) = x are called the modified degenerate q-Bernoulli numbers of
orderr.
We observe that

[x1 +x +-+-+xp+x]
f f q—(x1+xz+---+xy>(1+k)7‘ 2 qtduq(xl)duq(xz)m duy(x,)
ZP ZP

:/ / q—(x1+x2+...+xr)2(@>n
Zp Zy

n=0

tVl
X [%1+% +-- + %+ x]Z—' dug(x1) dug(x2) - - - dug(x,)

log(1 + A
=Z<w) / / B I S Y
A Zp Zp

n=0
X dug(x1) dug(xs) - - - duq(x,);

) Z < (1og(1k +1) )nB%(xO Z_n' ' (2.15)
n=0 :

Therefore, we are able to derive the following theorem.

Theorem 2.6 Forn >0, B( na, , (%) can be written as

N log(1+ )"
By 0) = (@) By} (). (2.16)

Now, we consider

[ +x0 +++-+xp+x],
/ . / q—(x1+x2+~~-+xr)(1 + k)il 20 qtduq(xl)duq(xz)- . duq(xr)
Zp Zp

00 [o1 + +-- +xr+x]q ¢
_ f . / q—(x1+x2+...+xr Z ( ))\l duq(xl)duq(xz) L. duq(x,)
Zp Zp =0

oo I
Sl(l I’l) ln f / — (01 +oeg -+ )
ZZ A 5 1442

=0 n=0

X [x%1 4+ %0 + -+ %, +x];’duq(x1)duq(x2) < dug(xy)

Ny S1(l,m) I-n_ 1 p(r) "
= Z ( ; —l! A n!Bnyq(x) E. (2'17)
Now, (2.17) yields the following theorem.

Theorem 2.7 Forn >0, E%A (x) can be written as

B gx)—ZSl(l "3 B0 (x), 218)
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Now, we observe that, for d € N,

[ +x0 ++--+xp +x],
/ . / q—(x1+x2+~~-+xr)(1 + k)il 20 qtduq(xl)duq(xz)- . duq(x,)
ZP ZP

apN-1 dpN-1
. [x1+x0+- +xr+x]qt
= Jim o 2 L+2)
N
- [ P ]q x1=0 xr=0
1 ! a1 de_l de ! al+---+ar+x+dx1+dx2+---+dxr]qt
= lim —— ) - Sy @) 3
N r
—00 [de]q o S S oy
1 -l -l pN—l pN 1 d a1+ aAp+x
= lim —— E (1+A)A[ lg[ =g tan+-rr] gt
N r[pN1"
—00 [d]q[P ]qd 41=0 2720 1120 pogr
N N
1 a1 a1 1 r ! r_1 ap+-+ar+x +ay+x d)gt
= Z .. lim 1+2) il g+ tar] g ldlg
r N
i & 2 T, & er

—d(x1+X2++xy)

I
=~
~N
i
B

{ %
L L
e
<
&N

ap+- +ay+x

x (1+)L)*[ Sl dlat gy () duaga () - - ditga ()

d-1 n

n!
n=0 a1=0 ar=

Finally, by comparing the coefficients on both sides of (2.19) we get the following theo-

rem.

Theorem 2.8 Forn>0andd e N, ESZZI(x) can be written as

d-1 d-1
B @)=l ZE@M(#)' (2.20)

a1=0 ar=0
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