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1 Introduction

The fractional calculus is a mathematical discipline that is 300 years old, and it has de-
veloped progressively up to now. The concept of differentiation to fractional order was
defined in the 19th century by Riemann and Liouville. In various problems of physics,
mechanics, and engineering, fractional differential equations and fractional integral equa-
tions have been proved to be a valuable tool in modeling many phenomena [1, 2]. However,
most fractional-order equations do not have analytic solutions. Therefore, there has been
significant interest in developing numerical schemes for the solutions of fractional-order
differential equations.

In the past 40 years, the theory and applications of the fractional-order partial differ-
ential equations (FPDEs) have become of increasing interest for the researchers to gen-
eralize the integer-order differential equations. Conventionally various technologies, e.g.
modified homotopy analysis transform method (MHATM) [3], modified homotopy anal-
ysis Laplace transform method [4], homotopy analysis transform method (HATM) [5, 6],
fractional homotopy analysis transform method (FHATM) [7], local fractional variational
iteration algorithms [8] were used for the solutions of the FPDEs. Meanwhile, local frac-
tional similarity solution for the diffusion equation was discussed in [9]. The inverse prob-
lems for the fractal steady heat transfer described by the local fractional Volterra integro-
differential equations were considered in [10].

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


http://dx.doi.org/10.1186/s13662-017-1085-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1085-6&domain=pdf
mailto:wyxinbj@163.com

Wang and Zhu Advances in Difference Equations (2017) 2017:27 Page 2 of 16

Recently, many effective methods for obtaining approximations or numerical solutions
of fractional-order integro-differential equations have been presented. These methods in-
clude the variational iteration method [11-13], the adomian decomposition method [14],
the fractional differential transform method [15], the reproducing kernel method [16], the
collocation method [17, 18], and the wavelet method [19-24].

Wavelet theory is a relatively new and an emerging area in the field of applied science
and engineering. Wavelets permit the accurate representation of a variety of functions and
operators. Moreover, wavelets establish a connection with fast numerical algorithms [25].
So the wavelet method is a new numerical method for solving the fractional equations
and it needs a small amount of calculation. However, the method will produce a singu-
larity in the case of certain increased resolutions. Using wavelet numerical method has
several advantages: (a) the main advantage is that after discretizing the coefficient matrix
of the algebraic equation shows sparsity; (b) the wavelet method is computer oriented,
thus solving a higher-order equation becomes a matter of dimension increasing; (c) the
solution is a multi-resolution type; (d) the solution is convergent, even the size of the in-
crement may be large [24]. Many researchers started using various wavelets for analyzing
problems of high computational complexity. It is proved that wavelets are powerful tools
to explore new directions in solving differential equations and integral equations.

In this paper, the main purpose is to introduce the Euler wavelet operational matrix
method to solve the nonlinear Volterra integro-differential equations of fractional order.
The Euler wavelet is first presented and it is constructed by Euler polynomials. The method
is based on reducing the equation to a system of algebraic equations by expanding the
solution as Euler wavelet with unknown coefficients. The characteristic of the operational
method is to transform the integro-differential equations into the algebraic one. It not
only simplifies the problem but also speeds up the computation. It is worth noting that
the Euler polynomials are not based on orthogonal functions, nevertheless, they possess
the operational matrix of integration. Also the Euler wavelet is superior to the Legendre
wavelet and the Chebyshev wavelet for approximating an arbitrary function, which can be
verified by numerical examples.

The structure of this paper is as follows: In Section 2, we recall some basic definitions
and properties of the fractional calculus theory. In Section 3, the Euler wavelets are con-
structed and the operational matrix of the fractional integration is derived. In Section 4, we
summarize the application of the Euler wavelet operational matrix method to the solution
of the fractional integro-differential equations. Some numerical examples are provided to

clarify the approach in Section 5. The conclusion is given in Section 6.

2 Fractional calculus

There are various definitions of fractional integration and derivatives. The widely used
definition of a fractional integration is the Riemann-Liouville definition and the definition
of a fractional derivative is the Caputo definition.

Definition1 The Rieman-Liouville fractional integral operator I of order « is defined as
[26]

s fye= 0 f () dr, a>0,t50,

1), o =0. @

(7)) =
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For the Riemann-Liouville fractional integral we have

'v+1)

Iav
£ Frv+1l+a)

£ ys 1. 2)

Definition 2 The Caputo definition of fractional differential operator is given by

o " (1)
(Df)(t) NeE a)/ t—r)‘“l"dt’ n-l<a<mneN, (3)

where o > 0 is the order of the derivative and # is the smallest integer greater than « if

a¢Norequaltoaifa € N.

For the Caputo derivative we have the following two basic properties:

(DEL)(6) =f(0) (4)

and

tk

n-1
(DY) ey =B - _fP(0 t>0, (5)
k=0

where f®O(0*) := lim,_ o+ D*f(£), k= 0,1,...,n — 1.

3 Euler wavelet operational matrix of the fractional integration

3.1 Wavelets and Euler wavelet

Wavelets constitute a family of functions constructed from dilation and translation of a
single function v (x) called the mother wavelet. When the dilation parameter a and the
translation parameter b vary continuously we have the following family of continuous
wavelets [27, 28]:

Vap(t) = |a|%w<?>, a,beRa#0.

If we restrict the parameters a and b to discrete values as a = aak ,b= nboagk ,ag >1,bg >

0, we have the following family of discrete wavelets:
Vin(t) = |ﬂ0|%1ﬂ(ﬂ§t -nby), knez,

where v, form a wavelet basis for L2(R). In particular, when ag = 2 and by = 1 then Vy,,(t)
form an orthonormal basis.

The Euler wavelet v,,,,,(t) = ¥ (k, n, m, t) involves four arguments, 7 = 1,...,25, k is as-
sumed to be any positive integer, m is the degree of the Euler polynomials, and ¢ is the

normalized time. They are defined on the interval [0,1) as

/<
k-1 k=1 -1
7 E, (2 t—n+1), T S E<

0, otherwise,

wnm(t) = (6)
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with

1, m=0,

E.(t) = 1 E,.(t), m>O0. 7)
\/ 20?2 o)
@m)t 2m+1

1
_1ym-1 2
\/%EZWHJ(O)

and the translation parameter b = (n—1)2-%-1, Here, E,,,(¢) are the well-known Euler poly-

The coefficient is for normality, the dilation parameter is a = 2~V

nomials of order m which can be defined by means of the following generating functions
[29]:

2¢ts o §M
1 ,;)Em(t)% (|s| < 7[).

eS

In particular, the rational numbers E,, = 2”E,,(1/2) are called the classical Euler numbers.
Also, the Euler polynomials of the first kind for k = 0,...,m can be constructed from the
following relation:

m

> (O)E() + En(e) =267,

k=0
where (}’) is a binomial coefficient. Explicitly, the first basic polynomials are expressed by

1 2 1
E@®=1,  ER@®=t-, Et) =t -t Es(t)=f3—§t2+z,

These polynomials satisfy the following formula:

a1 ml(n+1)!

VI Em+n+ 0: ) 21’ 8
(m+n+1)! 10, m,m ®

1
/ En(OEA(6)dt = (-1)
0

and the Euler polynomials form a complete basis over the interval [0,1]. Furthermore,
when ¢ = 0, we have

Ep(0) =1, El(O)z—%, EB(Q)zi, E5(0)=—%,

3.2 Function approximation
A function f(¢), square integrable in [0, 1], may be expressed in terms of the Euler wavelet
as

o0

FO="" combum(®), )

n=0 meZ
and we can approximate the function f(¢) by the truncated series

2k=1 a1

FO=Y D comVum(®) = CT (), (10)

n=1 m=0

Page 4 of 16
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where the coefficient vector C and the Euler function vector W () are given by
C= [Cl(), Cllr+ v+ CUM-1)» €205+ + +» C2(M-1)5+ + + » Cok=1(s + + +» Czk—l(M,l)]T, (11)
\I/(t) = [WIOI wllr e 1/fl(/\/f—l)’ w20’ veey 1pZ(M—l)r e 1/f2k—1(); veey 1pzk—l([\/[_l)]T. (12)
Taking the collocation points as follows:
2i—-1
ti=——, i=12,..,25M,
2kM
we define the Euler wavelet matrix ®;;,,; as
o _Tol( L) o2 e
mxm — 2ﬁ’l ’ 2}//}\/[ ERRRS] 2};’\1 ’
where 71 = 2-1M. Notation: from now we define 71 = 21
To evaluate C, we let
1
aj= [ werde
0
Using equation (10) we obtain
2k=1 11 1 2k=1 pr-1
B0 3) ST ENCIACYCEISS 3 S
n=1 m=0 0 n=1 m=0
where d), = [ um(OW(E)f(Odt and i = 1,2,...,251,j=0,1,..., M ~ 1.
Therefore,
AT =C"D,
with
A= [ﬂlo,ﬂu,~~1011(M71),6l20,..'»dz(Mq),...1012k—10,m,612k—1(M_1)]T
and
D=[dl,]
where D is a matrix of order 2¥1M x 25-1M and is given by
1
D= / w()wT(t)de. (13)
0

The matrix D in equation (13) can be calculated by using equation (8) in each interval
n=12,...,25 For example, with k = 2 and M = 2, D the identity matrix, and for k = 2

Page 5 of 16
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and M = 3 we have

1 0 -¥0 o o o
0 1 0 0 0 0
/30
b |=% 01 0 0 0
0 0 0 1 0 ¥
0 0 0 0 1 0
Lo 0o o0 ¥ o 1 |
Hence, CT in equation (10) is given by
cT=ATD™. (14)

Similarly, we can approximate the function (s, £) € L2([0,1] x [0,1]) as
k(s,t) = W(s)TKW(t), (15)

where K is a 251 M x 2K M matrix given by [30]

K=D"! [ / 1 / 1k(s, t)\l/(s)tl/(t)dt]D‘l.
0 0

3.3 Convergence of Euler wavelets basis

We first state some basic results as regards Euler polynomials approximations. The impor-
tant properties will enable us to establish the convergence theorem of the Euler wavelets
basis. The Euler polynomials of degree m are defined by [29]. Now we defined A(¢) =
[Eo(8), E1(2),...,Ex®)], s0a function f(£) € L2[0,1] can be expressed in terms of the Euler
polynomials basis A(t). Hence,

N
fO =) eEit) =ETA®),

i=0
T
where E = [eg,e1,...,en] .

Lemma3 Suppose that the functionf : [0,1] — R is m+1 times continuously differentiable,
and f € C"™1(0,1],Y = span{Ey, Ei, ..., Ex} is vector space. IFET A(t) is the best approxima-
tion of f out of Y, then the mean error bound is presented as follows:

~ 2m+3
I —E‘A], < M
(m+1)/2m+3

where M = maxe(o,1] [FD(8)], § = max{1 — to, to}.

Proof Consider the Taylor polynomials

2 (t—to)"

e [t
m.

(t—to)

F@&) =f(to) +f (o) (t — to) + £ (t0) o
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where we have
_ m+1
IF() -] = P"”*”(O% , 3 e€(0,).
Since ET A(t) is the best approximation of f(¢), we have
1
Ir-E"AlL < 703 = [ T - e
1 (t _ If())m+1 2
_ (m+1)
‘A[f (O(m+nz]“
Je 1
= [m+ D12 /0 (6= o)™t
- 2M252m+3
= {m+ D)PCm+3) O

Theorem 4 Suppose that the function f : [0,1] — R is m + 1 times continuously differen-
tiable and f € C"*1[0,1). Then f(t) = CT W (¢) approximates f () with mean error bounded
as follows:

V2M
) (i + 1) 2m + 3

where M = max,co [f"+(2)!.

lre-f@l, < (k-1)(

Proof We divide the interval [0,1] into subintervals [y , = 2",(%11, 2,%1], n=1,..., 251 with
the restriction that f(¢) is a polynomial of degree less than m + 1 that approximates f with
minimum mean error. The approximation approaches the exact solution as k approaches

00. We use Lemma 3, to obtain
PPN ! ~, 12
I -Fel? - /0 [F©) - FoTax
:Z/Uwﬂﬁa

Ik,n

2m+3

- )
—~L(m+1)v2m+3

- 2M?

= 20-D@m ) (1 4 1)1]2(2m + 3)”

where M, = maxey, , [f"+D(¢)|. By taking the square roots we arrive at the upper bound.
The error of the approximation f(£) of f(t) therefore decays like 2-("+D(*-1), d

3.4 Operational matrix of the fractional integration
We first give the definition of block pulse functions (BPFs): an m-set of BPFs on [0,1) is
defined as

1, ilm<t<(@i+1)/m,

bi(t) = .
0, otherwise,

(16)

Page 7 of 16
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where i =0,1,2,...,m — 1. The BPFs have disjointness and orthogonality as follows:

0, L7,

B0b6) = {b'(t) i-j

and

! 0, i#
bi(1)by(z) dr =
/o (REz)de [l/m, i=j.

Every function f(¢) which is square integrable in the interval [0,1) can be expanded in
terms of BPFs series as

m-1
f®O~ fibi(t) = F'B,(0), (17)

i=0

where F = [fo,fis s frue1)Ts Bi(t) = [bo(£), b1(£), ..., b1 (£)]T. By using the orthogonality of
BPFs, for i = 0,1,...,m — 1, the coefficients f; can be obtained:

1
fi= m/ bi(e)f () dt.
0
By using the disjointness of the BPFs and the representation of B,,(), we have

by(¢) 0
T _ bi()
B (OBL(0) : . (18)
0 bm—l (t)

The block pulse operational matrix of the fractional integration F* has been given in

[31],
I%(Bji(t)) = F* B (1), (19)
where
[1 & & & Ept |
0 1 & & - &
o 1 1 0 0 1 & - &us 20
0 0 0 1 &
00 0 - 0 1|
and

£ = (k +1)%* — 2% 4 (6 — 1)%HL.

Note that, for « = 1, F* is BPF’s operational matrix of integration.
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Figure 1 1/2 order integration of t. 08

Exact result
— © — Numerical result

There is a relation between the block pulse functions and Euler wavelets,

W (t) = ®By;,(¢). (21)
If I} is fractional integration operator of Euler wavelet, we can get

IF (W (0) ~ P*W(2), (22)

where matrix P is called the Euler wavelet operational matrix of fractional integration.
Using equations (19) and (21), we have

I3 (W(2)) ~ I (DB (t)) = PIF (By(t)) ~ ®F* By (¢). (23)
Combining equation (22) and equation (23), we can get
P* = OFP!, (24)

We select the function ¢ to verify the correctness of fractional integration operational ma-
trix P*. The fractional integration of order « for the function f(¢) = ¢ is given by

o _ F(z) a+l
iy = Cle+2)

(25)
The comparison results are shown in Figure 1 (& = 0.5, 771 = 32).

4 Method of numerical solution
Consider the nonlinear fractional-order integro-differential equation

x
Deyta) = ks (0] dr+ glo, (26)
0
subject to the initial conditions
y(0)=8, i=0,1...,r-1LreN, 27)

where y (x) stands for the ith-order derivative of y(x), D? (r—1<a <r) denotes the Ca-
puto fractional-order derivative of order «, g(x) € L%[0,1],k € L2([0,1])? are given func-
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tions, y(x) is the solution to be determined, X is a real constant, and p € N. The given
functions g, k are assumed to be sufficiently smooth.
Now we approximate Df y(x), k(x, ), and g(x) in terms of Euler wavelets as follows:
Diy(x) ~ YW (x),  kixt) = W(x) KW(t) (28)
and

g ~ G (w), (29)

where K = [k;], i,j=1,2,...,7/1,and G = lgn,g2r- . gil "
Using equations (5) and (28), we have

=1 k
O + x
y@) ~ Y P w )+ yP(0 )F (30)
k=0

In the above summation, we substitute the supplementary conditions (27) and approxi-
mate it with the Euler wavelet, we can get

yx) ~ (YTP* + Y)W (v), (31)
where Y is an #1-vector. According to equation (21), the above equation can be written as

y(x) ~ YTP* ®B;;,(x) + YT DB, (x). (32)
Let E = [eg, €1, ..., €3.1] = (YTPY + YT)®. Then equation (32) becomes

»(®) ~ EB;y ().
By using the disjointness property of the BPFs, we have

[y@)]* ~ [EB#)]” = [eobo() + e1br(x) + - - - + ey 1bj 1 (%)]

egbo(x) + efbl(x) oot efh_lb,;,_l(x)

[e3:€ts- - €5 |Bin(x) = E2Bj(x),
where E; = [, ¢€7,...,¢% . By induction we can get
[y ~ ey €.....e_ |Baulx) = E,Bj(x), (33)

where p is any positive integer. Using equations (19), (28), and (33) we will have

/ ' k@, [y@®)]" dt = / ’ W (x)KW(2)B (1)E, dt
0 0

_ / " WT KB (OBL(OE! di
0
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- WT (WK / xB,h(t)B;(t)E;dt
0

= U)K / xdiag(Ep)B;,,(t) de
0

= WT(x)K O diag(E,) / “Ba(de
0

= U (x)K @ diag(E,)F' B, (%)
= B} (x) ®"K ® diag(E,)F' B;,(x)

= Q"Bj(w), (34)
where Q is an #1-vector with elements equal to the diagonal entries of the following matrix:
Q= ®"K® diag(E,)F".
Substituting the above equations into equation (26), we have
YT @By, (x) = Q" By (x) + G By (x). (35)

Using Bj;(x) to multiply two sides of equation (35) and integration in the interval [0,1],
according to orthogonality of the BPFs we can get

Yo =2Q0" + GTo, (36)

which isa nonlinear system of algebraic equations. By solving this system we can obtain the
approximation of equation (26), and we solve the nonlinear system by using the Newton
iterative method.

5 Numerical examples
In this section, six examples are given to demonstrate the applicability and accuracy of
our method. Examples 1-5 have smooth solutions, while Example 6 has a non-smooth
and singular solution. In all examples the package of Matlab 7.0 has been used to solve the
test problems considered in this paper.

Using equation (36) the absolute error function is defined as

Ri(x) = |[YT®Bj;,(x) - 2Q By, (x) — GT ® By (x)],

where 71 = 2¥"1M; M is the degree of the Euler polynomials and usually takes small val-
ues in a computation. Since the truncated Euler wavelet series is an approximate solution
of equation (26), we must have R;,(x) &~ 0. In the following examples, we can find that
when M is fixed, the larger the value of k, the more accurate the approximation solution
of equation. So the optimum value of k is determined by the prescribed accuracy.

To demonstrate the effectiveness of this method, we will adopt the same error definition
as [20]. The approximate norm-2 of the absolute error is given by

N

1/2
1
lea®)], = |y —ya@)|, ~ <ﬁ > @) —J/rh(xi))z) :

i=0

where y(x) is the exact solution and yj;,(x) is the approximation solution obtained.
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Table 1 The absolute errors of different k and M = 3 for Example 1

t Euler SCw Euler SCw Euler SCw

k=4 k=4 k=5 k=5 k=6 k=6
0.0 5.3744e-003 6.0169e-003 2.1912e-003 2.5058e-003 9.7161e-004 1.1272e-003
0.1 5.9284e-004 1.2504e-003 3.6354e-004 4.3350e-004 1.6976e-005 3.2831e-004
0.2 1.6221e-003 5.1499e-005 1.0167e-004 6.1143e-004 1.0476e-004 2.0079e-004
03 1.6909e-003 1.1123e-004 1.1436e-004 5.5204e-004 1.0746e-004 1.7628e-004
04 4.6755e-004 1.0434e-003 4.3188e-004 2.0180e-004 3.0374e-005 2.3828e-004
0.5 2.0212e-003 3.4768e-003 5.0356e-004 1.1110e-003 1.2551e-004 3.8232e-004
06 4.8121e-004 9.2652e-004 4.3422e-004 1.5066e-004 3.0730e-005 2.1590e-004
0.7 1.7295e-003 3.6739e-004 1.2103e-004 4.4277e-004 1.0861e-004 1.2863e-004
0.8 1.7247e-003 4.0781e-004 1.1954e-004 4.2369e-004 1.0818e-004 1.1993e-004

0.9 4.6700e-004 8.0375e-004 4.2982e-004 9.2562e-005 2.9460e-005 1.8947e-004

Table 2 Approximate norm-2 of absolute errors for some k of the Euler and SCW

Example Euler SCwW
llesll2 llesll2 lles21l2 llesll2 llesll2 lles21l2
Example 1 8.3942e-007 7.2293e-008 7.1159e-009 7.1538e-007 2.3580e-007 5.7642e-008

Example 2 9.4203e-007 5.9209e-008 3.7129e-009 1.6350e-005 1.1839e-006 8.6352e-008

Example 1 Let us consider the following fractional nonlinear integro-differential equa-

tion:
s o[ :
D; y(x) = /0 (x — t)[y(t)] dt+g(x), 0<x<l,

where g(x) = ﬁ(é—sst —5x1/%) — Lx® 4 % - %, and the equation is subject to the initial
conditions y(0) = 0. The exact solution of this equation is y(x) = x> — x. Table 1 shows the
absolute errors obtained by Euler wavelets and SCW [22], respectively. Table 2 shows the
approximate norm-2 of absolute errors obtained by the Euler wavelet and SCW methods.

From Table 1, we find that the absolute errors become smaller and smaller with k increas-
ing. Table 2 shows that the Euler wavelet method can reach a higher degree of accuracy

than the SCW method.

Example2 Consider the nonlinear fractional-order Volterra integro-differential equation
6 * 3
D} y(x) = / x-0)’[y®] dt+gx), 0=<x<l,
0

where g(x) = %st - %, and subject to the initial conditions y(0) = y'(0) = 0. The
exact solution of this equation is y(x) = x2.

Table 2 shows the approximate norm-2 of absolute errors obtained by the Euler wavelet
and SCW methods. The comparisons between approximate and exact solutions for var-
ious k and M = 2 are shown in Figure 2. With the value of k increasing, the numerical
results become more accurate and we infer that the approximate solutions converge to

the exact solution.

Example 3 Consider the nonlinear Volterra integro-differential equation

Dt%y(x) - /xxt[y(t)]4 dt=g(x),0 <x<1,
0
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k=4,M=2

k=5,M=2

k=6,M=2

O Numerical solution
Exact solution

0.9

O Numerical solution
Exact solution

O Numerical solution| ¢
Exact solution ]
0.9 1

X X X

Figure 2 The approximate solution of Example 2 for some k.

Table 3 Comparison of approximate norm-2 of absolute errors with reproducing kernel and
CAS

Example Euler Reproducing kernel CAS

k=2,M=3 k=3, M=3 k=2,M=1 k=3, M=1 k=2,M=1 k=3, M=1
Example 3 1.2666e-005 2.5664e-006 7.3137e-004 1.39304e-004 1.0019e-003 5.6933e-004
Example 4 3.9541e-005 2.3107e-006 5.4969e-004 5.75596e-006 3.5560e-003 9.0145e-004
where g(x) = F(11/4) (Bt — 4a) + Bt + 2210 - 227 + 2a% + 147, and the equation is

subject to the initial conditions y(0) = ¥'(0) = 0. The exact solution of this equation is y(x) =
x% — x. Table 3 shows the approximate solution obtained by our method (7 = 2D M),
reproducing the kernel method (1 = 2K(2M + 1)) [16] and CAS wavelet methods (77 =
2%(2M + 1)) [20]. To make each method having the same number of wavelet bases, we
select M = 3 for the Euler wavelet. Under the condition of the same error, our method is

closer to the exact solution.

Example 4 Consider this equation:

D3 y(x) - / ’ @+ 0 [y de=glx), 0<x<1,
0

where g(x) = %%)\3/;? o i %, and the supplementary condition y(0) = '(0) = 0. The

exact solution is y(x) = x. Table 3 shows the approximate solution obtained by the Euler
wavelet method, reproducing the kernel method and CAS wavelet methods. From Table 3

we can see our method is closer to the exact solution.

Example 5 In the following we consider the fourth-order equation [20]

D‘;‘y(x)—/ e‘t[y(t)]zdtzl, 0<x<1,3<a <4,
0
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Table 4 Numerical results for Example 5 with comparison to CAS

X oa=3.25 a=3.5 o=3.75
CAS Euler CAS Euler CAS Euler
0.0 1.0000 1.0006 1.0000 1.0006 1.0000 1.0006
0.1 1.1053 1.1060 1.1052 1.1059 1.1052 1.1059
02 12219 1.2228 1.2216 12224 1.2216 1.2223
03 1.3523 1.3527 1.3510 1.3516 1.3510 1.3510
04 1.4968 14972 14941 1.4948 1.4941 14934
0.5 1.6635 1.6581 1.6565 1.8295 1.8334 1.8248
0.7 2.0444 2.0346 2.0293 2.0240 2.0293 20167
0.8 22776 2.2534 2.2537 2.2386 2.2537 2.2281
0.9 25265 24943 24949 24747 24949 24603
Figure 3 Numerical and exact solution of 60 : : :
*  Numerical solution for a=4

Example 5 for m = 8.

Exact solution for =4

such that y(0) = ¥/(0) = y"(0) = ¥®(0) = 1, and when « = 4, the exact solution is y(x) = €*.
The numerical results, for some o between 3 and 4, are presented in Table 4 with a com-
parison with [20]. Table 4 shows the Euler wavelet numerical solution to be in excellent
agreement with the solution of CAS method in [20].

It is worth noticing that the method introduced above only can solve equation (26) for
x € [0,1]. That is because the Euler wavelet is defined on the interval [0, 1]. However, the
variable x of equation (26) is defined on the interval [0,4], so we should turn W(x) into
W (x/4) in the discrete procedure. The numerical result with o = 4 for x € [0,4] is shown

in Figure 3. The numerical solution is in perfect agreement with the exact solutions.
Let us consider examples with non-smooth and singular solutions.

Example 6 Consider the following equation:

x 2
Dy - [ KO dt gt

which has y(x) = x//4 as the exact solution, with this supplementary condition y(0) = 0,

[(-1/4)x~1/2
where g(x) = —%

around this point is not good (see Figure 4 with k = 4, M = 2). The Euler wavelet method

+ 7. In this case, there is a singularity at point x = 0. The solution

can be combined with the definition of Riemann-Liouville fractional integral operator to
deal with the weakly singular integral. As observed, our method provides a reasonable

estimate even in this case with singular solution.
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Figure 4 The approximate solution of Example 6 4 ‘ ‘ i N
| — ~ — Numerical solution
fork=4,M=2. u

35r 1

In the examples above, we do not show the computational times of the different meth-
ods. In fact, the Euler wavelet method has the faster computing speed, compared with
the CAS wavelet method and the second Chebyshev wavelet method. In Example 1, for
instance, when k = 4,5, 6, the computational times of the second Chebyshev wavelet are
1.71 s, 1.94 s, and 4.21 s, while the computational times of the Euler wavelet are 0.79 s,
1.25 s, and 3.57 s. The same conclusion can be drawn from the other examples.

6 Conclusion

In this paper, we construct the Euler wavelet and derive the wavelet operational matrix of
the fractional integration, and we use it to solve the fractional integro-differential equa-
tions. By solving the nonlinear system, approximate solutions are got. Graphical illustra-
tions and tables of the numerical results with the aid of Euler wavelets indicate that the
numerical results are well in agreement with exact solutions and superior to other results.
Also the proposed method can be efficiently applied to a large number of similar fractional
problems. Of course, the convergence of this algorithm has not been derived, which will
be future research work.
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