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Abstract
We discuss the existence and uniqueness of a solution of a boundary value problem
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1 Introduction
Fractional calculus is an emerging field in applied mathematics that deals with derivatives
and integrals of arbitrary orders and their applications. The original research started on
this topic at the end of the seventeenth century. Fractional calculus helps us describing
natural phenomena and mathematical models more accurately. Therefore, fractional dif-
ferential equations are becoming more famous, and the theory and its applications have
been greatly improved. For details, we refer to [–].

The existence and uniqueness of solutions to boundary value problems for fractional
differential equations have gained these days interest of many authors. For details, we also
refer to [, ], where the authors discuss existence results for coupled systems and unique-
ness for nth-order differential equations, respectively. Recently, much research has been
done on boundary value problems of fractional ordinary differential equations [–] and
initial value problems of fractional functional differential equations [–].

Naturally, the phenomenon of time-delay is so common and certain. Many changes and
processes not only depend on the present status but also on the past status. However,
the research on fractional functional differential equations with delay is relatively sparse
[–]. Therefore, it is necessary to consider the time-delay effect in the mathematical
modeling of fractional differential equations. However, there are relatively exiguous results
dealing with boundary value problems of fractional functional differential equations with
time delays. Mostly, researchers consider the case of implicit functions, so by keeping this
in mind we consider neutral functions where the nonlinear function f not only depends on
xt but also depends on the fractional derivative Dδ

+ xt of the delayed term of the unknown
function. Wherefore, in this paper, our aim is to study the existence and uniqueness of a
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solution of the following boundary value problem for a fractional differential equation:

⎧
⎪⎨

⎪⎩

cDγ

+ x(t) = f (t, xt , cDδ
+ xt),  < t < ,

ax(t) + bx′(t) = ζ (t), –τ ≤ t ≤ ,
cx(t) – dx′(t) = η(t),  ≤ t ≤  + α,

()

with  < γ <  and  < δ < , ζ () = η() = , and a, b, c, d ∈ R, where a, b and c, d are not
simultaneously zero and such that bc + ad – ac �= . For  < τ < , we denote by Cτ the
Banach space of all continuous functions φ : [–τ ,α] → R endowed with the supremum
norm ‖φ‖ = sup{|φ(s)|; –τ ≤ s ≤ α}. If X : [–τ , ] → R, then, for any t ∈ [, ], we define xt

by xt(θ ) = x(t + θ ) for θ ∈ [–τ , ], where τ ,α ≥  are constants satisfying  ≤ τ + α < , and

C+
τ () =

{
φ ∈ Cτ |φ(θ ) ≥ , θ ∈ [–τ , ],φ() = , cDδφ(s) = 

}
.

In addition, our work is inspired by three systems [, , ]. Li et al. [] studied the ex-
istence of a solution of the following fractional differential equation involving the Caputo
fractional derivative:

{
cDα

+ u(t) = f (t, ut , cDβ

+ u(t)),  < t < ,
u′() = , u′() = λu′(η),

where cDα
+ and cDβ

+ are the Caputo fractional derivatives with  < α < ,  < β < , η ∈
(, ), and  < λ < 

η
.

Rehman et al. [] studied the existence and uniqueness of a solution to a nonlinear
three-point boundary value problem for the following fractional differential equation:

{
cDδ

+ u(t) = f (t, u(t), cDσ
+ u(t)),  ≤ t ≤ ,

u() = αu(η), u() = βu(η),

where  < δ < ,  < σ < , α,β ∈R, αη( – β) + ( – α)( – βη) �= , and Dδ
+ and Dσ

+ denote
the Caputo fractional derivatives. By the Banach contraction principle and Schauder fixed
point theorem they obtained some new results on the existence and uniqueness.

Zhao and Wang [] studied the existence and uniqueness of a solution to the integral
boundary value problem for the nonlinear fractional differential equation

⎧
⎪⎨

⎪⎩

cDα
+ u(t) + f (t, ut , u′(t), cDβ

+ u(t)) = , t ∈ J = (, ],
u() – γu(λ) = δ

∫ η

 u(s) ds,
u() – γu(λ) = δ

∫ η

 u(s) ds, u′′() = 

where  < η < , γ, γ, λ, λ are nonnegative constants, and cDα
+ and cDβ

+ are the Caputo
fractional derivatives of orders  < α <  and  < β < . By the Banach contraction princi-
ple and Leray-Schauder-type theorems they have found out the existence of such type of
functions.

To the best of our knowledge, it looks like nobody considered BVP (). Therefore, we
will find out the existence and uniqueness of a solution of the nonlinear BVP () under
some further conditions. We consider the effect of time delays of both terms xt and Dδ

+ xt ,
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which was not considered in the literature [, , ]. Therefore, our study improves and
extends the previous results in the relevant literature [, , ].

The paper is arranged as follows. In Section , we review some basic definitions and
lemmas. Section  is devoted to the Green function and to the existence and uniqueness
of the defined problem. In Section , we explain the existence and uniqueness of solutions
using some examples.

2 Preliminaries
This part includes some basic definitions and results.

Definition . The gamma function is defined as

Γ (γ ) =
∫ ∞


e–ttγ – dt, γ > .

One of the basic properties of the gamma function is that it satisfies the functional equa-
tion Γ (γ + ) = γΓ (γ ).

Definition . The fractional integral for a function f with lower limit t and order γ can
be defined as

Iγ

t+


f (t) =


Γ (γ )

∫ t

t+


f (s)
(t – s)–γ

ds, γ > , t > t,

where the right-hand side of the equality is defined pointwise on R
+.

Definition . The Caputo fractional derivative for a function f : (t, +∞) → R of order
γ (n –  < γ < n) is given by

cDγ

t+


f (t) = In–γ

t+


dn

dtn f (t) =


Γ (n – γ )

∫ t

t+


f (n)(s)
(t – s)γ +–n ds, t > t,

where n = [γ ] +  ([γ ] stands for the bracket function of γ ).

Definition . ([]) Let X be a real Banach space. A subset K of X is called a cone if the
following are true:

(i) K is nonempty closed, and {θ , e} ⊂ X (where θ is null, and e is the multiplicative
identity of the Banach space X);

(ii) aK + bK ⊂ K for any nonnegative a, b;
(iii) K = KK ⊂ K ; and
(iv) (K) ∩ (–K) = {θ}.

Lemma . ([]) Let γ > . Then

Iγ

t+


cDγ

t+


f (t) = f (t) + c + ct + ct + · · · + cn–tn–

for some ci ∈ R, i = , , , . . . , n – , where n = [γ ] + .
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Lemma . (Leray-Schauder fixed point theorem []) Let B be a nonempty, bounded,
closed, and convex subset of a Banach space X, and let P : B → B be a compact and contin-
uous map. Then P has a fixed point in B.

Lemma . (The contraction mapping principle []) Let T be a contraction on a Banach
space X. Then T has a unique fixed point in X, that is, there is a unique solution x ∈ X to
the equation

T(x) = x.

3 Main results
In this part, we find the Green function for the given BVP () and then discuss the existence
and uniqueness of a solution by using the Schauder fixed point theorem and the Banach
contraction principle.

Consider the system

cDγ

+ x(t) = u(t),  < t < , ()

with boundary conditions

⎧
⎪⎨

⎪⎩

ax(t) + bx′(t) = ζ (t),
cx(t) – dx′(t) = η(t),
ζ () = η() = ,

()

where  < γ < , and u : [, ] →R is a differentiable function. Then we have the following:

Lemma . A function x is a solution of equation () with boundary conditions () if and
only if it has the form x(t) =

∫ 
 G(t, s)u(s) ds, where

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩


Γ (γ ) (t – s)γ – + ( at–b

bc+ad–ac )[ c
Γ (γ )

∫ 
 ( – s)γ –u(s) ds

– d
Γ (γ –)

∫ 
 ( – s)γ –u(s) ds],  ≤ s ≤ t ≤ ,

( at–b
bc+ad–ac )[ c

Γ (γ )
∫ 

 ( – s)γ –u(s) ds
– d

Γ (γ –)
∫ 

 ( – s)γ –u(s) ds],  ≤ t ≤ s ≤ .

Proof Applying Iγ

+ to both sides of equation () and using Lemma (.), we have

x(t) = Iγ

+ u(t) + c + ct. ()

Differentiating both sides w.r.t. t, we get

x′(t) = Iγ –
+ u(t) + c.

Using boundary conditions (), we get c = –b
a c, so cx() – dx′() =  implies that

cIγ

+ u() + cc + cc – dIγ –
+ u() – dc = ,

c
Γ (γ )

∫ 


( – s)γ –u(s) ds – c

b
a

c + cc –
d

Γ (γ – )

∫ 


( – s)γ –u(s) ds – dc = ,
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c =
(

a
bc + ad – ac

)[
c

Γ (γ )

∫ 


( – s)γ –u(s) ds –

d
Γ (γ – )

∫ 


( – s)γ –u(s) ds

]

.

Therefore,

c =
(

–b
bc + ad – ac

)[
c

Γ (γ )

∫ 


( – s)γ –u(s) ds –

d
Γ (γ – )

∫ 


( – s)γ –u(s) ds

]

.

Hence,

x(t) =


Γ (γ )

∫ t


(t – s)γ –u(s) ds +

(
at – b

bc + ad – ac

)[
c

Γ (γ )

∫ 


( – s)γ –u(s) ds

–
d

Γ (γ – )

∫ 


( – s)γ –u(s) ds

]

=


Γ (γ )

∫ t


(t – s)γ –u(s) ds +

(
at – b

bc + ad – ac

)[
c

Γ (γ )

∫ t


( – s)γ –u(s) ds

–
d

Γ (γ – )

∫ t


( – s)γ –u(s) ds

]

+
(

at – b
bc + ad – ac

)[
c

Γ (γ )

∫ 

t
( – s)γ –u(s) ds

–
d

Γ (γ – )

∫ 

t
( – s)γ –u(s) ds

]

=
∫ 


G(t, s)u(s) ds.

Here we can easily prove that the integral is also Caputo differentiable. Since

∫ 


G(t, s)u(s) ds = Iγ –

+ u(t) + c + ct,

where c and c are constants, c + ct is Caputo differentiable, and Iγ –
+ u(t) is also Caputo

differentiable, the integral is Caputo differentiable. �

For convenience, we define

X =
{

x|x ∈ C[–τ , ], cDδx ∈ C[–τ , ],  < δ < 
}

.

The space X equipped with the norm

‖x‖I = max
t∈I

∣
∣x(t)

∣
∣ + max

t∈I

∣
∣cDδx(t)

∣
∣, where I = (, ), ()

is a Banach space. For x = φ, by the definition of xt it follows that

xt = x(t + θ ),

x = x(θ ) = φ(θ ) for θ ∈ [–τ , ].

Thus, we have

x(t) = φ(t) for t ∈ [–τ , ].
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Since f : [, ] × Cτ × Cτ →R is a continuous function, from Lemma (.) we obtain that
x is a solution of BVP () if and only if it satisfies

x(t) =

{∫ 
 G(t, s)f (s, xs, cDδxs) ds, t ∈ (, ),

φ(t), t ∈ [–τ , ].

We define the operator T : X → X by

Tx(t) =

{∫ 
 G(t, s)f (s, xs, cDδxs) ds, t ∈ (, ),

φ(t), t ∈ [–τ , ].
()

Define the constants

M = max
≤t≤

(∫ 



∣
∣G(t, s)m(s)

∣
∣ds

)

, where m ∈ L[, ],

M∗ = max
≤t≤

(∫ 



∣
∣
∣
∣
∂

∂t
G(t, s)m(s)

∣
∣
∣
∣ds

)

, where m ∈ L[, ],

N =
ad – d(a – b)γ

bc + ad – ac
+

ac + c(b – a)γ
(bc + ad – ac)Γ ( – δ)

.

Theorem . Suppose that any one of the following is satisfied:
(C) there exists a nonnegative function m ∈ L[, ] such that

∣
∣f

(
t, xt , cDδ

+ xt
)∣
∣ ≤ m(t) + j‖xt‖ψ + k

∥
∥cDδ

+ xt
∥
∥ψ

for j, k ∈R
+ and  < ψ,ψ < , or

(C) there exists a nonnegative function m ∈ L[, ] such that

∣
∣f

(
t, xt , cDδ

+ xt
)∣
∣ ≤ m(t) + j‖xt‖ψ + k

∥
∥cDδ

+ xt
∥
∥ψ

for j, k ∈R
+ and ψ,ψ > .

Then BVP () has a solution.

Proof Assume that (C) holds and take

v ≥ max

{


(

M +
M∗

Γ ( – δ)

)

, (jN)


–ψ , (kN)


–ψ

}

. ()

Let K := {x ∈ X : ‖xs‖ ≤ v,‖cDδxs‖ ≤ v, v > , s ∈ (–τ ,α)}. Then by definition (.) we can
easily prove that K is a cone. For any x ∈ X, we obtain

∣
∣Tx(t)

∣
∣ =

∣
∣
∣
∣

∫ 


G(t, s)f

(
s, xs, cDδ

+ xs
)

ds
∣
∣
∣
∣

≤
∫ 



∣
∣G(t, s)

∣
∣
∣
∣f

(
s, xs, cDδ

+ xs
)∣
∣ds

≤
∫ 



∣
∣G(t, s)

∣
∣
(
m(s) + j‖xs‖ψ + k

∥
∥cDδ

+ xs
∥
∥ψ)ds

≤
∫ 



∣
∣G(t, s)m(s)

∣
∣ds +

∫ 



(
j‖xs‖ψ + k

∥
∥cDδ

+ xs
∥
∥ψ)G(t, s) ds.
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Since f is continuous on (, ), by the mean value theorem there exists v such that

∣
∣Tx(t)

∣
∣ ≤ M + j‖v‖ψ + k‖v‖ψ

[


Γ (γ )

∫ t


(t – s)γ – ds +

(
at – b

bc + ad – ac

)

×
{

c
Γ (γ )

∫ 


( – s)γ – ds –

d
Γ (γ – )

∫ 


( – s)γ – ds

}]

≤ M +
j‖v‖ψ + k‖v‖ψ

Γ (γ )

[
tγ

γ
+

at – b
bc + ad – ac

(
c
γ

– d
)]

.

So,

∣
∣Tx(t)

∣
∣ ≤ M +

j‖v‖ψ + k‖v‖ψ

Γ (γ + )

[
ad( – γ ) + γ bd

bc + ad – ac

]

. ()

Also,

∣
∣Tx′(t)

∣
∣ ≤

∫ 



∣
∣
∣
∣
∂

∂t
G(t, s)

∣
∣
∣
∣

∣
∣f

(
s, xs, cDδ

+ xs
)∣
∣ds

≤
∫ 



∣
∣
∣
∣
∂

∂t
G(t, s)

∣
∣
∣
∣

(
m(s) + j‖xs‖ψ + k

∥
∥cDδ

+ xs
∥
∥ψ)ds

≤
∫ 



∣
∣
∣
∣
∂

∂t
G(t, s)m(s)

∣
∣
∣
∣ds +

(
j‖v‖ψ + k‖v‖ψ

)
[


Γ (γ – )

∫ t


(t – s)γ – ds

+
(

a
bc + ad – ac

){
c

Γ (γ )

∫ 


( – s)γ – ds –

d
Γ (γ – )

∫ 


( – s)γ – ds

}]

≤ M∗ +
j‖v‖ψ + k‖v‖ψ

Γ (γ )

[

tγ – +
a

bc + ad – ac

(
c
γ

– d
)]

.

Therefore,

∣
∣Tx′(t)

∣
∣ ≤ M∗ +

j‖v‖ψ + k‖v‖ψ

Γ (γ + )

[
bcγ + ac( – γ )

bc + ad – ac

]

. ()

Hence,

∣
∣cDδ

+ Tx(t)
∣
∣ ≤ 

Γ ( – δ)

∫ t


(t – s)–δ

∣
∣Tx′(s)

∣
∣ds

≤ 
Γ ( – δ)

t–δ

 – δ

[

M∗ +
j‖v‖ψ + k‖v‖ψ

Γ (γ + )

(
bcγ + ac( – γ )

bc + ad – ac

)]

≤ M∗

Γ ( – δ)
+

j‖v‖ψ + k‖v‖ψ

Γ (γ + )Γ ( – δ)

(
bcγ + ac( – γ )

bc + ad – ac

)

.

So by equation () we have

∥
∥Tx(t)

∥
∥ ≤ M +

j‖v‖ψ + k‖v‖ψ

Γ (γ + )

[
ad( – γ ) + γ bd

bc + ad – ac

]

+
M∗

Γ ( – δ)

+
j‖v‖ψ + k‖v‖ψ

Γ (γ + )Γ ( – δ)

(
bcγ + ac( – γ )

bc + ad – ac

)
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≤ M +
M∗

Γ ( – δ)
+

j‖v‖ψ + k‖v‖ψ

Γ (γ + )

[
ad – d(a – b)γ

bc + ad – ac

+
ac + c(b – a)γ

bc + ad – acΓ ( – δ)

]

≤ v


+
(
j‖v‖ψ + k‖v‖ψ

)
N

≤ v


+
v


+
v


≤ v.

Thus, T : K → K . Hence, T is continuous since f and G are continuous. Now if (C) holds,
then we choose

v ≤ min

{


(

M +
M∗

Γ ( – δ)

)

, (jN)


–ψ , (kN)


–ψ

}

, ()

and by the same process as before we obtain ‖Tx(t)‖ ≤ v, which implies that T : K → K .
Now we will prove that T is a completely continuous operator.
Let P := max≤t≤ |f (t, xt , cDδ

+ xt)| + . Then, for any x ∈ X and t, t ∈ [–τ , ] with t < t,
by Lemma(.), for  ≤ t ≤ t ≤ , we have

∣
∣Tx(t) – Tx(t)

∣
∣

≤
∫ t



∣
∣G(t, s) – G(t, s)

∣
∣P ds +

∫ 

t

∣
∣G(t, s) – G(t, s)

∣
∣P ds

+
∫ t

t

∣
∣G(t, s) – G(t, s)

∣
∣P ds

≤ P
∣
∣
∣
∣


Γ (γ )

(∫ t


(t – s)γ – ds –

∫ t


(t – s)γ – ds

)

+
a(t – t)

bc + ad – ac

(
c

Γ (γ )

∫ 


( – s)γ – ds –

d
Γ (γ – )

∫ 


( – s)γ – ds

)∣
∣
∣
∣

≤ P
Γ (γ + )

[
(
tγ
 – tγ


)

+
a(t – t)(c – dγ )

bc + ad – ac

]

and

∣
∣cDδ

+ Tx(t) – cDδ
+ Tx(t)

∣
∣

=


Γ ( – δ)

∣
∣
∣
∣

∫ t


(t – s)–δTx′(s) ds –

∫ t


(t – s)–δTx′(s) ds

∣
∣
∣
∣

≤ 
Γ ( – δ)

∣
∣
∣
∣

∫ t


(t – s)–δTx′(s) ds –

∫ t


(t – s)–δTx′(s) ds

∣
∣
∣
∣

+


Γ ( – δ)

∣
∣
∣
∣

∫ t


(t – s)–δTx′(s) ds –

∫ t


(t – s)–δTx′(s) ds

∣
∣
∣
∣

≤ 
Γ ( – δ)

(∫ t

t

(t – s)–δ
∣
∣Tx′(s)

∣
∣ds +

∫ t



(
(t – s)–δ – (t – s)–δ

)∣
∣Tx′(s)

∣
∣ds

)

≤ 
Γ ( – δ)

(∫ t

t

(t – s)–δ

(∫ 



∣
∣
∣
∣
∂

∂t
G(t, s)

∣
∣
∣
∣

∣
∣f

(
t, xt , cDδ

+ xt
)∣
∣dt

)

ds
)
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+
∫ t



[
(t – s)–δ – (t – s)–δ

]
(∫ 



∣
∣
∣
∣
∂

∂t
G(t, s)

∣
∣
∣
∣

∣
∣f

(
t, xt , cDδ

+ xt
)∣
∣dt

)

ds

≤ P(bcγ + ac – acγ )
(bc + ad – ac)Γ ( – δ)Γ (γ + )

∣
∣t–δ

 – t–δ


∣
∣.

Hence, for  ≤ t < t ≤ , we have

∥
∥Tx(t) – Tx(t)

∥
∥ ≤ P

Γ (γ + )

[∣
∣
∣
∣

(
tγ
 – tγ


)

+
a(t – t)(c – dγ )

bc + ad – ac

∣
∣
∣
∣

+
∣
∣
∣
∣

(bcγ + ac – acγ )
(bc + ad – ac)Γ ( – δ)

(
t–δ
 – t–δ


)
∣
∣
∣
∣

]

.

If –τ ≤ t <  < t ≤ , then

∣
∣Tx(t) – Tx(t)

∣
∣ ≤ ∣

∣Tx(t) – Tx()
∣
∣ +

∣
∣Tx() – Tx(t)

∣
∣

≤
∫ 



∣
∣G(t, s) – G(, s)

∣
∣ds +

∣
∣φ() – φ(t)

∣
∣

≤
∣
∣
∣
∣

P
Γ (γ )

∫ t


(t – s)γ – ds +

at

bc + ad – ac

×
(

c
Γ (γ )

∫ 


( – s)γ – ds –

d
Γ (γ – )

∫ 


( – s)γ – ds

)∣
∣
∣
∣ + φ(t)

≤ P
Γ (γ )

∣
∣
∣
∣
tγ

γ

+
at

bc + ad – ac

(
c
γ

– d
)∣

∣
∣
∣ + φ(t).

Also, if –τ ≤ t <  < t ≤ , then

∣
∣cDδ

+ Tx(t) – cDδ
+ Tx(t)

∣
∣

=


Γ ( – δ)

∣
∣
∣
∣

∫ t


(t – s)–δTx′(s) ds

∣
∣
∣
∣ – 

(
by the definition of C+

τ ()
)

≤ P
Γ ( – δ)

(
t–δ


 – δ

)

.

Hence, if –τ ≤ t <  < t ≤ , then

∥
∥Tx(t) – Tx(t)

∥
∥ ≤

∣
∣
∣
∣

P
Γ (γ )

(
tγ

γ

+
at

bc + ad – ac

(
c
γ

– d
))∣

∣
∣
∣ +

∥
∥φ(t)

∥
∥ +

∣
∣
∣
∣

Pt–δ


Γ ( – δ)

∣
∣
∣
∣.

If –r ≤ t < t ≤ , then from the definition of φ we get

∣
∣Tx(t) – Tx(t)

∣
∣ =

∣
∣φ(t) – φ(t)

∣
∣

and also

∣
∣cDδ

+ Tx(t) – cDδ
+ Tx(t)

∣
∣ =

∣
∣cDδ

+φ(t) – cDδ
+φ(t)

∣
∣ = .

So

∥
∥Tx(t) – Tx(t)

∥
∥ =

∥
∥φ(t) – φ(t)

∥
∥.
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Hence, by the preceding we can say that ‖Tx(t) – Tx(t)‖ →  as t → t, that is, for any
ε > , there exists δ >  independent of t, t and x such that |Tx(t) – Tx(t)| ≤ ε whenever
|t – t| < δ. Therefore, T : X → X is completely continuous. �

Now we will use the Banach contraction principle to prove the uniqueness of the solu-
tion. For convenience, we denote

L :=


Γ (γ + )

[
ad( – γ ) + γ bd

bc + ad – ac

]

,

L∗ :=


Γ ( – δ)Γ (γ + )

[
bcγ + ac( – γ )

bc + ad – ac

]

.

Theorem . Suppose that

∣
∣f (t, x, x) – f (t, x̄, x̄)

∣
∣ ≤ q

(|x – x̄| + |x – x̄|
)

for each  < t <  and all x, x, x̄, x̄ ∈ Cτ , where q is a positive constant. If q < (L + L∗)–,
then BVP () has a unique solution.

Proof From the definition of T we get

∣
∣Tx(t) – Tx̄(t)

∣
∣ ≤

∫ 



∣
∣G(t, s)

∣
∣
∣
∣f

(
s, xs, cDδ

+ xs
)

– f
(
s, x̄s, cDδ

+ x̄s
)

ds
∣
∣

≤ q‖x – x̄‖
[


Γ (γ )

∫ t


(t – s)γ – ds +

(
at – b

bc + ad – ac

)

×
{

c
Γ (γ )

∫ 


( – s)γ – ds –

d
Γ (γ – )

∫ 


( – s)γ – ds

}]

≤ q‖x – x̄‖
Γ (γ )

[
tγ

γ
+

at – b
bc + ad – ac

(
c
γ

– d
)]

≤ q‖x – x̄‖
Γ (γ + )

[
ad( – γ ) + γ bd

bc + ad – ac

]

≤ q‖x – x̄‖L. ()

Also,

∣
∣cDδ

+ Tx(t) – cDδ
+ Tx̄(t)

∣
∣ ≤

∣
∣
∣
∣


Γ ( – δ)

∫ t


(t – s)–δ

(
(Tx)′(s) – (Tx̄)′(s) ds

)
∣
∣
∣
∣

≤ 
Γ ( – δ)

∫ t


(t – s)–δ

(∫ 



∣
∣
∣
∣
∂

∂s
G(s, p)

∣
∣
∣
∣

∣
∣f

(
p, xp, cDδ

+ xp
)

– f
(
p, x̄p, cDδ

+ x̄p
)∣
∣dp

)

ds

≤ q‖x – x̄‖
Γ ( – δ)

∫ t


(t – s)–δ

(∫ t



∣
∣
∣
∣
∂

∂s
G(s, p)

∣
∣
∣
∣dp

)

ds.
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Now by the definition of G(t, s) we have

∫ 



∣
∣
∣
∣
∂

∂t
G(t, s)

∣
∣
∣
∣ds ≤ 

Γ (γ – )

∫ t



∣
∣(t – s)γ –∣∣ds +

(
a

bc + ad – ac

)

×
{

c
Γ (γ )

∫ 



∣
∣( – s)γ –∣∣ds –

d
Γ (γ – )

∫ 



∣
∣( – s)γ –∣∣ds

}

≤ 
Γ (γ + )

(
bcγ + ac( – γ )

bc + ad – ac

)

.

Therefore,

∣
∣cDδ

+ Tx(t) – cDδ
+ Tx̄(t)

∣
∣ ≤ q‖x – x̄‖

Γ ( – δ)

∫ t



(t – s)–δ(bcγ + ac( – γ ))
Γ (γ + )(bc + ad – ac)

ds

≤ q‖x – x̄‖
Γ ( – δ)Γ (γ + )

(
bcγ + ac( – γ )

bc + ad – ac

)

≤ q‖x – x̄‖L∗. ()

From equations () and () we obtain that

‖Tx – Tx̄‖ ≤ q‖x – x̄‖L + q‖x – x̄‖L∗ ≤ q‖x – x̄‖(L + L∗).

Also, it is clear that, for each t ∈ [–τ , ], |Tx(t) – Tx̄(t)| = . Hence, by the Banach contrac-
tion principle BVP () has a unique solution. �

4 Examples
In this section, we present some examples to explain the applicability of the main results.

Example  Consider the following BVP of FFDE:

Dγ

+ x(t) =
Γ (δ + )


(
et – 

)
+

Γ (δ + )


e–t|xt|ψ +
e–t


∣
∣Dδ

+ xt
∣
∣ψ ,  < t < , ()

with boundary conditions

x(t) + x′(t) = ζ (t), –τ ≤ t ≤ ,

x(t) –



x′(t) = η(t),  ≤ t ≤ ,

where ζ () = η() = , Dγ

+ and Dδ
+ are the Caputo derivative with  < γ <  and  < δ < ,

t ∈ (, ). Take m(t) = Γ (δ+)
 (et – ), j = Γ (δ+)

 e–t , k = e–t

 . So

f
(
t, xt , Dδ

+ xt
)

:=
Γ (δ + )


(
et – 

)
+

Γ (δ + )


e–t|xt|ψ +
e–t


∣
∣Dδ

+ xt
∣
∣ψ .

Then, for t ∈ (, ), we obtain

∣
∣f

(
t, xt , Dδ

+ xt
)∣
∣ ≤ m(t) + j|xt|ψ + k

∣
∣Dδ

+ xt
∣
∣ψ .

For  < ψ,ψ < , (C) is satisfied. Similarly, for ψ,ψ > , (C) of Theorem . is proved.
Therefore, BVP () has a solution.
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Example  Consider BVP for the fractional functional differential equation

D


+ x(t) =

|xt| + |D 

+ xt|

( + et)( + |xt| + |D 

+ xt)|

()

with boundary conditions

x() + x′() = ,

x() –



x′() = .

Here γ = 
 , δ = 

 , and

f
(
t, xt , Dδ

+ xt
)

=
|xt| + |D 


+ xt|

( + et)( + |xt| + |D 

+ xt|)

.

Take

f (t, x, x) =
|x| + |x|

( + et)( + |x| + |x|)

and consider x, x, x̄, x̄ ∈ Cτ . Then, for every t ∈ [, ],

∣
∣f (t, x, x) – f (t, x̄, x̄)

∣
∣ =


 + et

∣
∣
∣
∣

|x| + |x|
 + |x| + |x| –

|x̄| + |x̄|
 + |x̄| + |x̄|

∣
∣
∣
∣

≤ 
 + et

( |x – x̄| + |x – x̄|
( + |x| + |x|)( + |x̄| + |x̄|)

)

≤ 
 + et

(|x – x̄| + |x – x̄|
)

≤ 


(|x – x̄| + |x – x̄|
)
.

For every t ∈ [–τ , ], we have

∣
∣f (t, x, x) – f (t, x̄, x̄)

∣
∣ =


 + et

∣
∣
∣
∣

|x| + |x|
 + |x| + |x| –

|x̄| + |x̄|
 + |x̄| + |x̄|

∣
∣
∣
∣

≤ 
 + et

( |x – x̄| + |x – x̄|
( + |x| + |x|)( + |x̄| + |x̄|)

)

≤ 


(|x – x̄| + |x – x̄|
)
.

Furthermore,

L =


Γ (γ + )

[
ad( – γ ) + γ bd

bc + ad – ac

]

=


Γ ( 
 + )

[ad( – 
 ) + 

 bd
bc + ad – ac

]

≈ .,
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L∗ =


Γ ( – δ)Γ (γ + )

[
bcγ + ac( – γ )

bc + ad – ac

]

=


Γ ( 
 )Γ ( 

 + )

[ 
 bc + ac( – 

 )
bc + ad – ac

]

≈ ..

Also, (L + L∗)– ≈ .. This means that q = . < . < (L + L∗)–. Hence, by Theo-
rem (.), BVP () has a unique solution.
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