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Abstract
This paper mainly focuses on a fractional model for unsteady-state fluid flow problem
developed based on the meshless local Petrov-Galerkin (MLPG) method with the
moving kriging (MK) technique as a background. The contribution of this work is to
investigate the stability of a model with fractional order governed by the full
Navier-Stokes equations in Cartesian coordinate system both theoretical and
numerical aspects. This is examined and discussed in detail by means of matrix
method. We show that the scheme is unconditionally stable under the restriction of
eigenvalue. The dependence between several of the important parameters that
impact on the solution is also studied thoroughly. In discretizing the time domain, an
algorithm based on a fixed point method is employed to overcome the nonlinearity.
Two selected benchmark problems are provided to validate the stability of the
present method, and a very satisfactory agreement with the obtained results can be
found.

Keywords: time-fractional Navier-Stokes equations; meshless method; fixed point
iteration; stability analysis; matrix method; unconditionally stable

1 Introduction
Recently, increasing interests and considerable researches have been given to fractional
differential equations (FDEs) thanks to its applications in wide areas of applied science and
engineering. The formulations based on FDEs are more adequate than the previously used
classical integer-order models. It is usually recommended to employ the fractional mod-
els for describing diverse physical phenomena such as fluid mechanics, plasma physics,
electrochemistry, mathematical biology, probability and statistics, finance, electrical net-
works, rheology, optics, and signal processing to maintain not only the behavior of the
original systems but also all of its historical states. It is a well-known fact that there is
no generally applicable method to seek the exact solution of most FDEs. The procedures
such as linearization or discretization are inevitable. For this reason, it is particularly im-
portant to propose and develop a new computationally efficient method for obtaining the
numerical solution of FDEs. In order to accommodate the reader who is not acquainted
with the concept of fractional calculus, it is perhaps important to recall that fractional cal-
culus is a discipline concerning the possibility of taking non-integer or fractional powers
to the derivatives and integrals. As is well known, there are many different types of frac-
tional derivatives. A most frequently and widely used one was proposed by Caputo [],
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which will be explained here briefly. The initial conditions for the differential equations
with fractional order by Caputo’s definition take on the same form as for the ones with
integer order, whose physically meaningful interpretation is very clear. Moreover, an ex-
ceptionally good benefit of the fractional derivative interpreted in Caputo’s viewpoint is
that, from the physical perspective, some characteristic properties of classical derivative
that the derivative of any constant function is zero should be preserved. Of course not all
aspects of current or past interest in fractional calculus can be covered in this section, but
the aim is at least to provide up to date information in as much detail as possible as well
as to generate curiosity and encourage further investigation of the potential applications
of this branch of mathematics. To give the reader insight and understanding as regards
fractional calculus in more depth, we refer to the books of Oldham and Spanier [], Miller
and Ross [], Podlubny [], Kilbas et al. [] and the references cited therein.

The Navier-Stokes equations (NSE) are a set of coupled nonlinear second-order partial
differential equations that are conventionally regarded as the appropriate mathematical
formulation to describe the numerical simulation being relevant to the unsteady, com-
pressible, and viscous fluid flows. Generally, incompressible flows can be modeled using
the NSE in two different formulations which may be based on either primitive (velocity
and pressure) or derived (such as velocity and vorticity) variables. The velocity-vorticity
approach, generally known as the stream function-vorticity approach, requires the trans-
formation of NSE into equations of velocity and vorticity components and does not in-
clude the pressure term. Notwithstanding the advantage that the number of equations
to be solved in velocity-vorticity form is two and three for two- and three-dimensional
problems, respectively, which is fewer than those in the primitive variables approach, they
have lost some of their attractiveness and have received very little attention. Imposition
of boundary conditions of the transformed equations is a major drawback that has to be
tackled, especially for three-dimensional problems. It may require substantial effort re-
lated to the boundary treatment to circumvent this problem, whereas the use of method
based on primitive variables is quite common and definitely more straightforward. As a
consequence, the incompressible NSE are most frequently solved by the formulation of
primitive variables which will be considered here. In  El-Shahed and Salem [] have
proposed the generalized NSE by simply replacing the first-order time derivative term by
a derivative of fractional order but still retaining the first- and second-order space deriva-
tives. Afterward, the published research articles with regard to solving a viscous fluid
problem in a tube in cylindrical coordinates have emerged continuously. The approxi-
mated solutions for the problem as above have been given among others by Momani and
Odibat [] using the Adomian decomposition method (ADM), Ragab et al. [] using the
homotopy analysis method (HAM), Kumar et al. [] by the ADM and Laplace transform
method (LTM), Kumar et al. [] with the new homotopy perturbation transform method
(HPTM), and Wang and Liu [] using the modified reduced differential transform method
(DTM) and new iterative Elzaki transform method. Besides those mentioned above, the
new development in solving nonlinear FDEs has been proposed by Kumar and his col-
leagues. The HAM together with the Laplace transform was applied to solve the nonlinear
shock wave equation of fractional order arising in the flow of gases []. The implemen-
tation of the homotopy analysis Sumudu transform method (HASTM), an inventive cou-
pling of Sumudu transform and well-known homotopy analysis technique, to derive the
analytical and numerical solutions of a nonlinear fractional differential-difference prob-
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lem was shown in []. They also pointed out that the most important advantage of the
HASTM over the ADM and HPTM is without making use of Adomian’s and He’s polyno-
mials. Other pioneering work can be found in [, ].

Meanwhile, numerical methods turn out to be an alternative way of attaining an ap-
proximate solution of FDEs. Solving FDEs by the classical mesh-dependent numerical
methods such as the finite difference methods (FDM), the finite volume methods (FVM),
and the finite element methods (FEM) requires the mesh generation, which appears to be
computationally costly. The use of meshes restricted by their applications leads to many
difficulties in some specific problems. Attempts to get rid of the aforementioned prob-
lem have been devoted to developing the so-called meshless (or meshfree) methods. They
have some advantages when compared to the grid based methods by virtue of the flexi-
bility and simplicity of placing nodes at arbitrary locations. The academic work regarding
the remarkable progress on meshless methods has thus far received considerable interest
and has been published continually both theoretically and numerically (see [–]). One
of the extensively popularized meshless methods in solving initial and boundary value
problems is the meshless local Petrov-Galerkin (MLPG) method originating with Atluri
and Zhu []. This is one of the truly meshless methods just because the requirement of
background cells for integration is not needed.

In meshless procedure, construction of shape function is one of the main challenges that
must be taken into account. Originally, the MLPG approach is numerically implemented
using the moving least squares (MLS) approximation to the spatially discretized domain.
Even though the MLS approximation seems to be one of the most commonly used meth-
ods, it is not always advantageous. The only notable imperfection for MLS shape functions
is that they do not have the Kronecker delta property, so the techniques like the Lagrange
multiplier or penalty method are required to enforce essential (Dirichlet) boundary con-
ditions. On the other hand, the so-called method of kriging is one of the most immensely
used techniques in geostatistics for spatial interpolation. This subsequently became an-
other way to enhance the accuracy and efficiency for the meshfree methods. The moving
kriging (MK) interpolation was first proposed by Gu [] and successfully demonstrated
the effectiveness in solving steady-state heat conduction problems. In addition to the con-
sistency property, the MK shape functions have the delta property which allows essential
boundary conditions to easily be imposed in a similar way to the FEM. The kriging in-
terpolation is shown to be essentially the same as the radial point interpolation method
(RPIM) on condition that the same basis functions are used [].

As mentioned in the second paragraph, virtually all the accomplishments to acquire the
solution of fractional NSE in the literature can only be limited to the one dimension. Only
the simplest cases are solved analytically so that an exact solution can be obtained. The
theoretical study for solving such a problem in higher space dimensions is connected with
great difficulties. Evidently, seeking the analytical solution of the time-fractional NSE in
multiple dimensions has not been easy by reason of the nonlinearity which makes them
very complicated or almost not possible to achieve, not to mention containing unknown
function (velocity components and pressure) of several independent variables (space and
time) more than one and its partial derivatives with respect to those variables. Up to now,
only little attention has been paid to the development of the MLPG method so as to solve
the fractional model of fluid flow in Cartesian coordinates. Additionally, as far as the au-
thors are concerned, stability of meshfree methods for a fractional model is rather hard to
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investigate and needs many efforts, especially for a governing equation considered with
nonlinear term. To fill this gap, the main contribution of this paper is to investigate and an-
alyze the stability of a fractional model for unsteady-state flow problem developed based
on the meshless methods.

The organization of the remainder of this article is as follows. In Section , mathematical
preliminaries may be helpful for whoever is about to begin with FDE, so we give a short
description and basic concepts of fractional calculus. Also we provide a discrete approx-
imation for the fractional derivative based on a quadrature rule. In Section , we first in-
troduce the governing nonlinear time-fractional NSE in two dimensions and then explain
how to solve the nonlinear system. We show the stability of the meshfree method, and
the sensitivity of several important parameters is also studied and discussed. In Section ,
two numerical tests are examined and discussed to show the validation of stability for the
present method. Finally, we end the current work with concluding remarks in Section .

2 Mathematical preliminaries
This section can be useful for the reader who is unfamiliar with the fractional derivative.
We briefly give some important concepts and definitions of fractional calculus.

Definition  A real function f (x) with x >  is said to be in the space Cμ,μ ∈ R if there
exists a real number p > μ such that f (x) = xpf(x), where f(x) ∈ C(,∞) and for m ∈ N it
is said to be in Cm

μ if f (m) ∈ Cμ.

Definition  The left-sided Riemann-Liouville fractional integral operator of order α ≥ 
for a function f ∈ Cμ,μ ≥ – is defined as

Jα
a f (x) =

⎧
⎨

⎩


�(α)

∫ x
a (x – τ )α–f (τ ) dτ , α > , x > a,

f (x), α = ,
(.)

where �(·) stands for the gamma function. The lower bound of integration a is commonly
set to be zero.

Definition  If n be the smallest integer that exceeds α, the Caputo time-fractional
derivative operator of order α >  for any causal function of time, i.e. vanishing for t <  is
defined as

Dα
t f (x, t) =

∂αf (x, t)
∂tα

=

⎧
⎨

⎩

Jn–α
t ( ∂nf (x,t)

∂tn ), n –  < α < n,
∂nf (x,t)

∂tn , α = n,
(.)

or equivalently

Dα
t f (x, t) =

⎧
⎨

⎩


�(n–α)

∫ t
 (t – τ )n–α– ∂nf (x,τ )

∂τn dτ , n –  < α < n
∂nf (x,t)

∂tn , α = n,
(.)

and the space fractional derivative operator of order β >  is defined as

Dβ
x f (x, t) =

⎧
⎨

⎩


�(n–β)

∫ x
 (x – θ )n–β– ∂nf (θ ,t)

∂θn dθ , n –  < β < n,
∂nf (x,t)

∂xn , β = n.
(.)
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In addition we also provide the derivation of discrete approximation for the Caputo frac-
tional derivative based on a quadrature formula. Given the time interval [, T ] discretized
uniformly into k subintervals. The values at nodal points in time domain are defined by
tn = n�t, n = , , , . . . , k where �t = T/k. For simplicity we denote the approximate solu-
tions of function f at the points xi and tn by f n

i . The approximate formula at time level n
can be obtained as follows:

Dα
t f (xi, tn) =


�( – α)

∫ tn



∂f (xi,φ)
∂φ

(tn – φ)–α dφ

=


�( – α)

n∑

k=

∫ k�t

(k–)�t

(
f k
i – f k–

i
�t

+ O(�t)
)

(n�t – φ)–α dφ

=


�( – α)

n∑

k=

{(
f k
i – f k–

i
�t

+ O(�t)
)

(
(n – k + )–α – (n – k)–α

)
}

�t–α

=
�t–α

�( – α)

n∑

k=

(
f k
i – f k–

i
)(

(n – k + )–α – (n – k)–α
)

+


�( – α)

n∑

k=

(
(n – k + )–α – (n – k)–α

)
O

(
�t–α

)

= σα,k

n∑

k=

ωα,k
(
f n–k+
i – f n–k

i
)

+ O(�t),

where ωα,k = k–α – (k – )–α and σα,�t = �t–α

�(–α) . The notation O is the higher-order residu-
als truncated of Taylor series. Therefore the discretized formula for the Caputo fractional
derivative which is of first-order accuracy in time can be obtained:

Dα
t f (xi, tn) ≈ σα,k

n∑

k=

ωα,k
(
f n–k+
i – f n–k

i
)
. (.)

3 Numerical procedure
Most incompressible fluid models for unsteady-state flow problem can be described math-
ematically by the two-dimensional time-fractional NSE in primitive form with the source
terms included as

∂αu
∂tα

+ u
∂u
∂x

+ v
∂u
∂y

= –
∂p
∂x

+


Re

(
∂u
∂x +

∂u
∂y

)

+ sx, (.)

∂αv
∂tα

+ u
∂v
∂x

+ v
∂v
∂y

= –
∂p
∂y

+


Re

(
∂v
∂x +

∂v
∂y

)

+ sy, (.)

∂u
∂x

+
∂v
∂y

= , (.)

where u and v are the velocities in the x and y directions, p is the pressure, respectively,
Re represents the Reynolds number, sx and sy are the source functions along the x and
y directions, respectively, α is the fractional parameter,  < α < , and the Caputo time-
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fractional derivative presented in this work is defined by

∂αu(x, t)
∂tα

=


�( – α)

∫ t



∂u(x, ξ )
∂ξ

(t – ξ )–α dξ . (.)

We omit the derivation details for the standard local weak formulation, spatial dis-
cretization, and temporal discretization here to save space and refer to Thamareerat et
al. [].

3.1 Solving the nonlinear system
The discretized system of nonlinear algebraic equations which corresponds to equations
(.), (.), and (.) can be written as

σα,�tA
n∑

k=

ωα,k
(
Un–k+ – Un–k) + BnUn = Sn, (.)

where A =
[

I  
 I 
  

]

, B =
[ B  B

 B B
B B 

]

, S =
[

Sx
Sy


]

, U =
[

Û
V̂
P̂

]

,

B =
[
ϕij(u, v)

]
; ϕij(u, v) = u(xi)φj,x(xi) + v(xi)φj,y(xi) –


Re

(
φj,xx(xi) + φj,yy(xi)

)
,

B =
[
φj,x(xi)

]
, B = B, B =

[
φj,y(xi)

]
, B = B, B = B,

Sx = [sx sx sx . . . sxN ]T , Sy = [sy sy sy . . . syN ]T ,

Û = [û û û . . . ûN ]T , V̂ = [v̂ v̂ v̂ . . . v̂N ]T , P̂ = [p̂ p̂ p̂ . . . p̂N ]T ,

I is the N × N identity matrix and  is the N × N zeros matrix,

which can be rearranged to give

σα,�tA
(
Un – Un–) + BnUn = –σα,�tA

n∑

k=

ωα,k
(
Un–k+ – Un–k) + Sn. (.)

At the first time level, when n = ,

(
σα,�tA + B)U = σα,�tAU + S, (.)

and when n ≥ ,

(
σα,�tA + Bn)Un = σα,�tA

(

Un– –
n∑

k=

ωα,k
(
Un–k+ – Un–k)

)

+ Sn. (.)

Equation (.) can be expressed more conveniently as

Un = Gn

(

Un– –
n∑

k=

ωα,k
(
Un–k+ – Un–k) + (σα,�tA)–Sn

)

, (.)

where Gn = σα,�t(σα,�tA + Bn)–A. It should be noted that so long as the matrix σα,�tA + Bn

is non-singular, i.e. invertible, we have a unique solution for the unknown vector Un in each
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time step. The non-singularity of this matrix often entails the value of correlation param-
eter which is unable to prove in general. In many of the practical problems, nonetheless,
the singularities are rare. To obtain solution values at time level n, we need the previous
solutions at all time levels , , , . . . , n –  expressed inside the parentheses on the right-
hand side of equation (.). Owing to the coefficient matrix Gn containing an unknown
function of u and v, now we have N nonlinear equation and also N unknown values.
To deal with the nonlinear part in a simple way, we might just as well use the quantities at
the previous time step to approximate those at the new time step. This choice is possible
if there should be not much difference of solution between n and n + . In other words,
two consecutive time levels should be sufficiently small. Instead of doing like that, a better
way to get more accuracy is by a conventional iterative method such as fixed point. We
can rewrite equation (.) in the form of recursive formula as

Un,l = G
(
Un,l–)

(

Un– –
n∑

k=

ωα,k
(
Un–k+ – Un–k) + (σα,�tA)–Sn

)

,

l = , , , . . . , (.)

where a superscript n, l denotes the time level n and lth fixed point iteration. In the first
step, l = , we pick U as initial guess, i.e. U, = U. When the solution is updated, the
resulting solution from the previous stage will be used as the initial guess for the next iter-
ation. This process is repeated again and again until the following terminating condition
is met:

∥
∥Un,l – Un,l–∥∥∞ ≤ ε, (.)

where ‖·‖∞ is the infinity norm, and ε is a small prescribed value depending on the ac-
curacy requirement. To put it another way, the process is repeated until the computed
values at all grid points have a little change with every subsequent iteration. This means
that an initial guess is close enough to the new time level solution. Once the criterion of
convergence as prescribed above is fulfilled, we can move on to the next time level. In the
meshfree method, it is important to note that the accuracy and stability of the method is
conditional upon the correlation parameter ω, the nodal spacing h (h is the average nodal
distance between any two points), and also the Reynolds number Re. In the next section,
we will investigate these in a thorough manner.

3.2 Stability analysis
In this section a mathematical analysis technique based on the eigenvalue of the matrix
is applied to verify condition on the stability for the meshless method. It is possible to
consider only its homogeneous part in that inhomogeneous terms do not alter the stability
properties. Let en = Un – Ũn be the perturbation or error vector at the nth time level where
Un and Ũn denote the exact and approximate solution at the nth time level, respectively.
So from equation (.) we have

en = Gn

(

en– –
n∑

k=

ωα,k
(
en–k+ – en–k)

)

. (.)
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The perturbation vector will be propagated forward in time according to the equation
en = Gne. The Euclidean matrix and vector norms are compatible or consistent. This
allows us to write

∥
∥en∥∥ ≤ ∥

∥Gn∥∥
∥
∥e∥∥. (.)

For fixed nodal distance the difference equation (.) will be stable if en remains bounded
as n increases indefinitely. That is when there exists a positive number M, indepen-
dent of n and distance for each pair of nodes, such that ‖Gn‖ ≤ M. This obviously lim-
its the amplification of any initial perturbation, and therefore of any arbitrary round off
errors, since ‖en‖ ≤ M‖e‖. To prove that the statement given in equation (.) is es-
tablished for all natural numbers, we will consider the inequality (.) in the case of
n =  and n ≥  separately. When n = , it is rather easy to see that ‖e‖ ≤ ‖e‖ if
‖G‖ ≤ . In the case of n ≥ , this can be done by means of mathematical induction.
Let P(n) be the statement ‖en‖ ≤ ‖Gn‖‖e‖, n ≥ . We first rearrange equation (.) as
follows:

en = Gn

(

en– –
n∑

k=

ωα,k
(
en–k+ – en–k)

)

= Gn

(

en– –
n–∑

k=

ωα,k
(
en–k+ – en–k) – ωα,n

(
e – e)

)

= Gn

(

en– –
n–∑

k=

ωα,k+en–k +
n–∑

k=

ωα,ken–k – ωα,n
(
e – e)

)

= Gn

(

en– –
n–∑

k=

ωα,k+en–k +
n–∑

k=

ωα,ken–k + ωα,ne

)

= Gn

(

en– +
n–∑

k=

(ωα,k – ωα,k+)en–k – ωα,en– + ωα,ne

)

= Gn

(

( – ωα,)en– +
n–∑

k=

(ωα,k – ωα,k+)en–k + ωα,ne

)

. (.)

Taking the norm of both sides of equation (.), making use of the compatibility condi-
tion for matrix and vector norms, and then applying the triangle inequality, we can write

∥
∥en∥∥ ≤ ∥

∥Gn∥∥

(

( – ωα,)
∥
∥en–∥∥ +

n–∑

k=

(ωα,k – ωα,k+)
∥
∥en–k∥∥ + ωα,n

∥
∥e∥∥

)

. (.)

There are basically two steps to infer P(n) holds for each positive integer n ≥ . The first
step, known as the base case, intends to show the given statement for a certain number,
n = . We have

∥
∥e∥∥ ≤ ∥

∥G∥∥
(
( – ωα,)

∥
∥e∥∥ + ωα,

∥
∥e∥∥

)

≤ ∥
∥G∥∥

(
( – ωα,)

∥
∥G∥∥

∥
∥e∥∥ + ωα,

∥
∥e∥∥

)
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<
∥
∥G∥∥

(
( – ωα,)

∥
∥e∥∥ + ωα,

∥
∥e∥∥

)

=
∥
∥G∥∥

∥
∥e∥∥, (.)

which is obviously fulfilled. The second step called the inductive case is to prove that
equation (.) for any positive integer implies the formula for its successor. Suppose that
‖em‖ ≤ ‖Gm‖‖e‖,∀m ≥ . We have to show that ‖em+‖ ≤ ‖Gm+‖‖e‖. From inequality
(.) we can write

∥
∥em+∥∥ ≤ ∥

∥Gm+∥∥

(

( – ωα,)
∥
∥em∥

∥ +
m∑

k=

(ωα,k – ωα,k+)
∥
∥em+–k∥∥ + ωα,m+

∥
∥e∥∥

)

<
∥
∥Gm+∥∥

(

( – ωα,)
∥
∥Gm∥

∥
∥
∥e∥∥

+
m∑

k=

(ωα,k – ωα,k+)
∥
∥Gm+–k∥∥

∥
∥e∥∥ + ωα,m+

∥
∥e∥∥

)

<
∥
∥Gm+∥∥

∥
∥e∥∥

(

 – ωα, +
m∑

k=

(ωα,k – ωα,k+) + ωα,m+

)

=
∥
∥Gm+∥∥

∥
∥e∥∥, (.)

which completes the proof. Our proof shows that the error made at each time level of
calculation will be no more than the error made at the initial step as long as ‖Gn‖ ≤ ,
which means ρ(G) ≤  where ρ(G) is the largest modulus of the eigenvalues of G, called the
spectral radius of G. In other words, all eigenvalues of the matrix G = σα,�t(σα,�tA + B)–A
satisfy the following condition:

∣
∣
∣
∣

σα,�tλA

σα,�tλA + λB

∣
∣
∣
∣ ≤ , (.)

where λA and λB are the eigenvalues of the matrices A and B, respectively. Seeing that
A is a block diagonal matrix with  ×  blocks whose elements are the identity and zero
matrices, the eigenvalues of matrix A can be either  or  only. In case λA =  we can see
that the inequality (.) is automatically satisfied for all λB 	= . This implies λB can be any
arbitrary except zero. Provided that λA = , the above inequality is always satisfied when
λB must not exceed –σα,�t or must be non-negative only. Consequently, we can say that
the scheme is unconditionally stable so long as λB ≤ –σα,�t or λB ≥ . As mentioned
above, the eigenvalues of matrix B is highly dependent upon the correlation parameter
(ω), the distance between any two nodal points (h), and the Reynolds number (Re), which
significantly affect the solution. Since it is impossible to explicitly define a relationship
among these parameters, we investigate this dependence numerically. Also we show how
maximum eigenvalue Re(λ) of matrix B varies along a range of horizontal and vertical
components of velocity and pressure solution. So all we need to do is whether the largest
eigenvalue of B will be non-negative.

In the first three Figures, (a) (horizontal velocity), (b) (vertical velocity), and (c) (pres-
sure) show the real part of maximum eigenvalue of B when the solutions are varied. We
see that there is no difference between Figure (a) and (b), and they really look alike. This
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Figure 1 The effect of the (a) horizontal velocity, (b) vertical velocity, (c) pressure, (d) Reynolds
number, (e) correlation parameter, and (f) nodal spacing for eigenvalue of matrix B.

indicates that no matter what the values of horizontal and vertical velocities are, the eigen-
values of the matrix B still have positive real parts. The scheme is always stable for all val-
ues of u and v, whereas the numerical stability shown in Figure (c) is not surprising. It
seems to be nothing more than just a line parallel to the x-axis and without any change of
Re(λ)max simply because B is independent of pressure solution. Figure (d) shows that for
Reynolds numbers up to , a stable computation is still possible. For a fixed Reynolds
number and a distance between each node, Figure (e) displays Re(λ)max of matrix B while
the correlation parameter is varied. The effect of nodal spacing for eigenvalue of B is ob-
served in Figure (f ) when the Reynolds number and correlation parameter are constant.
All in all a detailed study of this section shows that in all cases depicted in Figure , the
scheme satisfies the stability condition for a wide range of these parameters, which can be
chosen freely, and it remains stable versus to any values of time step as well.

4 Illustrative examples
In this section numerical experiments are performed and discussed in detail to confirm
the applicability, reliability, and robustness of the proposed meshless method and also to
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Table 1 The maximum and RMSEs of the velocity and pressure for Example 1 with different
choices of �t on regular points

�t E∞ RMSE

u v p u v p

1/10 2.4645× 10–4 2.4645× 10–4 6.3263× 10–4 9.9623× 10–5 9.9623× 10–5 4.2763× 10–4

1/12 2.0197× 10–4 2.0197× 10–4 6.0606× 10–4 8.1507× 10–5 8.1507× 10–5 4.0973× 10–4

1/15 1.5990× 10–4 1.5990× 10–4 5.7928× 10–4 6.3486× 10–5 6.3486× 10–5 3.9171× 10–4

1/17 1.4065× 10–4 1.4065× 10–4 5.6661× 10–4 5.5126× 10–5 5.5126× 10–5 3.8318× 10–4

1/20 1.1888× 10–4 1.1888× 10–4 5.5232× 10–4 4.5932× 10–5 4.5932× 10–5 3.7355× 10–4

Figure 2 The graphs of approximate and exact solutions and corresponding absolute errors at t = 1
with α = 0.99, �x = �y = 0.1, �t = 0.1, Re = 100 for Example 1: (a), (b) the horizontal and (c), (d)
vertical components of velocity and (e), (f) pressure.

make sure of the theoretical result analyzed. Two common types of estimators like max-
imum error and root mean square error (RMSE) are used to make comparison between
the numerical result and analytical solution:

E∞ = max
{|Ui – ui|,  ≤ i ≤ N

}
, (.)

RMSE =

√
√
√
√ 

N

N∑

i=

(Ui – ui), (.)
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Figure 3 The solution curves for Example 1 at y = 0.4 with �x = �y = 0.1, Re = 100 when α = 0.25 (a),
(b), (c), α = 0.5 (d), (e), (f), and α = 0.75 (g), (h), (i).

Figure 4 The solution curves with different values of α for Example 1: (a) the horizontal and (b)
vertical components of velocity at x = y = 0.4 and (c) pressure at x = 0.6 and y = 0.4 with
�x = �y = 0.1, Re = 100.

where Ui and ui are the exact and approximate solutions at locations xi, respectively. For
some natural numbers M and M, let �x = (b – a)/M and �y = (d – c)/M be the step size
of space variables along x and y directions, respectively. The space domain is subdivided
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Table 2 The maximum and RMSEs of the velocity and pressure for Example 1 with different
choices of �t on uneven points

�t E∞ RMSE

u v p u v p

1/10 3.0612× 10–4 2.8645× 10–4 1.8238× 10–5 1.1477× 10–4 1.0439× 10–4 5.0684× 10–6

1/12 2.6126× 10–4 2.4279× 10–4 1.6974× 10–5 9.6862× 10–5 8.6452× 10–5 4.4722× 10–6

1/15 2.1589× 10–4 1.9864× 10–4 1.5693× 10–5 7.9024× 10–5 6.8521× 10–5 4.0400× 10–6

1/17 1.9435× 10–4 1.7768× 10–4 1.5083× 10–5 7.0714× 10–5 6.0142× 10–5 3.9109× 10–6

1/20 1.6998× 10–4 1.5397× 10–4 1.4392× 10–5 6.1502× 10–5 5.0831× 10–5 3.8321× 10–6

Table 3 The RMSEs of the velocity and pressure with regular nodes and fixed α = 0.99,
N = 121, �t = 0.1, Re = 100 at some time levels t for Example 2

t u v p

0.1 1.7176× 10–5 2.5966× 10–5 4.9654× 10–3

0.3 2.2558× 10–5 5.2199× 10–5 6.1420× 10–3

0.5 2.7272× 10–5 7.8739× 10–4 6.4973× 10–3

0.7 3.0502× 10–5 1.0357× 10–4 6.0118× 10–3

1 3.3760× 10–5 1.3715× 10–4 4.8912× 10–3

1.2 3.5518× 10–5 1.5722× 10–4 4.2616× 10–3

1.5 3.7882× 10–5 1.8404× 10–4 3.6934× 10–3

1.7 3.9256× 10–5 1.9976× 10–4 3.5532× 10–3

2 4.0961× 10–5 2.2016× 10–4 3.5617× 10–3

Table 4 The RMSEs of the velocity and pressure with different values of correlation parameter
ω for Example 2

ω u v p

0.2 3.3760× 10–5 1.3715× 10–4 4.8912× 10–3

0.5 8.2165× 10–5 2.9563× 10–4 4.2259× 10–3

1 1.1378× 10–4 3.0463× 10–4 2.4659× 10–3

1.2 1.1291× 10–4 2.8097× 10–4 2.3875× 10–3

1.5 1.2407× 10–4 2.4424× 10–4 1.0728× 10–3

into equal size subintervals to give the set of nodes xi = a + i�x, i = , , , . . . M and yj = c +
j�y, j = , , , . . . , M. In all of the presented numerical experiments, the nodal distribution
is placed on a unit square domain � = {(x, y)| ≤ x, y ≤ }.

Example  Consider the time-fractional NSE in the presence of a body force with the
following the exact solution:

u(x, y, t) = xy( – x)( – y)( – y)e–t , (.)

v(x, y, t) = –xy( – x)( – x)( – y)e–t , (.)

p(x, y, t) =
(
x – y)e–t , (.)

which automatically satisfies the initial and boundary conditions. Table  gives the maxi-
mum and RMSEs of the velocity and pressure for Example  with various choices of �t on
regular points. When �t is taken smaller, the error in the numerical time integration will
be reduced. We must keep it reasonably small, provided that we want to closely approx-
imate the exact value of the problem. The exact solutions together with its approximate
solutions and corresponding errors at time T =  with α = .,�x = �y = .,�t = .
are represented graphically in Figure . Furthermore, we can observe the behavior of frac-
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Figure 5 The graphs of absolute errors obtained for Example 2 on regular (left-hand side) and
irregular (right-hand side) distributions of nodes at time t = 1 with α = 0.99, N = 121, �t = 0.1,
Re = 10: (a), (b) the horizontal and (c), (d) vertical components of velocity and (e), (f) pressure.

tional models as the fractional derivative parameter is changed gradually. The approximate
solutions are computed for various values of α, some of which are depicted in Figures 
and . It can be seen from Figure (c) that the curves of the pressure solution for each
value of α varied are nearly identical to each other and too close to be distinguishable. In
order to assess the meshless method, the computational results using uneven nodal dis-
tribution are also reported in Table . For the purpose of comparison, the step size of time
variable �t is chosen to be the same as regularly arranged nodes. When taking account
of an overview of RMS error, we can observe that there is very little difference between
the results of horizontal and vertical velocities, whereas the pressure results in the case of
uneven nodal points are apparently better than those obtained using regular nodal points.
The presented numerical results through the figures and tables illustrate and corroborate
the high accuracy and validity of the proposed method.
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Figure 6 The solution curves for Example 2 at y = 0.4 with �x = �y = 0.1, Re = 100 when α = 0.3 (a),
(b), (c), α = 0.5 (d), (e), (f), and α = 0.7 (g), (h), (i).

Example  Consider the most extensively used test problem known as decaying Taylor-
Green vortices, for which an analytical closed form solution is available as follows:

u(x, y, t) = sin(x) cos(y)e
–t
Re , (.)

v(x, y, t) = – cos(x) sin(y)e
–t
Re , (.)

p(x, y, t) =



(
cos(x) + cos(y)

)
e

–t
Re , (.)

which automatically satisfies the initial and boundary conditions. In Table  we show the
RMSEs of the approximated solution for velocity and pressure with regular nodes,α =
., N = ,�t = ., and Re =  at different times up to t = . Also the errors found
with different values of correlation parameter ω are reported in Table . As we see when
the correlation parameter ω ∈ [., .] becomes larger, the pressure error is reduced grad-
ually. Figure  shows the graphs of resulting absolute errors at time t =  with α = ., N =
,�t = ., Re =  for both regular and irregular distributions. The same conclusion as
Example  that not much difference for the velocity solutions is found can be stated. To ob-
serve the behavior of fractional models, we compute the numerical solutions for different
values of α, some of which are shown in Figures  and . Taking everything into consid-
eration, it is evident that the computed numerical solutions from the results presented
graphically reveal the performance, high accuracy, and validity of the proposed method.
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Figure 7 The solution curves with different values of α for Example 2: (a) the horizontal and (b)
vertical components of velocity and (c) pressure at x = 0.4 and y = 0.4 with �x =
�y = 0.1, Re = 100.

5 Concluding remarks
In the numerical experiment, an important point that is worth mentioning here is that due
to the fact that the exact solution of the system of equations (.)-(.) is unavailable, the
obtained results have to be compared with analytical solution of classical NSE, which are
congruous with what we expected when α → . The most important feature of fractional
models is the convergence of the approximation to the classical model. The solution for
the integer-order system must be recovered. The reliability of the solutions with α not
approaching  is guaranteed by the theoretical study shown in Section .. We prove the
unconditional stability using a technique based on eigenvalue of the matrix, and the effect
of many important parameters on the solution is also investigated thoroughly. The present
study is motivated by lack of detailed experimental study and stability analysis in the lit-
erature related to a fractional model of full NSE in Cartesian system of coordinate. As we
can see, the applications of FDE are manifold and important, but for the multidimensional
unsteady-state flow problem it is in its beginning stage and needs further work. In the end,
the authors definitely believe that the insights and source of information drawn in this pa-
per with emphasis on the theoretical analysis and numerical study will be of use to the
readers interested in fluid flow problem and to the science and engineering community.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors collaborated on the writing of the manuscript equally and also approved the final article.

Author details
1Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha
Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand. 2Ratchaburi Learning Park, King Mongkut’s University of
Technology Thonburi (KMUTT), Rang Bua, Chom Bueng, Ratchaburi, 70150, Thailand. 3Theoretical and Computational
Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi
(KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand.



Thamareerat et al. Advances in Difference Equations  (2017) 2017:74 Page 17 of 17

Acknowledgements
The financial support of this research by Science Achievement Scholarship of Thailand (SAST) is sincerely appreciated.
The authors gratefully acknowledge the encouragement from the Department of Mathematics, Faculty of science, King
Mongkut’s University of Technology Thonburi (KMUTT). We also wish to thank the anonymous reviewers for their many
constructive comments and invaluable suggestions, which have led to an improved version of the manuscript.

Received: 26 September 2016 Accepted: 13 February 2017

References
1. Caputo, M: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13,

529-539 (1967)
2. Oldham, KB, Spanier, J: The Fractional Calculus. Academic Press, New York (1974)
3. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York

(1993)
4. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
5. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego

(2006)
6. El-Shahed, M, Salem, A: On the generalized Navier-Stokes equations. Appl. Math. Comput. 156, 287-293 (2004)
7. Momani, S, Odibat, Z: Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition

method. Appl. Math. Comput. 177, 488-494 (2006)
8. Ragab, AA, Hemida, KM, Mohamed, MS, Abd El Salam, MA: Solution of time-fractional Navier-Stokes equation by

using homotopy analysis method. Gen. Math. Notes 13, 13-21 (2012)
9. Kumar, S, Kumar, D, Abbasbandy, S, Rashidi, MM: Analytical solution of fractional Navier-Stokes equation by using

modifed Laplace decomposition method. Ain Shams Eng. J. 5, 569-574 (2014)
10. Kumar, D, Singh, J, Kumar, S: A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid.

J. Assoc. Arab Univ. Basic Appl. Sci. 17, 14-19 (2015)
11. Wang, K, Liu, S: Analytical study of time-fractional Navier-Stokes equation by using transform methods. Adv. Differ.

Equ., 2016, 61 (2016). doi:10.1186/s13662-016-0783-9
12. Kumar, D, Singh, J, Kumar, S, Sushila, Singh, BP: Numerical computation of nonlinear shock wave equation of

fractional order. Ain Shams Eng. J. 6, 605-611 (2015)
13. Kumar, D, Singh, J, Baleanu, D: Numerical computation of a fractional model of differential-difference equation.

J. Comput. Nonlinear Dyn. 11, 061004 (2016)
14. Kumar, D, Singh, J, Baleanu, D: A hybrid computational approach for Klein-Gordon equations on Cantor sets.

Nonlinear Dyn. (2016). doi:10.1007/s11071-016-3057-x
15. Singh, J, Kumar, D, Kiliçman, A: Numerical solutions of nonlinear fractional partial differential equations arising in

spatial diffusion of biological populations. Abstr. Appl. Anal. 2014, 535793 (2014). doi:10.1155/2014/535793
16. Bui, TQ, Nguyen, TN, Nguyen-Dang, H: A moving kriging interpolation-based meshless method for numerical

simulation of Kirchhoff plate problems. Int. J. Numer. Methods Eng. 77, 1371-1395 (2009)
17. Bui, TQ, Ngoc Nguyen, M, Zhang, C: A moving kriging interpolation-based element-free Galerkin method for

structural dynamic analysis. Comput. Methods Appl. Mech. Eng. 200, 1354-1366 (2011)
18. Najafi, M, Arefmanesh, A, Enjilela, V: Meshless local Petrov-Galerkin method-higher Reynolds numbers fluid flow

applications. Eng. Anal. Bound. Elem. 36, 1671-1685 (2012)
19. Dai, BD, Cheng, J, Zheng, BJ: A moving kriging interpolation-based meshless local Petrov-Galerkin method for

elastodynamic analysis. Int. J. Appl. Mech., 2013, 5 (2013). doi:10.1142/S1758825113500117
20. Dai, BD, Zheng, BJ, Liang, QX, Wang, LH: Numerical solution of transient heat conduction problems using improved

meshless local Petrov-Galerkin method. Appl. Math. Comput. 219, 10044-10052 (2013)
21. Phaochoo, P, Luadsong, A, Aschariyaphotha, N: The meshless local Petrov-Galerkin based on moving kriging

interpolation for solving fractional Black-Scholes model. J. King Saud Univ., Sci. 28, 111-117 (2016)
22. Phaochoo, P, Luadsong, A, Aschariyaphotha, N: A numerical study of the European option by the MLPG method with

moving kriging interpolation. SpringerPlus 5, 305 (2016). doi:10.1186/s40064-016-1947-5
23. Sataprahm, C, Luadsong, A: The meshless local Petrov-Galerkin method for simulating unsteady incompressible fluid

flow. J. Egypt. Math. Soc. 22, 501-510 (2014)
24. Khankham, S, Luadsong, A, Aschariyaphotha, N: MLPG method based on moving kriging interpolation for solving

convection-diffusion equations with integral condition. J. King Saud Univ., Sci. 27, 292-301 (2015)
25. Thamareerat, N, Luadsong, A, Aschariyaphotha, N: The meshless local Petrov-Galerkin method based on moving

kriging interpolation for solving the time fractional Navier-Stokes equations. SpringerPlus 5, 417 (2016).
doi:10.1186/s40064-016-2047-2

26. Atluri, SN, Zhu, TL: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput.
Mech. 22, 117-127 (1998)

27. Gu, L: Moving kriging interpolation and element-free Galerkin method. Int. J. Numer. Methods Eng. 56, 1-11 (2003)
28. Dai, KY, Liu, GR, Lim, KM, Gu, YT: Comparison between the radial point interpolation and the kriging based

interpolation used in meshfree methods. Comput. Mech. 32, 60-70 (2003)

http://dx.doi.org/10.1186/s13662-016-0783-9
http://dx.doi.org/10.1007/s11071-016-3057-x
http://dx.doi.org/10.1155/2014/535793
http://dx.doi.org/10.1142/S1758825113500117
http://dx.doi.org/10.1186/s40064-016-1947-5
http://dx.doi.org/10.1186/s40064-016-2047-2

	Stability results of a fractional model for unsteady-state ﬂuid ﬂow problem
	Abstract
	Keywords

	Introduction
	Mathematical preliminaries
	Numerical procedure
	Solving the nonlinear system
	Stability analysis

	Illustrative examples
	Concluding remarks
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


