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1 Introduction
The study of the stability of functional equations was instigated by the famous question
of Ulam [] during a Mathematical Colloquium at the University of Wiskonsin in the year
. In the successive year, Hyers [] provided a partial answer to the question of Ulam.
Later, Hyers’s result was extended and generalized for a Cauchy functional equation by
Bourgin [], Th.M. Rassias [], Gruber [], Aoki [], J.M. Rassias [] and Găvruta [] in var-
ious adaptations. After that several stability articles, many textbooks and research mono-
graphs have investigated the result for various functional equations, also for mappings
with more general domains and ranges; for instance, see [–] and [].

In , Ravi and Senthil Kumar [] obtained Ulam-Găvruta-Rassias stability for the
Rassias reciprocal functional equation

r(x + y) =
r(x)r(y)

r(x) + r(y)
, (.)

where r : X −→ R is a mapping with X as the space of non-zero real numbers. The re-
ciprocal function r(x) = c

x is a solution of the functional equation (.). The functional
equation (.) holds good for the ‘reciprocal formula’ of any electric circuit with two resis-
tors connected in parallel []. Ravi et al. [] obtained the solution of a new generalized
reciprocal-type functional equation in two variables of the form

r(x + y) =
kr(x + (k – )y)r((k – )x + y)

r(x + (k – )y) + r((k – )x + y)
, (.)
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where k >  is a positive integer, and investigated its generalized Hyers-Ulam stability
in non-Archimedean fields. Then Senthil Kumar et al. [] found a general solution of
a reciprocal-type functional equation

f (x + y) =
f ( kx+ky

k )f ( kx+ky
k )

f ( kx+ky
k ) + f ( kx+ky

k )
(.)

and investigated its generalized Hyers-Ulam-Rassias stability in non-Archimedean fields,
where k > , k and k are positive integers with k = k + k and k �= k. The other results
pertaining to the stability of different reciprocal-type functional equations can be found
in [–] and [].

For the first time, Kim and Bodaghi [] introduced and studied the Ulam-Găvruta-
Rassias stability for the quadratic reciprocal functional equation

f (x + y) + f (x – y) =
f (x)f (y)[f (y) + f (x)]

(f (y) – f (x)) . (.)

Then the functional equation (.) was generalized in [] as

f
(
(a + )x + ay

)
+ f

(
(a + )x – ay

)
=

f (x)f (y)[(a + )f (y) + af (x)]
((a + )f (y) – af (x)) , (.)

where a ∈ Z with a �= , –. In [], the authors established the generalized Hyers-Ulam-
Rassias stability for the functional equation (.) in non-Archimedean fields. Since then
Ravi et al. [] investigated the generalized Hyers-Ulam-Rassias stability of a reciprocal-
quadratic functional equation of the form

r(x + y) + r(x + y) =
r(x)r(y)[r(x) + r(y) + 

√
r(x)r(y)]

[r(x) + r(y) + 
√

r(x)r(y)]
(.)

in intuitionistic fuzzy normed spaces; for another form of a reciprocal-quadratic func-
tional equation, see [].

In this paper, we introduce the reciprocal-cubic functional equation

c(x + y) + c(x + y) =
c(x)c(y)[c(x) + c(y) + c(x) 

 c(y) 
 (c(x) 

 + c(y) 
 )]

[c(x) 
 + c(y) 

 + c(x) 
 c(y) 

 ]
(.)

and the reciprocal-quartic functional equation

q(x + y) + q(x – y) =
q(x)q(y)[q(x) + q(y) + 

√
q(x)q(y)]

[
√

q(y) –
√

q(x)]
. (.)

It can be verified that the reciprocal-cubic function c(x) = 
x and the reciprocal-quartic

function q(x) = 
x are solutions of the functional equations (.) and (.), respectively.

Then we investigate the generalized Hyers-Ulam stability of these new functional equa-
tions in the framework of non-Archimedean fields. We extend the results concerning
Hyers-Ulam stability, Hyers-Ulam-Rassias stability and Ulam-Găvruta-Rassias stability
controlled by the mixed product-sum of powers of norms for equations (.) and (.).
We also provide related examples that the functional equations (.) and (.) are not sta-
ble for the singular cases.
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2 Preliminaries
In this section, we recall the basic concepts of a non-Archimedean field.

Definition . By a non-Archimedean field, we mean a field K equipped with a function
(valuation) | · | from K into [,∞) such that |p| =  if and only if p = , |pq| = |p||q| and
|p + q| ≤ max{|p|, |q|} for all p, q ∈K.

Clearly, || = |–| =  and |n| ≤  for all n ∈N. We always assume, in addition, that | · | is
non-trivial, i.e., there exists a ∈K such that |a| �= , . Due to the fact that

|pn – pm| ≤ max
{|pj+ – pj| : m ≤ j ≤ n – 

}
(n > m),

a sequence {pn} is Cauchy if and only if {pn+ –pn} converges to zero in a non-Archimedean
field. By a complete non-Archimedean field, we mean that every Cauchy sequence is con-
vergent in the field.

An example of a non-Archimedean valuation is the mapping | · | taking everything but 
into  and || = . This valuation is called trivial. Another example of a non-Archimedean
valuation on a field A is the mapping

|k| =

⎧
⎪⎪⎨

⎪⎪⎩

 if k = ,

k if k > ,

– 
k if k < 

for any k ∈A.
Let p be a prime number. For any non-zero rational number x = pr m

n in which m and n
are co-prime to the prime number p, consider the p-adic absolute value |x|p = p–r on Q.
It is easy to check that | · |p is a non-Archimedean norm on Q. The completion of Q with
respect to | · |p, which is denoted by Qp, is said to be the p-adic number field. Note that if
p > , then |n|p =  for all integers n.

Throughout this paper, we consider that X and Y are a non-Archimedean field and a
complete non-Archimedean field, respectively. From now on, for a non-Archimedean field
X, we put X∗ = X \ {}. For the purpose of simplification, let us define the difference op-
erators �c,�q : X∗ ×X

∗ −→Y by

�c(x, y) = c(x + y) + c(x + y) –
c(x)c(y)[c(x) + c(y) + c(x) 

 c(y) 
 (c(x) 

 + c(y) 
 )]

[c(x) 
 + c(y) 

 + c(x) 
 c(y) 

 ]

and

�q(x, y) = q(x + y) + q(x – y) –
q(x)q(y)[q(x) + q(y) + 

√
q(x)q(y)]

[
√

q(y) –
√

q(x)]

for all x, y ∈ X
∗.

Definition . A mapping c : X∗ −→ Y is called a reciprocal-cubic mapping if c satisfies
equation (.). Also, a mapping q : X∗ −→ Y is called a reciprocal-quartic mapping if q
satisfies equation (.).
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3 Hyers-Ulam stability for equations (1.7) and (1.8)
In this section, we investigate the generalized Hyers-Ulam stability of equations (.) and
(.) in non-Archimedean fields. We also establish the results pertaining to Hyers-Ulam
stability, Hyers-Ulam-Rassias stability and Ulam-Găvruta-Rassias stability controlled by
product-sum of powers of norms.

Theorem . Let l ∈ {, –} be fixed, and let F : X∗ × X
∗ −→ [,∞) be a mapping such

that

lim
n→∞

∣∣
∣∣




∣∣
∣∣

ln

F
(

x

ln+ l+


,
y

ln+ l+


)
=  (.)

for all x, y ∈X
∗. Suppose that c : X∗ −→Y is a mapping satisfying the inequality

∣∣�c(x, y)
∣∣ ≤ F(x, y) (.)

for all x, y ∈ X
∗. Then there exists a unique reciprocal-cubic mapping C : X∗ −→ Y such

that

∣∣c(x) – C(x)
∣∣ ≤ sup

{∣∣∣
∣




∣∣∣
∣

jl+ l–


F
(

x

jl+ l+


,
x

jl+ l+


)
: j ∈N∪ {}

}
(.)

for all x ∈ X
∗.

Proof Interchanging (x, y) into (x, x) in (.), we obtain
∣∣
∣∣c(x) –


l c

(
x
l

)∣∣
∣∣ ≤ || |l–|

 F
(

x

 l+


,
x

 l+


)
(.)

for all x ∈X
∗. Replacing x by x

ln in (.) and multiplying by | 
 |ln, we have

∣
∣∣
∣


ln c

(
x

ln

)
–


(n+)l c

(
x

(n+)l

)∣
∣∣
∣ ≤

∣
∣∣
∣




∣
∣∣
∣

ln+ l–


F
(

x

ln+ l+


,
x

ln+ l+


)
(.)

for all x ∈ X
∗. It follows from relations (.) and (.) that the sequence { 

ln c( x
ln )} is

Cauchy. Since Y is complete, this sequence converges to a mapping C : X∗ −→ Y defined
by

C(x) = lim
n→∞


ln c

(
x

ln

)
. (.)

On the other hand, for each x ∈X
∗ and non-negative integers n, we have

∣∣
∣∣


ln c

(
x

ln

)
– c(x)

∣∣
∣∣ =

∣
∣∣
∣∣

n–∑

j=

{


(j+)l c
(

x
(j+)l

)
–


jl c

(
x

jl

)}∣
∣∣
∣∣

≤ max

{∣∣
∣∣


(j+)l c

(
x

(j+)l

)
–


jl c

(
x

jl

)∣∣
∣∣ :  ≤ i < n

}

≤ max

{∣
∣∣
∣




∣
∣∣
∣

jl+ l–


F
(

x

jl+ l+


,
x

jl+ l+


)
:  ≤ j < n

}
. (.)
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Applying (.) and letting n → ∞ in inequality (.), we find that inequality (.) holds.
Using (.), (.) and (.), for all x, y ∈X

∗, we have

∣∣�C(x, y)
∣∣ = lim

n→∞

∣
∣∣
∣




∣
∣∣
∣

ln∣∣∣
∣�c

(
x

ln ,
y

ln

)∣
∣∣
∣ ≤ lim

n→∞

∣
∣∣
∣




∣
∣∣
∣

ln

F
(

x
ln ,

y
ln

)
= .

Thus, the mapping C satisfies (.) and hence it is a reciprocal-cubic mapping. In order to
prove the uniqueness of C, let us consider another reciprocal-cubic mapping C′ : X∗ −→Y

satisfying (.). Then

∣
∣C(x) – C′(x)

∣
∣

= lim
m→∞

∣
∣∣
∣




∣
∣∣
∣

lm∣
∣∣
∣C

(
x

lm x
)

– C′
(

x
lm

)∣
∣∣
∣

≤ lim
m→∞

∣∣
∣∣




∣∣
∣∣

lm

max

{∣∣
∣∣C

(
x

lm

)
– c

(
x

lm

)∣∣
∣∣,

∣∣
∣∣c

(
x

lm

)
– C′

(
x

lm

)∣∣
∣∣

}

≤ lim
m→∞ lim

n→∞ max

{
max

{∣∣∣
∣




∣∣∣
∣

(j+m)l+ l–


F
(

x

(j+m)l+ l+


,
x

(j+m)l+ l+


)
: m ≤ j ≤ n + m

}}

= 

for all x ∈X
∗, which shows that C is unique. This finishes the proof. �

From now on, we assume that || < . The following corollaries are immediate conse-
quences of Theorem . concerning the stability of (.).

Corollary . Let ε >  be a constant. If c : X∗ −→ Y satisfies |�c(x, y)| ≤ ε for all x, y ∈
X

∗, then there exists a unique reciprocal-cubic mapping C : X∗ −→ Y satisfying (.) and
|c(x) – C(x)| ≤ ε for all x ∈X

∗.

Proof Defining F(x, y) = ε and applying Theorem . for the case l = –, we get the desired
result. �

Corollary . Let ε ≥  and r �= – be fixed constants. If c : X∗ −→Y satisfies |�c(x, y)| ≤
ε(|x|r + |y|r) for all x, y ∈X

∗, then there exists a unique reciprocal-cubic mapping C : X∗ −→
Y satisfying (.) and

∣∣c(x) – C(x)
∣∣ ≤

⎧
⎨

⎩

ε
||r |x|r , r > –,

ε|||x|r , r < –

for all x ∈ X
∗.

Proof The result follows immediately from Theorem . by taking F(x, y) = ε(|x|r + |y|r). �

Corollary . Let c : X∗ −→ Y be a mapping, and let there exist real numbers p, q,
r = p + q �= – and ε ≥  such that |�c(x, y)| ≤ ε|x|p|y|q for all x, y ∈ X

∗. Then there ex-
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ists a unique reciprocal-cubic mapping C : X∗ −→Y satisfying (.) and

∣∣c(x) – C(x)
∣∣ ≤

⎧
⎨

⎩

ε
||r |x|r , r > –,

ε||||x|r , r < –

for all x ∈ X
∗.

Proof The required result is obtained by choosing F(x, y) = ε|x|p|y|q for all x, y ∈ X
∗ in

Theorem .. �

Corollary . Let ε ≥  and r �= – be real numbers and c : X∗ −→Y be a mapping satis-
fying the functional inequality

∣∣�c(x, y)
∣∣ ≤ ε

(|x| r
 |y| r

 +
(|x|r + |y|r))

for all x, y ∈X
∗. Then there exists a unique reciprocal-cubic mapping C : X∗ −→ Y satisfy-

ing (.) and

∣∣c(x) – C(x)
∣∣ ≤

⎧
⎨

⎩

ε
||r |x|r , r > –,

ε|||x|r , r < –

for all x ∈ X
∗.

Proof Considering F(x, y) = ε(|x| r
 |y| r

 + (|x|r + |y|r)) in Theorem ., one can find the re-
sult. �

We have the following result which is analogous to Theorem . for the functional equa-
tion (.). We include the proof for the sake of completeness.

Theorem . Let l ∈ {, –} be fixed, and let G : X∗ × X
∗ −→ [,∞) be a mapping such

that

lim
n→∞

∣∣
∣∣




∣∣
∣∣

ln

G
(

x

ln+ l+


,
y

ln+ l+


)
=  (.)

for all x, y ∈X
∗. Suppose that q : X∗ −→Y is a mapping satisfying the inequality

∣
∣�q(x, y)

∣
∣ ≤ G(x, y) (.)

for all x, y ∈ X
∗. Then there exists a unique reciprocal-quartic mapping Q : X∗ −→ Y such

that

∣∣q(x) – Q(x)
∣∣ ≤ sup

{∣∣∣
∣




∣∣∣
∣

jl+ l–


F
(

x

jl+ l+


,
x

jl+ l+


)
: j ∈ N∪ {}

}
(.)

for all x ∈ X
∗.
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Proof Replacing (x, y) by (x, x) in (.), we get
∣∣
∣∣q(x) –


l q

(
x
l

)∣∣
∣∣ ≤ || |l–|

 G
(

x

 l+


,
x

 l+


)
(.)

for all x ∈X
∗. Switching x into x

ln in (.) and multiplying by | 
 |ln, we arrive at

∣∣
∣∣


ln c

(
x

ln

)
–


(n+)l c

(
x

(n+)l

)∣∣
∣∣ ≤

∣∣
∣∣




∣∣
∣∣

ln+ l–


G
(

x

ln+ l+


,
x

ln+ l+


)
(.)

for all x ∈ X
∗. Relations (.) and (.) imply that { 

ln q( x
ln )} is a Cauchy sequence. Due

to the completeness of Y, there is a mapping Q : X∗ −→ Y so that

Q(x) = lim
n→∞


ln q

(
x

ln

)
(.)

for all x ∈X
∗. The rest of the proof is similar to the proof of Theorem .. �

Here, we bring some corollaries regarding the stability of functional equation (.) which
are a direct consequence of Theorem ..

Corollary . Let δ >  be a constant, and let q : X∗ −→ Y satisfy |�q(x, y)| ≤ δ for all
x, y ∈ X

∗. Then there exists a unique reciprocal-quartic mapping Q : X∗ −→ Y satisfying
(.) and |q(x) – Q(x)| ≤ δ for all x ∈X

∗.

Proof It is enough to put G(x, y) = δ in Theorem . when l = –. �

Corollary . Let δ ≥  and α �= – be fixed constants. If q : X∗ −→Y satisfies |�q(x, y)| ≤
δ(|x|α + |y|α) for all x, y ∈ X

∗, then there exists a unique reciprocal-quartic mapping
Q : X∗ −→ Y satisfying (.) and

∣∣q(x) – Q(x)
∣∣ ≤

⎧
⎨

⎩

δ
||α |x|α , α > –,

δ|||x|α , α < –

for all x ∈ X
∗.

Proof Considering G(x, y) = δ(|x|α + |y|α) for all x, y ∈ X
∗ in Theorem ., we reach the

result. �

Corollary . Let q : X∗ −→ Y be a mapping, and let there exist real numbers a, b,
α = a + b �= – and δ ≥  such that

∣∣Dq(x, y)
∣∣ ≤ δ|x|a|y|b

for all x, y ∈X
∗. Then there exists a unique reciprocal-quartic mapping Q : X∗ −→Y satis-

fying (.) and

∣∣q(x) – Q(x)
∣∣ ≤

⎧
⎨

⎩

δ
||α |x|α , α > –,

δ|||x|α , α < –

for all x ∈ X
∗.
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Proof Choosing G(x, y) = δ|x|α|y|α in Theorem ., one can derive the desired result. �

Corollary . Let δ ≥  and α �= – be real numbers and q : X∗ −→ Y be a mapping
satisfying the functional inequality

∣
∣Dq(x, y)

∣
∣ ≤ δ

(|x| α
 |y| α

 +
(|x|α + |y|α))

for all x, y ∈X
∗. Then there exists a unique reciprocal-quartic mapping Q : X∗ −→Y satis-

fying (.) and

∣
∣q(x) – Q(x)

∣
∣ ≤

⎧
⎨

⎩

δ
||α |x|α , α > –,

δ|||x|α , α < –

for all x ∈ X
∗.

Proof The proof follows immediately by taking G(x, y) = δ(|x| α
 |y| α

 + (|x|α + |y|α)) in The-
orem .. �

4 Related examples
In this section, applying the idea of the well-known counter-example provided by Gajda
[], we show that Corollary . for r = – and Corollary . for α = – do not hold in R

with usual | · |. Note that (R, | · |) is an Archimedean field.
Consider the function

ϕ(x) =

⎧
⎨

⎩

δ

x for x ∈ (,∞),

δ, otherwise,
(.)

where ϕ : R∗ −→ R. Let f : R∗ −→ R be defined by

f (x) =
∞∑

n=

–nϕ
(
–nx

)
(.)

for all x ∈R
∗.

Theorem . If the function f : R∗ −→R defined in (.) satisfies the functional inequality

∣∣�f (x, y)
∣∣ ≤ δ


(|x|– + |y|–) (.)

for all x, y ∈ X, then there do not exist a reciprocal-cubic mapping c : R∗ −→ R and a con-
stant μ >  such that

∣
∣f (x) – c(x)

∣
∣ ≤ μ|x|– (.)

for all x ∈ R
∗.
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Proof First, we are going to show that f satisfies (.). By computation, we have

∣
∣f (x)

∣
∣ =

∣
∣∣∣
∣

∞∑

n=

–nϕ
(
–nx

)
∣
∣∣∣
∣
≤

∞∑

n=

δ

n =
δ


.

Therefore, we see that f is bounded by δ
 on R. If |x|– + |y|– ≥ , then the left-hand

side of (.) is less than δ
 . Now, suppose that  < |x|– + |y|– < . Hence, there exists a

positive integer k such that


k+ ≤ |x|– + |y|– <


k . (.)

Thus, relation (.) requires k(|x|– + |y|–) <  or, equivalently, kx– < , ky– < .
So, x

k > , y

k > . The last inequalities imply that x

k– >  > , y

k– >  > ; and con-
sequently,


k– (x) > ,


k– (y) > ,


k– (x + y) > ,


k– (x + y) > .

Therefore, for each value of n = , , , . . . , k – , we obtain


n (x) > ,


n (y) > ,


n (x + y) > ,


n (x + y) > 

and �ϕ(–nx, –ny) =  for n = , , , . . . , k –. Using (.) and the definition of f , we obtain

∣∣�f (x, y)
∣∣ ≤

∞∑

n=k

δ

n +
∞∑

n=k

δ

n +




∞∑

n=k

δ

n ≤ δ

∞∑

n=k


n +

δ



∞∑

n=k


n

≤ δ




k

(
 –




)–

≤ δ




k ≤ δ




k+ ≤ δ


(|x|– + |y|–)

for all x, y ∈ R
∗. Therefore, inequality (.) holds. We claim that the reciprocal-cubic func-

tional equation (.) is not stable for r = – in Corollary .. Assume that there exists a
reciprocal-cubic mapping c : R∗ −→R satisfying (.). Therefore,

∣
∣f (x)

∣
∣ ≤ (μ + )|x|–. (.)

However, we can choose a positive integer m with mδ > μ + . If x ∈ (, m–), then –nx ∈
(,∞) for all n = , , , . . . , m – , and thus

∣
∣f (x)

∣
∣ =

∞∑

n=

ϕ(–nx)
n ≥

m–∑

n=

nδ

x

n =
mδ

x > (μ + )x–,

which contradicts (.). This completes the proof. �

Now, we consider the function φ : R∗ −→R defined via

φ(x) =

⎧
⎨

⎩

λ

x for x ∈ (,∞),

λ, otherwise.
(.)
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Also, let g : R∗ −→R be defined by

g(x) =
∞∑

n=

–nφ
(
–nx

)
(.)

for all x ∈ R
∗. In analogy with Theorem ., we show that Corollary . does not hold for

α = – in R with usual | · |.

Theorem . If the function g : R∗ −→ R defined in (.) satisfies the functional inequality

∣
∣�g(x, y)

∣
∣ ≤ λ


(|x|– + |y|–) (.)

for all x, y ∈ X, then there do not exist a reciprocal-quartic mapping q : R∗ −→ R and a
constant β >  such that

∣∣g(x) – q(x)
∣∣ ≤ β|x|– (.)

for all x ∈ R
∗.

Proof Let us first prove that g satisfies (.).

∣∣g(x)
∣∣ =

∣∣
∣∣
∣

∞∑

n=

–nφ
(
–nx

)
∣∣
∣∣
∣
≤

∞∑

n=

λ

n =
λ


.

Hence, we find that g is bounded by λ
 on R. If |x|– + |y|– ≥ , then the left-hand side

of (.) is less than λ
 . Now, suppose that  < |x|– + |y|– < . Then there exists a positive

integer m such that


m+ ≤ |x|– + |y|– <


m .

By arguments similar to those in Theorem ., the relation |x|– + |y|– < 
m implies


m– (x) > ,


m– (y) > ,


m– (x + y) > ,


m– (x – y) > .

Therefore, for any n = , , , . . . , m – , we get


n (x) > ,


n (y) > ,


n (x + y) > ,


n (x – y) > 

and �φ(–nx, –ny) =  for n = , , , . . . , m – . Using (.) and the definition of g , we find

∣∣�g(x, y)
∣∣ ≤

∞∑

n=m

λ

n +
∞∑

n=m

λ

n +



∞∑

n=k

λ

n ≤ λ

∞∑

n=m


n +

λ



∞∑

n=m


n

≤ λ




m

(
 –




)–

≤ λ




m ≤ λ




k+

≤ λ


(|x|– + |y|–)
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for all x, y ∈ R
∗. This shows that inequality (.) holds. Here, we prove that the reciprocal-

quartic functional equation (.) is not stable for α = – in Corollary .. Assume that
there exists a reciprocal-quartic mapping q : R∗ −→R satisfying (.). Hence

∣
∣g(x)

∣
∣ ≤ (β + )|x|–. (.)

On the other hand, we can choose a positive integer k with kλ > β + . If x ∈ (, k–), then
–nx ∈ (,∞) for all n = , , , . . . , k – , and so

∣
∣g(x)

∣
∣ =

∞∑

n=

φ(–nx)
n ≥

k–∑

n=

nλ

x

n =
kλ

x > (β + )x–,

which contradicts (.). Therefore, the reciprocal-quartic functional equation (.) is not
stable in the case α = – in Corollary . for (R, | · |). �
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