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Abstract
In this paper, the input-to-state stability for coupled control systems is investigated.
A systematic method of constructing a global Lyapunov function for the coupled
control systems is provided by combining graph theory and the Lyapunov method.
Consequently, some novel global input-to-state stability principles are given. As an
application to this result, a coupled Lurie system is also discussed. By constructing an
appropriate Lyapunov function, a sufficient condition ensuring input-to-state stability
of this coupled Lurie system is established. Two examples are provided to
demonstrate the effectiveness of the theoretical results.
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1 Introduction
In recent years, coupled control systems (CCSs) have received considerable attention for
their interesting characteristics from the mathematical point of view. The main interest
has been focused on the investigation of the global dynamics of the systems, with a spe-
cial emphasis on the study of stability. Meanwhile, input-to-state stability (ISS) for control
systems has been extensively studied due to a wide range of applications in physics, biol-
ogy, social science, neural networks, engineering fields, and artificial complex dynamical
systems. For example, Sontag and Wang [] showed the importance of the well-known
Lyapunov sufficient condition for ISS and provided additional characterizations of the ISS
property, including one in terms of nonlinear stability margins. Grüne [] presented a
new variant of the ISS property which is based on a one-dimensional dynamical system,
showed the relation to the original ISS formulation, and described the characterizations
by means of suitable Lyapunov functions. In [], Angeli presented a framework for under-
standing such questions fully compatible with the well-known ISS approach and discussed
applications of the newly introduced stability notions. In [], Arcak and Teel analyzed ISS
for the feedback interconnection of a linear block and a nonlinear element.

As far as we know, there are a lot of papers dealing with the ISS of individual control
systems but few papers dealing with the ISS of CCSs. In general, the study of ISS for CCSs
is complex, because it is very difficult to straightly construct an appropriate Lyapunov
function for CCSs. However, in [], Li and Shuai studied the global-stability problem of
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equilibrium and developed a systematic approach that allows one to construct global Lya-
punov functions for large-scale coupled systems from building blocks of individual vertex
systems. Later, this technique was appropriately developed and extended to some other
coupled systems. In [–] several delayed coupled systems were discussed, and some suf-
ficient conditions were obtained. Li et al. in [–] investigated the stochastic stability of
coupled systems with both white noise and color noise. Moreover, by using this technique,
Su et al. derived sufficient conditions ensuring global stability of discrete-time coupled sys-
tems [, ], and Zhang et al. extended this technique to multi-dispersal coupled systems
[]. Besides, this technique is also applied to many practical applications, such as biolog-
ical systems [–], neural networks [, ], and mechanical systems [–]. Hence,
the graph theory is a great method in the study of coupled systems.

Motivated by the above discussions, in this paper, we investigate the ISS of CCSs. A sys-
tematic method of constructing a global Lyapunov function for the CCSs is provided by
combining graph theory and the Lyapunov method. Consequently, some novel global sta-
bility principles are given. As an application to this result, a coupled Lurie system is also
discussed. By constructing an appropriate Lyapunov function, a sufficient condition en-
suring the ISS of this coupled Lurie system is established. Finally, two examples and their
numerical simulations are provided to demonstrate the effectiveness and correctness of
the theoretical results.

The rest of the paper is organized as follows. In Section , some preliminaries and the
problem description are presented. In Section , the main theorems and their rigorous
proofs are described. Finally, in Section , an application to a coupled Lurie system is
given, and the respective simulations are also given to demonstrate the effectiveness of
our results.

2 Preliminaries and model formulation
Throughout the paper, unless otherwise specified, the following notations will be used. As
we usually use, Rn denotes the n-dimensional Euclidean space. Notations R


+ = [, +∞),

Z
+ = {, , . . .}, L = {, , . . . , l}, n =

∑l
i= ni, and m =

∑l
i= mi for ni, mi ∈ Z

+ are used. For
any x ∈ R

n, xT is its transpose and |x| is its Euclidean norm. Let Rn×n denote the set of
n × n real matrix space. For a matrix P, P ≥  (≤ ) means that P is positive semi-definite
(negative semi-definite). The symbol ψ ◦ ψ stands for the composition of two functions
ψ and ψ. The gradient function of a function f is indicated by �f . In an m-dimensional
space, the symbol Lm∞ indicates the set of all the functions which are endowed with essen-
tial supremum norm ‖u‖ = sup{|u(t)| | t ≥ } ≤ ∞.

We recall some knowledge of graph theory that will be used in the rest of the paper.
Define a weighted digraph G = {V , E, A}, in which set V = {v, v, . . . , vl} denotes l vertices
of the graph, element eij of E denotes the arc leading from initial vertex j to terminal vertex
i, and the element aij of a weighted adjacency matrix A denotes the weight of arc eij. We
denote aij >  if and only if there exists an arc from vertex i to vertex j in G , otherwise aij =
, and we denote aii =  for all i ∈ L. Denote the digraph with weight matrix A as (G, A). If a
graphS has the same vertex asG , we call it a subgraph ofG . The weight W (S) of a subgraph
S is the product of the weights on all its arcs. If a connected subgraph has no cycle, it is
a tree. We call vi the root of the tree if vertex i of the tree is not a terminal vertex of any
arcs and each of the remaining vertices is a terminal vertex of one arc. A subgraph Q is
unicyclic when it is a disjoint union of rooted trees whose roots form a directed cycle. The



Qiao et al. Advances in Difference Equations  (2017) 2017:129 Page 3 of 15

Laplacian matrix of G is defined as L = (bij)l×l , where bij = –aij for i 	= j and bij =
∑

k 	=i aik

for i = j.
The following lemma will be used in the proof of our main results.

Lemma  ([]) Assume l ≥ . Then the following identity holds:

l∑

i,j=

ciaijFij(xi, xj) =
∑

Q∈Q
W (Q)

∑

(s,r)∈E(CQ)

Frs(xr , xs).

Here Fij(xi, xj) are arbitrary functions for any  ≤ i, j ≤ l, aij are elements of matrix A, Q is
the set of all spanning unicyclic graphs of (G, A), W (Q) is the weight of Q, and CQ denotes
the directed cycle of Q. And ci denotes the cofactor of the ith diagonal element of L, in
particular, if (G, A) is strongly connected, then ci >  for  ≤ i ≤ l.

In the remainder of this section, we shall give the model formulation and state some
definitions that will be used in the main results.

Given a digraph (G, A) with l vertices (l ≥ ) and A = (aij)l×l . A coupled control system
can be constructed on (G, A) by assigning each vertex its own dynamics and then coupling
these vertex dynamics based on directed arcs in (G, A). The details are as follows. Assume
that the ith vertex dynamic is described by the control system

ẋi(t) = fi
(
xi(t), ui

)
, t ≥ ,

where xi ∈R
ni denotes the value of vertex i, fi : Rni ×R

mi →R
ni is continuously differen-

tiable and satisfies fi(, ) = , function ui : R
+ → R

mi denotes the input of vertex i and it
is measurable and locally essentially bounded. Assume that aij ≥  represents the effect
factor from vertex j to vertex i and aij =  iff there exists no arc from j to i. Then we use
function Pij to describe the effect that subsystem j has on i and Pij : Rni ×R

nj ×R
mj →R

ni

is continuously differentiable and satisfies Pij(, , ) = . For example, in a digraph with
six vertices, we show the interaction in vertex j and vertex i (see Figure ).

Figure 1 A coupled control system on a digraph
with six vertices.
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Then coupling the vertex systems together, we obtain the following coupled control sys-
tem:

ẋi(t) = fi
(
xi(t), ui

)
+

l∑

j=

aijPij
(
xi(t), xj(t), uj

)
, i ∈ L, t ≥ . ()

Here we use x = (xT
 , xT

 , . . . , xT
l )T ∈ R

n to stand for the vector of state variables of (), and
denote by x(t) = x(t, x, u) the solution of CCS () with initial state x = x() and input
u = (uT

 , uT
 , . . . , uT

l )T ∈ Lm∞.
To be more precise, we recall some definitions on the ISS of CCS (). We refer to [, ]

for definitions as follows.

Definition  A function γ : R
+ → R


+ is a K-function if it is continuous, strictly increas-

ing, and γ () = . If a K-function satisfies γ (s) → ∞ as s → ∞, we call it K∞-function.
A function β : R

+ × R

+ → R


+ is a Kφ-function if the function β(·, t) is a K-function for

each fixed t ≥  , and for each fixed s ≥ , β(s, t) is decreasing to zero as t → ∞.

Definition  CCS () is called ISS if there exist a Kφ-function β : R
+ × R


+ → R


+ and a

K-function γ such that for each input u ∈ Lm∞ and x ∈R
n, it holds that

∣
∣x(t, x, u)

∣
∣ ≤ β

(|x|, t
)

+ γ
(‖u‖). ()

In the proof of our main results, we need to find a global ISS-Lyapunov function for
CCS (). For the convenience of the proof, we now define vertex ISS-Lyapunov functions
for CCS ().

Definition  Set {Vi(xi), i ∈ L} is called a vertex ISS-Lyapunov function set for CCS () if
every Vi(xi) is smooth and satisfies the following conditions:

Q. There exist positive constants αi, δi, p ≥ , such that

αi|xi|p ≤ Vi(xi) ≤ δi|xi|p, xi ∈ R
ni .

Q. There exist constants ξi, dij ≥ , functions Fij(xi, xj), and K-function χi such that
for any xi ∈R

ni and μi ∈ R
mi satisfying

∑l
i= ciδi|xi|p ≥ ∑l

i= ciδi|χi(|μi|)|p, where
D = (dij)l×l and ci is the cofactor of the ith diagonal element of Laplacian matrix of
(G, D). Then we have

V̇i
(
xi(t)

) ≤ –ξi
∣
∣xi(t)

∣
∣p +

l∑

j=

dijFij
(
xi(t), xj(t)

)
,

in which

V̇i
(
xi(t)

)
= �Vi

(
xi(t)

)
[

fi
(
xi(t), ui

)
+

l∑

j=

aijPij
(
xi(t), xj(t), uj

)
]

.

Q. Along each directed cycle CQ of weighted digraph (G, D), there is
∑

(s,r)∈E(CQ)

Frs(xr , xs) ≤ .
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3 Main results
In this section, the ISS of CCS () will be investigated. The approaches used in the proof
of the main results are motivated by [, ].

Theorem  If CCS () admits a vertex ISS-Lyapunov function set {Vi(xi), i ∈ L}, and di-
graph (G, D) is strongly connected, then the solution of CCS () is ISS.

Proof In order to prove the conclusion, we need to find a K-function γ (·) and a Kφ func-
tion β(·, ·) satisfying

∣
∣x(t, x, u)

∣
∣ ≤ β

(|x|, t
)

+ γ
(‖u‖) ()

for x ∈ R
n and u ∈R

m.
Let

V (x) =
l∑

i=

ciVi(xi),

in which ci is the cofactor of the ith diagonal element of Laplacian matrix of (G, D).
Consider a set: S = {η : V (η) ≤ b}, where b =

∑l
i= ciδi|χi(|ui|)|p. We can assert that if

there exists t ≥  making x(t) ∈ S, then x(t) ∈ S for all t ≥ t. Suppose that this is not true,
then there exist t > t and ε >  such that V (x(t)) > b + ε. We observe from condition Q
that

l∑

i=

ciδi
∣
∣χi

(|ui|
)∣
∣p ≤ V

(
x(t)

) ≤
l∑

i=

ciδi
∣
∣xi(t)

∣
∣p. ()

Let τ = inf{t ≥ t : V (x(t)) ≥ b + ε}. From conditions Q and Q, we can obtain

V̇
(
x(t)

)
=

l∑

i=

ciV̇i
(
xi(t)

)

≤ –
l∑

i=

ciξi
∣
∣xi(t)

∣
∣p +

l∑

i,j=

cidijFij
(
xi(t), xj(t)

)

= –
l∑

i=

ciξi
∣
∣xi(t)

∣
∣p +

∑

Q∈Q

W (Q)
∑

(s,r)∈E(CQ)

Frs
(
xr(t), xs(t)

)

≤ –
l∑

i=

ciξi
∣
∣xi(t)

∣
∣p

≤ .

Therefore, V (x(t)) ≥ V (x(τ )) for some t in (t, τ ). This contradicts the minimality of τ , and
hence x(t) ∈ S for all t ≥ t.

Now let t = inf{t ≥ ; x(t) ∈ S} ≤ ∞, then it follows from the above argument that

V
(
x(t)

) ≤
l∑

i=

ciδi
∣
∣χi

(|ui|
)∣
∣p, t ≥ t.
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This implies that

l∑

i=

ciαi
∣
∣xi(t)

∣
∣p ≤ V

(
x(t)

) ≤
l∑

i=

ciδi
∣
∣χi

(|ui|
)∣
∣p.

Denote

χ
(‖u‖) =

(

δ

l∑

i=

ciδi
∣
∣χi

(‖u‖)∣∣p
) 

p

,

in which δ >  is a certain constant. For simplicity, we write

α =

{ l∑

i=

αi

}– p
 (

min
i∈L

{ciαi}
) p

 ,

then it is easy to see from condition Q that for t ≥ t,

V
(
x(t)

)
=

l∑

i=

ciVi
(
xi(t)

)

≤
l∑

i=

ciδi
∣
∣χi

(‖ui‖
)∣
∣p

≤
l∑

i=

ciδi
∣
∣χi

(‖u‖)∣∣p

= δ
∣
∣χ

(‖u‖)∣∣p

and

V
(
x(t)

)
=

l∑

i=

ciVi
(
xi(t)

)

≥
l∑

i=

ciαi
∣
∣xi(t)

∣
∣p

=
l∑

j=

cjαj

l∑

i=

[
ciαi

∑l
k= ckαk

∣
∣xi(t)

∣
∣

p


]

≥
l∑

j=

cjαj

[ l∑

i=

ciαi
∑l

k= ckαk

∣
∣xi(t)

∣
∣

] p


≥
{ l∑

i=

αi

}– p
 (

min
i∈L

{ciαi}
) p

 ∣
∣x(t)

∣
∣p.

Hence α|x(t)|p ≤ V (x(t)) ≤ δ|χ (‖u‖)|p.
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Since the digraph is strongly connected, it implies that ci > , and then α > , δ > . Thus
if we let γ (‖u‖) = (δ/α)


p χ (‖u‖), we can obtain

∣
∣x(t)

∣
∣ ≤ γ

(‖u‖), t ≥ t. ()

For t < t, we have x(t) ∈̄ S, which implies that
∑l

i= ciδi|xi(t)|p ≥ ∑l
i= ciδi|χi(|μi|)|p. Con-

sequently, from condition Q, we can derive

V̇
(
x(t)

) ≤ –
l∑

i=

ciξi
∣
∣xi(t)

∣
∣p +

l∑

i,j=

cidijFij
(
xi(t), xj(t)

)

≤ –
l∑

i=

ciξi

(
Vi(xi(t))

αi

)

≤ – min
i∈L

{
ciξi

αi

} l∑

i=

Vi
(
xi(t)

)

= –ξV
(
x(t)

)
,

where ξ = mini∈L{ciξi/αi}. The proof of Theorem  in [] implies that there exists some
Kφ-function β such that V (x(t)) ≤ β(V (x), t) for all t ≤ t. And letting δ =

∑l
i= ciδi,

we can obtain from condition Q that

V (x) =
l∑

i=

ciVi
(
xi()

) ≤
l∑

i=

ciδi
∣
∣xi()

∣
∣p ≤

l∑

i=

ciδi|x|p = δ|x|p.

Therefore

∣
∣x(t)

∣
∣ ≤ β

(|x|, t
)
, ()

where β(r, t) = (β(δ|r|p, t)/α)

p .

From () and (), we can obtain |x(t)| ≤ β(|x|, t) + γ (‖u‖) for all t ≥ , that is, CCS ()
is ISS. �

In [], the ISS for individual nonlinear control system was investigated by Sontag and
Wang. Some classes of stability, like robust stability and weak robust stability for control
systems, were investigated and some sufficient conditions were established to guarantee
these stabilities. Motivated by [], we have the following results.

Theorem  Let the conditions in Theorem  hold. Then:
() CCS () is robustly stable.
() There exist Kφ-functions β, β and a K-function γ such that, for any x ∈R

n and
any input u ∈ Lm∞, it holds that

∣
∣x(t, x, u)

∣
∣ ≤ β

(|x|, t
)

+ β
(‖uT‖, t – T

)
+ γ

(∥
∥uT∥

∥
)

for any  ≤ T ≤ t, where uT denotes the input for CCSs () when t = T and uT is
defined by uT = u – uT .
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() For each ε > , there exists δ >  such that |x(t, x, u)| ≤ ε for all inputs u ∈ Lm∞ and
initial states x with |x| ≤ δ and ‖u‖ ≤ δ.

() There exists a K-function γ such that, for any r, ε > , there is T >  so that for every
input u ∈ Lm∞, it holds that |x(t, x, u)| ≤ ε + γ (‖u‖), whenever |x| ≤ r and t ≥ T .

() CCS () is weakly robustly stable.

4 An application to a coupled Lurie system
Now in order to illustrate the result of Theorem , let us apply this result to a coupled Lurie
system (CLS). The absolute stability problem, formulated by Lurie and coworkers in the
s, has been a well-studied and fruitful area of research.

Assume that each vertex dynamic is described by a feedback interconnection of a linear
block and a nonlinear element. To be simplified, xi(t) and yi(t) are denoted by xi and yi,
i = , , . . . , l. When a bounded input is set to every vertex system, it can be described as

ẋi = Aixi + Bi
(
–αi(yi) + ui

)
,

yi = Kixi,

where xi ∈R
ni , yi ∈R

mi , Ki ∈R
mi×ni , Ai ∈R

ni×ni is the personal state alteration matrix for
the ith vertex system, Bi ∈ R

ni×mi is the feedback and input effect matrix, ui denotes the
input of vertex i, and αi(·) : Rmi →R

mi is a feedback function. Let Dj ∈R
ni×nj describe the

effect that vertex system j has on i. Thus a CLS is obtained as follows:

ẋi = Aixi + Bi
(
–αi(yi) + ui

)
+

l∑

j=

Djxj,

yi = Kixi.

()

Before the main theorem, let us present some assumptions and two lemmas. The fol-
lowing fundamental assumptions for CLS () are given:

A: If (Ai, Ki) is detectable and there exists matrix Pi = PT
i ≥  satisfying

AT
i Pi + PiAi + l

(
PT

i Pi + DT
i Di

) ≤ , KT
i = PiBi. ()

A: If ϕi is a K∞-function, and for all yi ∈R
mi ,

|yi|ϕi
(|yi|

) ≤ yT
i αi(yi). ()

A: When |yi| ≥ μi, where μi > 

∣
∣αi(yi)

∣
∣ ≤ yT

i αi(yi). ()

The results in this section and their proofs are motivated by [].

Lemma  For CLS (), there exist a constant θi >  and a K∞-function ηi(·) satisfying

θi
(∣
∣αi(yi)

∣
∣ + |yi|

) ≤ yT
i αi(yi) ()
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when |yi| ≥ μi,

ηi
(|yi|

)|yi| + ηi
(∣
∣αi(yi)

∣
∣
)∣
∣αi(yi)

∣
∣ ≤ yT

i αi(yi) ()

when |yi| ≤ μi.

The proof of Lemma  can be seen in [].
Since it is complex to construct a vertex ISS-Lyapunov function for CLS (), we firstly

construct a section of the vertex ISS-Lyapunov function in the following lemma. And then
we give the entire vertex ISS-Lyapunov function for CLS () in the main theorem.

Lemma  Suppose that () satisfies assumptions A-A. Definite a function

σi(r) = εi

∫ r


min

{

,
√
z

,πi(z)
}

dz,

where the constant εi >  and the K-function πi(·) is to be specified. Let Si(xi) = σi(xT
i Qixi),

in which matrix QT
i = Qi >  satisfying

(Ai – JiKi)TQi + Qi(Ai – JiKi) + l
(
QT

i Qi + DT
i Di

) ≤ –I, ()

then there exists a K-function γi(·) satisfying

Ṡi(xi) ≤ –γi
(|xi|

)
+ yT

i αi(yi) + θi|ui| +
l∑

j=

Fij(xi, xj),

where Fij(xi, xj) = xT
j DT

j Djxj – xT
i DT

i Dixi.

Proof Rewrite CLS () as

ẋi = (Ai – JiKi)xi + Jiyi + Bi
(
–αi(yi) + ui

)
+

l∑

j=

Djxj, ()

where Ji is chosen so that Ai – JiKi is a Hurwitz matrix. By the construction of Si(·), it is
easy to see that Si(·) is positive definite and radially unbounded. Then we let k >  satisfy

 max
{∣
∣BT

i Qixi
∣
∣,

∣
∣JT

i Qixi
∣
∣
} ≤ k|xi|

for all  ≤ i ≤ l, and note from () that

Ṡi(xi) ≤ σ ′
i
(
xT

i Qixi
)
[

xT
i Qi

(

(Ai – JiKi)xi +
l∑

j=

Djxj

)

+ k|xi|
(∣
∣αi(yi)

∣
∣ + |yi| + |ui|

)
]

. ()

Because σ ′
i (z) ≤ εi/

√
z, we can find a constant ci > , independent of εi, so that σ ′

i (xT
i Qixi) ×

k|xi| ≤ ciεi for all xi ∈R
ni . And then we can obtain

Ṡi(xi) ≤ σ ′
i
(
xT

i Qixi
)
xT

i Qi

(

(Ai – JiKi)xi +
l∑

j=

Djxj

)

+ ciεi
(∣
∣αi(yi)

∣
∣ + |yi| + |ui|

)
.
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Because of


l∑

j=

xT
i QiDjxj

≤
l∑

j=

(
QT

i Qi|xi| + DT
j Dj|xj|

)

= lQT
i Qi|xi| + lDT

i Di|xi| +
l∑

j=

(
DT

j Dj|xj| – DT
i Di|xi|

)

= l
(
QT

i Qi + DT
j Dj

)|xi| +
l∑

j=

(
xT

j DT
j Djxj – xT

i DT
i Dixi

)

= l
(
xT

i QT
i Qixi + xT

i DT
i Dixi

)
+

l∑

j=

Fij(xi, xj),

where Fij(xi, xj) = xT
j DT

j Djxj – xT
i DT

i Dixi, we can get according to () that

Ṡi(xi) ≤ σ ′
i
(
xT

i Qixi
)
xT

i
(
(Ai – JiKi)TQi + Qi(Ai – JiKi) + l

(
QT

i Qi + DT
i Di

))
xi

+ ciεi
(∣
∣αi(yi)

∣
∣ + |yi| + |ui|

)
+

l∑

j=

Fij(xi, xj)

≤ –σ ′
i
(
xT

i Qixi
)|xi| + ciεi

(∣
∣αi(yi)

∣
∣ + |yi| + |ui|

)
+

l∑

j=

Fij(xi, xj). ()

• When |yi| ≥ μi, choosing εi = θi/ci and using (), we have

Ṡi(xi) ≤ –σ ′
i
(
xT

i Qixi
)|xi| + yT

i αi(yi) + θi|ui| +
l∑

j=

Fij(xi, xj). ()

• When |yi| ≤ μi, we denote by λi the maximum eigenvalue of Qi. Considering the two
cases |αi(yi)| ≤ |xi|/k and |xi| ≤ k|αi(yi)|, and using σ ′

i (z) ≤ πi(z), we can obtain

σ ′
i
(
xT

i Qixi
)
k|xi|

∣
∣αi(yi)

∣
∣ ≤ 


σ ′

i
(
xT

i Qixi
)|xi| + k∣∣αi(yi)

∣
∣

πi
(
λik∣∣αi(yi)

∣
∣). ()

Considering the two cases |yi| ≤ |xi|/k and |xi| ≤ k|yi|, we can denote

σ ′
i
(
xT

i Qixi
)
k|xi||yi| ≤ 


σ ′

i
(
xT

i Qixi
)|xi| + k|yi|πi

(
λik|yi|

)
. ()

We choose

πi(z) =


k ηi

(√
z

λik

)

,
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then substituting () and () into () yields

Ṡi(xi) ≤ –


σ ′

i
(
xT

i Qixi
)|xi| + ηi

(|yi|
)|yi| + ηi

(|αiyi|
)|αiyi|

+ θiui +
l∑

j=

Fij(xi, xj). ()

From (), (), it implies that

Ṡi(xi) ≤ –


σ ′

i
(
xT

i Qixi
)|xi| + yT

i αi(yi) + θi|ui| +
l∑

j=

Fij(xi, xj). ()

So, noting from () that σ ′
i (z) = ε/z for sufficiently large z, we can find a K∞-function γi(·)

such that



σ ′

i
(
xT

i Qixi
)|xi| ≥ γi

(|xi|
)

for all xi ∈R
ni . Thus it follows from () and () that, for all values of xi and ui,

Ṡi(xi) ≤ –γi
(|xi|

)
+ yT

i αi(yi) + θi|ui| +
l∑

j=

Fij(xi, xj). ()

The proof is complete. �

Theorem  If CLS () satisfies assumptions A, A and A, then it is ISS.

Proof Let Li(xi) = xT
i Pixi + σi(xT

i Qixi), and let Ri(xi) = xT
i Pixi, Ki = BT

i Pi, then ∇Ri = xT
i Pi.

It follows that

Ṙi(xi) = xT
i Pi

(

Aixi + Bi
(
–αi(yi) + ui

)
+

l∑

j=

Djxj

)

= xT
i PiAixi + 

l∑

j=

xT
i PiDjxj + xT

i PiBi
(
–αi(yi) + ui

)
,

in which

xT
i PiBi

(
–αi(yi) + ui

) ≤ –yT
i αi(yi) + yT

i ui

and


l∑

j=

xT
i PiDjxj

= lPT
i Pi|xi| +

l∑

j=

DT
j Dj|xj|
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= l
(
PT

i Pi + DT
j Dj

)|xi| +
l∑

j=

(
DT

j Dj|xj| – DT
i Di|xi|

)

= l
(
xT

i PT
i Pixi + xT

i DT
i Dixi

)
+

l∑

j=

Fij(xi, xj).

Noting that AT
i Pi + PiAi + l(PT

i Pi + DT
i Di) ≤ , we get

Ṙi(xi) ≤ –yT
i αi

(
yi + yT

i ui
)

+
l∑

j=

Fij(xi, xj).

Considering the two cases |ui| ≤ ϕi(|yi|)/ and |ui| ≥ ϕi(|yi|)/ and using (), we obtain the
inequality

yT
i ui ≤ |yi||ui| ≤ |yi|

∣
∣ϕi

(|yi|
)∣
∣ + (ϕi)–(|ui|

)|ui| ≤ yT
i αi(yi) + (ϕi)–(|ui|

)|ui|,

which results in

Ṙi(xi) ≤ –yT
i αi(yi) + ϕ–

i
(
|ui|

)|ui| +
l∑

j=

Fij(xi, xj).

From Lemma , we know Ṡi(xi) ≤ –γi(|xi|) + yT
i αi(yi) + θi|ui| +

∑l
j= Fij(xi, xj). Then we have

Li(xi) ≤ –γi
(|xi|

)
+ βi

(|ui|
)

+
l∑

j=

Fij(xi, xj)

with βi(|ui|) = δi|ui| + φ–
i (|ui|)|ui|. Then we can find ξi >  satisfying

L̇i(xi) ≤ –ξi|xi|p +
l∑

j=

Fij(xi, xj).

So we conclude that Li(xi) is a vertex ISS-Lyapunov function, then from Theorem , CLS
() is ISS. �

Remark  In recent years, Lurie systems have been studied by many researchers [, ].
Particularly, compared with [], the main differences are as follows.

(i) This paper considers a coupled Lurie system, which is more complicated.
(ii) This paper uses graph theory combining with the Lyapunov method to derive the

ISS of the considered system. This technique does not need us solving any linear
matrix inequality. Literature [] proposed Lyapunov-Krasovskii functionals which
contain an exponential multiplier to solve the stabilization of an indirect control
system.

(iii) In [], time delay was considered, which is our further work.

Finally, two examples with their numerical simulations are provided to illustrate our
results.
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Figure 2 Solution to coupled Lurie system (7)
with initial values (x11, x12, x21, x22, x31, x32)T =
(0.5, –1, –2, 2.5, –1.5, 2)T .

Example  Assume that there are three vertices and xi = (xi, xi)T ∈R
. We now take the

following coefficients for (), and then take some numerical simulation. Here,

Ai =

(
– 

 –

)

, Bi =

(



)

,

D =

(
 
 

)

, D =

(
 
 

)

, D =

(
 
 

)

.

And let the input function ui = , αi(yi) = iyi, i = , , . Moreover, we take ϕi(yi) = i
 yi and

μi =  for i = , , . It is clear that conditions A and A are satisfied. If we let

P =

(
 
 

)

, P =

(
 
 

)

, P =

(
 
 

)

,

by calculation, we get that condition A holds. Therefore, by Theorem , we derive that
() is ISS. The respective simulation results are shown in Figure , which conforms the
effectiveness of the developed results.

Example  We consider the ISS of a system described as follows:

ẋi = Aixi + Biyi +
∑

j=

Djxj,

ẏi = –Kixi – yi – φi(yi) – ui +
∑

j=

yj,

i = , , , ()

with the input function ui = Ci(xT
i , yi)T in which Ci is a matrix and xi = (xi, xi)T, function

φi(yi) = y
i , and there exist matrices PT

i = Pi ≥  such that

AT
i Pi + PiAi + 

(
PT

i Pi + DT
i Di

) ≤ ,

KT
i = PiBi,

i = , , . ()
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Figure 3 Solution to coupled Lurie system (23)
with initial values (x11, x12, y1, x21, x22, y2, x31, x32,
y3)T = (0.5, –1, 1.75, 2.5, –2, –0.78, 2, –1.5, 1.25)T .

To apply Theorem , we rewrite () as in (), with

Ai =

(
Ai Bi

–Ki –

)

, Bi =

(



)

, Pi =

(
Pi 
 

)

, Di =

(
Di 
 

)

and αi(yi) = yi + φi(yi). Then αi(yi) satisfies conditions A and A. And then, we let the
values of Ai, Bi, Di, Pi, i = , , , be the same as those in Example  and

C = C = C = (  ).

We can see that Ai, Bi, Pi, Di satisfy condition A because of (). So, we conclude that
system () is ISS. Figure  shows that the solution of system () is ISS.
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