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Abstract
This paper proposes the robust iterative learning control (ILC) design for uncertain
linear systems with time-varying delays and random packet dropouts. The packet
dropout is modeled by an arbitrary stochastic sequence satisfying the Bernoulli
binary distribution, which renders the ILC system to be stochastic instead of a
deterministic one. The main idea of this paper is to transform the ILC design into
robust stability for a two-dimensional (2D) stochastic system described by the
Roesser model with a delay varying in a range. A delay-dependent stability condition,
which can guarantee mean-square asymptotic stability of such a 2D stochastic
system, is derived in terms of linear matrix inequalities (LMIs), and formulas can be
given for the ILC law design. An example for the injection molding is given to
demonstrate the effectiveness of the proposed ILC method.

Keywords: iterative learning control; 2D stochastic system; time-varying delay;
packet dropout; robust design

1 Introduction
Iterative learning control (ILC) is an effective technique for systems that could perform
the same task over a finite time interval repetitively. It updates the control input signal only
depending on I/O data of previous iteration, and the tracking performance can become
better and better. Due to its simplicity and effectiveness, ILC has been widely applied in
many practical systems such as robotics, chemical batch processes, hard disk drives and
urban traffic systems [–].

Time delay, which is a source of instability and poor performance, often appears in prac-
tical systems due to the finite speed of signal transmission and information processing. As
a result, studies on batch process control have attracted considerable attention [–]. Re-
cently, ILC has been introduced to systems with time delays to improve the tracking per-
formance. In [], a new ILC method is proposed for a class of linear systems with time
delay using a holding mechanism. In [], an ILC algorithm integrated with Smith predic-
tor for batch processes with fixed time delay is proposed and analyzed in the frequency
domain; itcan obtain perfect tracking performance under certain conditions. In [], an
ILC scheme is proposed for systems with time delay and model uncertainties based on
the internal model control principle. In [], a two-dimensional (D) model based on ILC
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methods for systems both with state delays and with input delays is presented; necessary
and sufficient conditions for the stability of ILC are also provided. In [], the problem of
ILC design for time-delay systems in the presence of initial shifts is considered, and the
D system theory is employed to develop a convergence condition for both asymptotic
stability and monotonic convergence of ILC.

In these existing studies [–], the time delay considered is known and fixed constants.
As we know, many practical systems suffer from time-varying delays, which are less con-
servative than constant delays. It is a challenge to design ILC for systems with time-varying
delays. There have already been a few results on this issue. In [], a robust state feedback
integrated with ILC scheme is proposed for batch processes with interval time-varying
delay. The design is considered using a D Roesser model based on the general D system
theory []. In [], a robust closed-loop ILC scheme is proposed for batch processes with
state delay and time-varying uncertainties, and the batch processes are described as a D
FM model. In [], a robust output feedback incorporated with ILC scheme is proposed
for a kind of batch process with uncertainties and interval time-varying delay. The batch
process is transformed into a D FM model with a delay varying in a range, and the de-
sign is cast as a robust H∞ control for uncertain D systems. It is noticed that almost
all available results on ILC systems with time delays are based on an implicit assumption
that sensor output measurement is perfect. However, the assumption is often not true in
most cases in practice. The main reason is that sensors may suffer from probabilistic signal
missing especially in a networked environment [–].

Actually, the problem of ILC for networked control systems (NCSs) with packet
dropouts has received some attention in the research field. The stability of ILC for linear
and nonlinear systems with intermittent measurement is investigated in [, ]. Some
robust ILC designs are proposed for NCSs to suppress the effect of data dropouts in [–
]. However, to our best knowledge, no work considering ILC systems with data dropouts
and time delay simultaneously has been done up to now.

This paper proposes a robust ILC design scheme for uncertain linear systems with
time-varying delays and random packet dropouts. Here the considered systems are im-
plemented in a network environment, where data packet may be missed during transmis-
sion. For convenience, only the measurement packet dropout is taken into account. The
packet dropout is modeled by an arbitrary stochastic sequence satisfying the Bernoulli bi-
nary distribution, which renders the ILC system to be stochastic instead of a deterministic
one. Then, a D stochastic Roesser model with a delay varying in a range is established
to describe the entire dynamics. Based on D system theory, the ILC law is designed to
guarantee mean-square asymptotic stability of the considered D stochastic systems. Af-
terwards, a delay-dependent stability condition is derived in terms of linear matrix in-
equalities (LMIs), and formulas can be given for the ILC law design. Finally, an example
for the injection molding is given to demonstrate the effectiveness of the proposed ILC
method.

Throughout the present paper, the following notations are used. The superscript ‘T ’
denotes the matrix transposition, I denotes the identity matrix,  denotes the zero vector
or matrix with the required dimensions. diag{•} denotes the standard (block) diagonal
matrix whose off-diagonal elements are zero. In symmetric block matrices, an asterisk
∗ is used to denote the term that is induced by symmetry. The notation ‖ • ‖ refers to
the Euclidean vector norm, E{x}, E{x|y} mean the expectation of x and the expectation of
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x conditional on y, respectively. Matrices, if the dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2 Problem formulation and 2D system representation
Consider the following linear discrete time system with time-varying delay:

⎧
⎪⎨

⎪⎩

x(t + , k) = (A + �A)x(t, k) + (Ad + �Ad)x(t – d(t), k) + Bu(t, k),
y(t, k) = Cx(t, k),
x(, k) = xk ,

()

where k denotes iteration, t denotes discrete time. x(t, k), u(t, k), y(t, k) are state, input and
output variables, A, Ad, B, C are the matrices with appropriate dimensions describing the
system in the state space. xk stands for the initial condition of the process in the kth
iteration. d(t) is time-varying delay satisfying

dm ≤ d(t) ≤ dM,

where dm, dM denote the lower and upper delay bounds. �A,�Ad denote admissible un-
certain perturbations of matrices A and Ad , which can be represented as

�A = E�F, �Ad = E�F,

where E, F, F are known real constant matrices characterizing the structures of uncertain
perturbations, and � is an uncertain perturbation of the system that satisfies �T� ≤ I .

For system (), design the following ILC update law:

u(t, k + ) = u(t, k) + �u(t, k), ()

where �u(t, k) is the ILC update law to be designed.
Denote e(t, k) = yd(t) – y(t, k), η(t, k) = x(t – , k + ) – x(t – , k). From () and (), we can

obtain

[
η(t + , k)
e(t, k + )

]

= Ã

[
η(t, k)
e(t, k)

]

+ Ãd

[
η(t – d(t), k)
e(t, k – h(k))

]

+ B̄�u(t – , k), ()

where

Ã = Ā + �Ā, Ãd = (Ād + �Ād),

Ā =

[
A 

–CA I

]

, Ād =

[
Ad 

–CAd 

]

, B̄ =

[
B

–CB

]

,

�Ā = Ē�F̄, �Ād = Ē�F̄,

Ē =

[
E

–CE

]

, F̄ = [F ], F̄ = [F ],
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Figure 1 Schematic diagram of the ILC systems with data dropouts.

h(k) is a new delay variable satisfying hm ≤ h(k) ≤ hM with hm, hM denoting the lower and
upper delay bounds. The new vector e(t, k – h(k)) is introduced here as is also done in []
so that system () can be modeled as a normal D system with interval time delay.

Consider the following ILC update laws:

�u(t – , k) = K

[
x(t – , k + ) – x(t – , k)

e(t, k)

]

, ()

where K = [K, K] is a gain matrix to be designed. ILC law () contains two parts: a P-type
ILC law and a state feedback control law. This control scheme has the advantages of feed-
back loop such as robustness and meanwhile enjoys the extra performance improvement
from ILC.

It is assumed that the ILC law is implemented in a networked control system as shown
in Figure , where the network only exists on the side from plant to controller for conve-
nience. The data x(t, k + ), x(t, k), e(t, k) are transferred as one whole packet from the plant
to the controller. It is further supposed that the controller can detect whether the packet
is dropped or not. If the data packet is missed, then �u(t, k) = , that is, u(t, k + ) = u(t, k).
If the data packet is not missed, the term �u(t, k) is calculated as (). In this case, the ILC
update law () can be described as

�u(t – , k) = α(t, k)K

[
x(t – , k + ) – x(t – , k)

e(t, k)

]

, ()

where the stochastic parameter α(t, k) is a random Bernoulli variable taking the values of
 and  with

Prob
{
α(t, k) = 

}
= E
{
α(t, k)

}
= α,

E
{
α(t, k)

}
= α( – α),

()

in which α satisfying  ≤ α ≤  is a known constant.
From () and (), it can be derived

[
η(t + , k)
e(t, k + )

]

=
(
Ã + α(t, k)B̄K

)
[
η(t, k)
e(t, k)

]

+ Ãd

[
η(t – d(t), k)
e(t, k – h(k))

]

. ()
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Denote η(t, k) = xh(i, j), e(t, k) = xv(i, j), system () can be rewritten as the following typical
D Roesser system:

[
xh(i + , j)
xv(i, j + )

]

=
(
Ã + α(i, j)B̄K

)
[

xh(i, j)
xv(i, j)

]

+ Ãd

[
xh(i – d(i), j)
xv(i, j – h(j))

]

, ()

where the bounded conditions are defined by

xh(i, j) = ρij, ∀ ≤ j < r, –dM ≤ i < ,
xv(i, j) = σij, ∀ ≤ i < r, –hM ≤ j < ,
ρ = σ,

()

where r < ∞ and r < ∞ are positive integers, ρij and σij are given vectors.

Remark  It is worth pointing out that D system () is a stochastic system due to the
introduction of the stochastic variable α(i, j). It differs from the deterministic D or ILC
systems with time delay in recent works such as [–]. Here, the ILC design should be
discussed under the framework of stochastic stability. To this end, we need to give the
following definition of stochastic stability for D systems.

Definition  ([]) For all initial bound conditions in (), D system () is said to be mean-
square asymptotically stable if the following is satisfied:

lim
i+j→∞ E

{∥
∥x(i, j)

∥
∥} = .

3 Stability analysis and controller design
3.1 Stability analysis
In this section, we focus on the problem of robust stability and robust stabilization for D
stochastic system () using an LMI technique. The following lemma is needed in the proof
of our main result.

Lemma  ([]) For any vector δ(t) ∈ R
n, two positive integers κ,κ and matrix  < R ∈

R
n×n, the following inequality holds:

–(κ – κ + )
κ∑

t=κ

δT (t)Rδ(t) ≤ –
κ∑

t=κ

δT (t)R
κ∑

t=κ

δ(t).

Now, we can give our main result.

Theorem  Given positive integers dm, dM, hm, hM , D system () is mean-square asymp-
totically stable if there exists a positive definite symmetric matrix P =

[ Ph

Pv

]
, Q =

[Qh

Qv

]
,
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M =
[Mh

Mv

]
, and G =

[Gh

Gv

]
such that the following matrix inequality holds:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ  G (Ã + αB̄K )T P θ (B̄K )T P ((Ã + αB̄K )T – I)G θ (B̄K )T G
–Q ÃT

d P  ÃT
d G 

–M – G    
–P   

–P  
∗ –H–G

–H–G

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< ,

()

where

ψ = –P + M + DQ + Q – G, D =

[
(dM – dm)I 

 (hM – hm)I

]

,

H =

[
dMI 

 hMI

]

, θ = α( – α).

Proof Define α̃i,j = α(i, j) – α, it is obvious that

E{α̃i,j} = , E{α̃i,jα̃i,j} = α( – α).

Denote

xd(i, j) =

[
xh(i – d(i), j)
xv(i, j – h(j))

]

, xM(i, j) =

[
xh(i – dM, j)
xv(i, j – hM)

]

,

δh(r, j) = xh(r + , j) – xh(r, j), δv(i, t) = xv(i, t + ) – xv(i, t),

ϕ(i, j) =
[
xT (i, j) xT

d (i, j) xT
M(i, j)

]T ,

 (i, j) =
(
xh(i, j), xh(i – , j), . . . , xh(i – d(i), j

)
, xv(i, j), xv(i, j – ), . . . , xv(i, j – h(j)

))
.

Consider the following Lyapunov function candidate:

V
(
x(i, j)

)
= V h(xh(i, j)

)
+ V v(xv(i, j)

)
,

where

V h(xh(i, j)
)

=
∑

k=

V h
k
(
xh(i, j)

)
, V h


(
xh(i, j)

)
= xhT (i, j)Phxh(i, j),

V h

(
xh(i, j)

)
=

i–∑

r=i–d(i)

xhT (r, j)Qhxh(r, j), V h

(
xh(i, j)

)
=

i–∑

r=i–dM

xhT (r, j)Mhxh(r, j),

V h

(
xh(i, j)

)
=

–dm∑

s=–dM

i–∑

r=i+s

xhT (r, j)Qhxh(r, j),

V h

(
xh(i, j)

)
= dM

–∑

s=–dM

i–∑

r=i+s

δhT (r, j)Ghδh(r, j), ()
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V v(xv(i, j)
)

=
∑

k=

V v
k
(
xv(i, j)

)
, V v


(
xv(i, j)

)
= xvT (i, j)Pvxv(i, j),

V v

(
xv(i, j)

)
=

j–∑

t=j–h(j)

xvT (i, t)Qvxv(i, t), V v

(
xv(i, j)

)
=

j–∑

t=j–hM

xvT (i, t)Mvxv(i, t),

V v

(
xv(i, j)

)
=

–hm∑

s=–hM

j–∑

t=j+s

xvT (i, t)Qvxv(i, t),

V v

(
xv(i, j)

)
= hM

–∑

s=–hM

j–∑

t=j+s

δvT (i, t)Gvδv(i, t),

and Ph, Pv, Qh, Qv, Mh, Mv, Gh, Gv are positive definite matrices to be determined.
Define the following index:

J �= E
{
�V

(
x(i, j)

)| (i, j)
}

= E

{(
V h(xh(i + , j)) – V h(xh(i, j))
+V v(xv(i, j + )) – V v(xv(i, j))

)∣
∣
∣
∣ (i, j)

}

= E

{( ∑

k=

�V h
k
(
xh(i, j)

)
+

∑

k=

�V v
k
(
xv(i, j)

)
)∣
∣
∣
∣ (i, j)

}

. ()

Calculating () along the solutions of system (), we can obtain

E
{
�V h


(
xh(i, j)

)| (i, j)
}

= E
{

xhT (i + , j)Phxh(i + , j)| (i, j)
}

– xhT (i, j)Phxh(i, j), ()

E
{
�V h


(
xh(i, j)

)| (i, j)
}

= E

{( i∑

r=i+–d(i+)

xhT (r, j)Qhxh(r, j) –
i∑

r=i–d(i)

xhT (r, j)Qhxh(r, j)

)∣
∣
∣
∣ (i, j)

}

≤ E

{(

xhT (i, j)Qhxh(i, j) – xhT
d (i, j)Qhxh

d(i, j)

+
i–dm∑

r=i+–dM

xhT (r, j)Qhxh(r, j)

)∣
∣
∣
∣ (i, j)

}

, ()

E
{
�V h


(
xh(i, j)

)| (i, j)
}

= E
{(

xhT (i, j)Mhxh(i, j) – xhT
M (i, j)Mhxh

M(i, j)
)| (i, j)

}
, ()

E
{
�V h


(
xh(i, j)

)| (i, j)
}

= E

{(

(dM – dm)xhT (i, j)Qhxh(i, j) –
i–dm∑

r=i+–dM

xhT (r, j)Qhxh(r, j)

)∣
∣
∣
∣ (i, j)

}

, ()

E
{
�V h


(
xh(i, j)

)| (i, j)
}

= E

{(

d
MδhT (i, j)Ghδh(i, j) – dM

i–∑

r=i–dM

δhT (r, j)Ghδh(r, j)

)∣
∣
∣
∣ (i, j)

}

, ()
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and

E
{
�V v


(
xv(i, j)

)| (i, j)
}

= E
{

xvT (i, j + )Pvxv(i, j + )| (i, j)
}

– xvT (i, j)Pvxv(i, j), ()

E
{
�V v


(
xv(i, j)

)| (i, j)
}

= E

{( j∑

t=j+–d(j+)

xvT (i, t)Qvxv(i, t) –
j–∑

t=j–h(j)

xvT (i, t)Qvxv(i, t)

)∣
∣
∣
∣ (i, j)

}

≤ E

{(

xvT (i, j)Qvxv(i, j)xvT – xvT
d (i, j)Qvxv

d(i, j)

+
j–hm∑

t=j+–hM

xvT (i, t)Qvxv(i, t)

)∣
∣
∣
∣ (i, j)

}

, ()

E
{
�V v


(
xv(i, j)

)| (i, j)
}

= E
{(

xvT (i, j)Mvxv(i, j) – xvT
M (i, j)Mvxv

M(i, j)
)| (i, j)

}
, ()

E
{
�V v


(
xv(i, j)

)| (i, j)
}

= E

{(

(hM – hm)xvT (i, j)Qvxv(i, j) –
j–hm∑

t=j+–hM

xvT (i, t)Qvxv(i, t)

)∣
∣
∣
∣ (i, j)

}

, ()

E
{
�V v


(
xv(i, j)

)| (i, j)
}

= E

{(

h
MδvT (i, j)Gvδv(i, j) – hM

j–∑

t=j–dM

δvT (i, t)Gvδv(i, t)

)∣
∣
∣
∣ (i, j)

}

. ()

For () and (), using Lemma  yields

E
{
�V h


(
xh(i, j)

)| (i, j)
}

≤ E

{(

d
MδhT (i, j)Ghδh(i, j) –

i–∑

r=i–dM

δhT (r, j)Gh
i–∑

r=i–dM

δh(r, j)

)∣
∣
∣
∣ (i, j)

}

= E

{(
d

M(xh(i + , j) – xh(i, j))T Gh(xh(i + , j) – xh(i, j))
–(xh(i, j) – xh

M(i, j))T Gh(xh(i, j) – xh
M(i, j))

)∣
∣
∣
∣ (i, j)

}

, ()

and

E
{
�V v


(
xv(i, j)

)| (i, j)
}

≤ E

{(

h
MδvT (i, j)Gvδv(i, j) –

j–∑

t=j–dM

δvT (i, t)Gv
j–∑

t=j–dM

δv(i, t)

)∣
∣
∣
∣ (i, j)

}

= E

{(
h

M(xv(i, j + ) – xv(i, j))T Gv(xv(i, j + ) – xv(i, j))
–(xv(i, j) – xv

M(i, j))T Mv(xv(i, j) – xv
M(i, j))

)∣
∣
∣
∣ (i, j)

}

. ()
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Since α̃i,j is independent with x(i, j) and xd(i, j), we have

E
{(

xhT (i + , j)Phxh(i + , j)
)| (i, j)

}
+ E
{(

xvT (i, j + )Pvxv(i, j + )
)| (i, j)

}

= E

⎧
⎨

⎩

(
xh(i + , j)
xv(i, j + )

)T

P

(
xh(i + , j)
xv(i, j + )

)∣
∣
∣
∣ (i, j)

⎫
⎬

⎭

= E

⎧
⎪⎨

⎪⎩

[
x(i, j)
xd(i, j)

]T
⎛

⎜
⎝

⎡

⎢
⎣

(Ã + αB̄K)T θ (B̄K)T

ÃT
d 

 

⎤

⎥
⎦

[
P

P

][
(Ã + αB̄K) Ãd 

θ B̄K  

]
⎞

⎟
⎠

×
[

x(i, j)
xd(i, j)

]∣
∣
∣
∣ (i, j)

}

. ()

From ()-() and using the result in (), we can obtain

J ≤ E
{
ϕT (i, j)ψϕ(i, j)| (i, j)

}
,

where

ψ =

⎡

⎢
⎣

ψ  G
–Q 

∗ –M – G

⎤

⎥
⎦ + �T



[
P 
 P

]

� + �T


[
HG

HG

]

�, ()

and

� =

[
(Ã + αB̄K) Ãd 

θ B̄K  

]

, � =

[
(Ã + αB̄K) – I Ãd 

θ B̄K  

]

.

By using Schur complements, it is obvious that () is equivalent to (). Since ψ < , it
is obvious that

E
{(

V h(xh(i + , j)
)

– V h(xh(i, j)
)

+ V v(xv(i, j + )
)

– V v(xv(i, j)
))| (i, j)

}
< . ()

Taking mathematical expectation on both sides of () leads to

E
{

V h(xh(i + , j)
)

+ V v(xv(i, j + )
)}≤ E

{
V h(xh(i, j)

)
+ V v(xv(i, j)

)}
. ()

Summing up both sides of () from N to  with respect to i and  to N with respect to j,
for any nonnegative integer N and considering boundary conditions (), we have

E

{
V h(xh(, N)) + V v(xv(, N + )) + V h(xh(, N – ))

+V v(xv(, N)) + · · · + V h(xh(N + , )) + V v(xv(N , ))

}

=
∑

i+j=N+

E
{

V h(xh(i, j)
)}

+
∑

i+j=N+

E
{

V v(xv(i, j)
)}

=
∑

i+j=N+

E

{

V

([
xh(i, j)
xv(i, j)

])}
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≤ E

{

V

([
xh(, N)
xv(, N)

])

+ · · · + V

([
xh(N , )
xv(N , )

])}

=
∑

i+j=N

E

{

V

([
xh(i, j)
xv(i, j)

])}

. ()

It is clear that the sum of the Lyapunov functional value decreases along the state trajec-
tories. Then, from [], we can conclude that

lim
i+j→∞ E

{∥
∥x(i, j)

∥
∥} = ,

which implies that system () is asymptotically stable.
This completes the proof of Theorem . �

Remark  Theorem  provides a sufficient condition for D uncertain systems with a
delay varying in a range and random packet dropouts. If the communication link existing
between the plant and the controller is perfect, that is, there is no packet dropout during
their transmission, then α =  and θ = . In this case, the condition in Theorem  becomes
the condition obtained in [, ] for a D deterministic system with time delay. From
this point of view, Theorem  can be seen as an extension to D time-delay systems with
packet dropout.

3.2 Controller design
Theorem  gives a mean-square asymptotic stability condition where the controller gain
matrix K is known. However, our eventual purpose is to determine a suitable K by system
matrices A, Ad, B, E, F, F and parameter α.

Lemma  ([]) Let U , V ,� and W be real matrices of appropriate dimensions with W
satisfying W = W T , then for all �T� ≤ I ,

W + U�V + V T�T UT < ,

if and only if there exists ε >  such that

W + ε–UUT + εV T V < .

Now, we can give the following result.

Theorem  Given positive integers dm, dM, hm, hM , D system () is mean-square asymp-
totically stable if there exist a positive definite symmetric matrix L =

[ Lh

Lv

]
, S =

[ Sh

Sv

]
,

M =
[Mh


Mv



]
, M =

[Mh


Mv


]
, X =

[ Xh

Xv

]
matrix Y and positive scalar ε such that the

following matrix inequality holds:

⎡

⎢
⎢
⎢
⎣

� � � �

�  
� 

∗ �

⎤

⎥
⎥
⎥
⎦

< ,
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where

� =

⎡

⎢
⎣

ψ̃  X
–S 

∗ –M – X

⎤

⎥
⎦ , � =

⎡

⎢
⎣

LÃT + αY T B̄T θY T B̄T

LÃT
d 

 

⎤

⎥
⎦ ,

� =

⎡

⎢
⎣

LÃT + αY T B̄T – L θY T B̄T

LÃT
d 

 

⎤

⎥
⎦ , � =

⎡

⎢
⎣

LF̄T


LF̄T




⎤

⎥
⎦ ,

� =

[
εĒT Ē – L

εĒT Ē – L

]

, � =

[
εĒT Ē – H–X

εĒT Ē – H–X

]

,

� = –εI, ψ̃ = –L + M + DS + S – LX–L.

In this case, a suitable ILC law can be selected as K = YL–.

Proof Pre- and post-multiply inequality () by diag{L, L, G–, L, L, G–, G–}, by using
Schur complements and letting L = P–, the following LMI can be obtained:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ̃  L LÃT + αY T B̄T θY T B̄T LÃT + αY T B̄T – L θY T B̄T

–S  LÃT
d  LÃT

d 
–M – X    

–L   
–L  

∗ –H–G– 
–H–G–

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< ,

()

that is,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ̃  L LĀT + αY T B̄T θY T B̄T LĀT + αY T B̄T – L θY T B̄T

–S  LĀT
d  LĀT

d 
–M – X    

–L   
–L  

∗ –H–G– 
–H–G–

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

LF̄T


LF̄T








⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�T

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣




Ē

Ē


⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

LF̄T


LF̄T








⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�T

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣




Ē

Ē


⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

< . ()
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Figure 2 Max tracking error on the iteration
domain for Case 1.

By Lemma , () holds if and only if there exists a scalar ε >  such that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ̃  L LĀT + αY T B̄T θY T B̄T LĀT + αY T B̄T – L θY T B̄T

–S  LĀT
d  LĀT

d 
–M – X    

εĒT Ē – L   
εĒT Ē – L  

∗ εĒT Ē – H–G– 
εĒT Ē – H–G–

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ ε–

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

LF̄T


LF̄T








⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
F̄L F̄L     

]
< . ()

Using Schur complements, condition () implies that the condition in Theorem 
holds. �

Remark  Note that the condition in Theorem  is no longer LMIs owing to the term
LX–L in ψ̃. The available LMI tools cannot be used directly to obtain a feasible solution.
However, we can use the idea of iterative algorithms in combination with LMI convex op-
timization problems as is done in [, ]. Then an available control law can be obtained.

Remark  It is noticed that the data dropout may occur on both system output and con-
trol input sides in NCSs. In this paper, we only consider output measurement missing for
the sake of convenience, as is also done in most existing works. However, the result in this
paper can be extended to the control input signal dropouts.

Remark  Since the system performs the same task repetitively, computation complexity
is an important issue for ILC systems. The large number of iterations leads to high accu-
racy but heavy computational burden. How to keep the balance between iteration number
and tracking accuracy is an important problem for practical ILC systems. Some efforts
can be made to address this issue. Firstly, we can pre-calculate an acceptable tracking er-
ror, which satisfies the accuracy requirement of the control objective. If the tracking error
reaches the given value, then the iteration process is stopped. Secondly, we can design
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Figure 3 System output profiles for Case 1: (a)
1st iteration; (b) 10th iteration; (c) 50th iteration.

optimal ILC with monotonic convergence and fast convergence speed such that learning
transient behavior is reduced.

4 Illustrative example
In this section, the result is applied to an injection molding process to demonstrate the
effectiveness of the proposed ILC design approach. Injection molding process is a typical
repetitive process, where key process variables are controlled to follow certain profiles
repetitively to ensure the product quality [, ]. Injection velocity is a key variable in the
filling stage, which is controlled by manipulating the opening of a hydraulic valve. A state-
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Figure 4 Max tracking error on the iteration
domain for Case 2.

space representation of injection molding velocity control can be described as follows:

{
x(k, t + ) = (A + �A)x(k, t) + (Ad + �Ad)x(k, t – d(t)) + Bu(k, t),
y(k, t) = Cx(k, t),

where matrices A = [ . –.
  ], B = [ 

 ], C = [. –.]. �A = E�F ,�Ad = E�F indi-
cate uncertain parameter perturbation with

E =

[
. .
 

]

, F =

[
 
 

]

, F =

[
.
.

]

,

� =

[
ξ

ξ

]

, |ξ| < , |ξ| < ,

where ξ, are unknown variables. The values of time-varying delays are chosen as . ≤
d(t) ≤  and . ≤ h(k) ≤ , which is derived from [].

The desired trajectory is given as follows:

yd(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

. + .t, t ≤ ,
.,  < t ≤ ,
. + .(t – ),  < t ≤ ,
.,  < t ≤ .

In simulation, the initial states are given as x(, k) = x(, k) =  for all k, and the control
input is selected as u(t, ) =  for all t. The time-varying delay d(t) changes randomly with
d(t) ∈ [. ]. The uncertain parameters ξ, are assumed to vary randomly within [ ]
along with both time and iteration direction.

To perform the simulation, we consider the following two cases: () ᾱ = , () ᾱ = ..
Obviously, Case  means that there is no packet dropout. Case  means that there is 
percent dropout. Using Theorem , we can obtain the controller K = [–. . .]
for Case  and K = [–. . .] for Case . Figure  shows the tracking error on the
iteration domain for Case . It is obvious that the tracking error converges to a small steady
state without packet dropouts, where the final error is caused by unpredictable random
parameter disturbances. To see the convergence procedure more clearly, system outputs
at st, th and th iteration are plotted in Figure .
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Figure 5 System output profiles for Case 2: (a)
1st iteration; (b) 10th iteration; (c) 50th iteration.

For Case , the tracking error on the iteration domain is plotted in Figure , and system
outputs at the three different iterations are plotted in Figure . It can be seen that even
though the tracking performance has degraded and significant tracking errors exist in the
start iteration due to packet dropouts, better tracking can also be achieved after some iter-
ations. It is thus demonstrated that the proposed method can be used for robust tracking
against non-repeatable uncertainties along iteration, random packet dropouts and time-
varying delay. Besides, the convergence speed of Case  is slower than that of Case  as
shown in Figures  and , which illustrates that convergence speed gets slower as dropout
rate increases.
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5 Conclusions
The robust ILC design is considered for uncertain linear systems with time-varying delays
and random packet dropouts. By modeling the packet dropout as an arbitrary stochastic
sequence satisfying the Bernoulli binary distribution, the considered system can be trans-
formed into a D stochastic system described by the Roesser model with a delay varying
in a range. Then, a delay-dependent stability condition is derived in terms of linear ma-
trix inequalities (LMIs), and formulas can be given for the ILC law design. The results on
injection velocity control have illustrated the feasibility and effectiveness of the proposed
design.
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