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Abstract
The rodent is one important component of an ecosystem; however, abundance of
rodents may have negative effects to humans. Based on a seasonally breeding model
and the logistic model, the effect of impulse lethal control and impulse contraception
control on rodent population dynamics is investigated. The existence and stability of
the periodic solution were analyzed. The condition of rodent population dying out is
the same for lethal and contraception control. However, the process of rodent
population tending to a stable periodic solution is different obviously. Under lethal
control, the rodent population tends to a stable periodic solution more quickly,
whereas under contraception control, the rodent population develops slowly.
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1 Introduction
The rodent is one important component of an ecosystem, it is indispensable and irreplace-
able. Due to the seasonal variation of food availability and physical environment, some
species of rodents are seasonally breeding and their population sizes vary in a wavelike
way. Examples of seasonally breeding rodents are listed in Table .

The amount of rodents may increase dramatically due to some reason and bring neg-
ative effects to humans. In practice, lethal control and contraception control are usually
used to control overabundance of rodents. Lethal control is killing rodents by means of
rodenticide or mousetrap and its aim is increasing the death rate of rodent population.
Contraception control is preventing all or part of the rodent to produce normally by means
of sterilant or special virus so as to reduce the birth rate of rodent population.

How the controlled rodent population develops is one important issue. Despite the fact
that it is difficult to engage in this issue through experiments, mathematical modeling may
be helpful. With the prerequisite of seasonally breeding, some discrete models have been
formulated and analyzed to investigate the effect of lethal control or contraception control
on population dynamics [, ].

In the present paper, based on seasonally breeding model and the logistic model, the
effect of lethal control and contraception control on rodent population dynamics is inves-
tigated. In the seasonally breeding model, one year is divided into breeding season and
non-breeding season and we describe the rodent population dynamics in these two time
periods with different continuous mathematical models. When the long-term dynamics
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Table 1 Seasonally breeding rodent

Species of rodent Region Breeding season Reference

Peromyscus North America Seasonally breeding [3, 4]
Ochotona curzoniae Heimahe, China Seasonally breeding [5]
Arvicanthis niloticus Oursi, Burkina Faso Seasonally breeding [6]
Mastomys erythroleucus
Taterillus gracilis
Gerbillus nigeriae
Taterillus petteri
Acomys
Cryptomys hottentotus hottentotus Western Cape, South Africa September to November [7]
Cryptomys hottentotus pretoriae Gauteng, South Africa July to November [8]
Bathyergus janetta Kamieskroon, South Africa July to September [9]
Lophuromys flavopuncatus Magamba, Tanzania February to May [10]
Grammomys dolichurus
Praomys delectorum
Lasiopodomys brandtii March to September [11]
Meriones unguiculatus Taipusi, China Spring and summer [12]
Acomys dimidiatus Taif, Saudi Arabia Spring to Autumn [13]
Calomys tener Federal District, Brazil Rainy season [14]

of the rodent population is concerned, one year is only a time point, the seasonality of
breeding is erased, and the population dynamics is described with the logistic model.
Generically, lethal control is actualized through rodenticide and contraception control is
actualized through sterilant. After ingesting bait that includes rodenticide or sterilant, the
rodent would die or be sterile during a period not longer than several days. This period is
very short compared to the whole lifetime of rodent, so we suppose that the control is ac-
complished at a time point instantaneously. Usually, there is a long time interval between
two control practices, so we assume that the controls are implemented at discrete times
with equal intervals.

2 Logistic model and seasonally breeding model
2.1 Logistic model
The logistic model is

x′ = rx
(

 –
x
K

)
,

where x(t) is the population size at time t, r >  is the intrinsic increasing rate and K is
the carrying capacity. The solution of the logistic model with initial condition x(t) = x is
x(t) = Kx

x+(K–x)e–r(t–t) . For arbitrary x �= , limt→+∞ x(t) = K , that is, the positive equilib-
rium x = K is globally asymptotically stable (eliminate the case x = ).

2.2 Seasonally breeding model
For seasonally breeding rodents, assume that the breeding season and the non-breeding
season are present in turn, the length of the breeding season is T, the length of the non-
breeding season is T, and the sum of T and T is one year, denoted by T . Let x(t) be
the size of the rodent population at time t. For convenience, let t =  be the beginning
of a breeding season. During the breeding season, x(t) increases gradually, and beyond
the breeding season x(t) decreases gradually due to death. Assume that x(t) satisfies the
logistic model during the breeding season and x(t) satisfies the Malthusian model during
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non-breeding season. Then one has

⎧⎨
⎩

x′ = rx( – x
K ), t ∈ [nT , nT + T],

x′ = –rx, t ∈ [nT + T, (n + )T],
n = , , , . . . , ()

where r >  is the intrinsic increasing rate during breeding season, K is the carrying capac-
ity, and r >  is the death rate during non-breeding season. This model has been studied
[].

Lemma  is useful in studying the dynamical behavior of model ().

Lemma  The sequence {yn} satisfies

yn+ = G(yn) =
ayn

byn + c
, ()

where a, b, c are all positive constants. Then  is always an equilibrium of (), when a >
c, () has another unique positive equilibrium y∗ = a–c

b . There is no other h (>) periodic
equilibrium at all. If c ≥ a, then  is globally asymptotically stable and if c < a, then y∗

asymptotically attracts all positive solutions.

Proof Simple calculation gives the existence of equilibria. For positive integer h > , yn+h =
Gh(yn) = ah(a–c)yn

b(ah–ch)yn+ch(a–c) and it has no other equilibrium than  and y∗. That is, () has no
other h (>) periodic equilibrium at all.

Obviously, if y = , then yn ≡  and if y �= , then, for any positive integer n, yn �= .
When y �= , rewrite equation () as


yn+

=
b
a

+
c
a

· 
yn

. ()

When a = c, () is 
yn+

= b
a + 

yn
, its solution is yn = 


y

+ nb
a

, so limn→+∞ yn = .

When a �= c, () implies 
yn+

– b
a–c = c

a ( 
yn

– b
a–c ), its solution is yn = 

( c
a )n( 

y
– b

a–c )+ b
a–c

. Thus,

if c > a, then limn→+∞ yn =  and if c < a, then limn→+∞ yn = y∗. The proof is complete. �

Solving model () on time interval [nT , (n + )T], one has the mapping () from x(nT) to
x((n + )T),

x
(
(n + )T

)
= G

(
x(nT)

)
=

Kx(nT)e–rT

( – e–rT )x(nT) + Ke–rT
. ()

Then Theorem  can be obtained from Lemma  immediately.

Theorem   is always an equilibrium of (), if rT < rT, then () has another unique
positive equilibrium x∗

 = K (e–rT –e–rT )
–e–rT . There is no other h (>) periodic equilibrium at

all. If rT ≥ rT, then  is globally asymptotically stable and model () has a globally
asymptotically stable zero solution. If rT < rT, then x∗

 asymptotically attracts all posi-
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tive solutions of () and model () has globally asymptotically stable periodic solution

⎧⎪⎨
⎪⎩

x = Kx∗


x∗
 +(K–x∗

 )e–r(t–nT) , t ∈ [nT , nT + T],

x = Kx∗
 e–r(t–nT–T)

x∗
 +(K–x∗

 )e–rT , t ∈ [nT + T, (n + )T],
n = , , , . . . .

Obviously, when rT ≥ rT, the rodent pest dies out, there is no damage. Thus rodent
control is considered under the condition rT < rT hereafter.

3 Impulse lethal control
3.1 Logistic model with lethal control
The logistic model with impulse lethal control is

⎧⎨
⎩

x′ = rx( – x
K ), t �= nU ,

x(nU+) = ( – p)x(nU), t = nU ,
()

where p is the removal rate and lethal control is implemented once at regular time inter-
vals U .

Solving model () on time interval [nU+, (n+)U+], one has the mapping () from x(nU+)
to x((n + )U+),

x
(
(n + )U+)

= G
(
x
(
nU+))

=
( – p)Kx(nU+)

( – e–rU )x(nU+) + Ke–rU . ()

Then mapping () and Lemma  imply Theorem .

Theorem   is always an equilibrium of (), when p <  – e–rU , then () has another
unique positive equilibrium x∗

 = (–e–rU –p)K
–e–rU . There is no other h (>) periodic equilibrium

at all. If p ≥  – e–rU , then  is globally asymptotically stable and model () has globally
asymptotically stable zero solution. If p <  – e–rU , then x∗

 asymptotically attracts all posi-
tive solutions of () and model () has the globally asymptotically stable periodic solution
x(t) = Kx∗


x∗

+(K–x∗
)e–r(t–nU) , t ∈ [nU+, (n + )U], n = , , , . . . .

3.2 Seasonally breeding model with lethal control
This section deals with the seasonally breeding model with impulse lethal control. For
convenience, suppose that lethal control is implemented at nLT (n = , , , . . .) with re-
moval rate p, that is, put the control in practice once every L years and at the beginning of
some breeding seasons. Thus, one can formulate model (),

⎧⎪⎪⎨
⎪⎪⎩

x′ = rx( – x
K ), t ∈ [nT , nT + T], t �= kLT ,

x′ = –rx, t ∈ [nT + T, (n + )T], t �= kLT ,

x(kLT+) = ( – p)x(kLT), t = kLT ,

n = , , , . . . ,
k = , , , . . . .

()

Solving model () and denoting x(nLT+) by Xn gives

Xn+ = G(Xn) =
( – p)KXne–LrT (e–rT – e–rT )

Xn( – e–rT )(e–LrT – e–LrT ) + Ke–LrT (e–rT – e–rT )
. ()
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Thus Theorem  is obtained from Lemma  and ().

Theorem   is always an equilibrium of (), when p <  – eL(rT–rT), then () has an-
other unique positive equilibrium x∗

 = K (e–rT –e–rT )[(–p)e–LrT –e–LrT ]
(–e–rT )(e–LrT –e–LrT ) . There is no other h

(>) periodic equilibrium at all. If p ≥  – eL(rT–rT), then  is globally asymptotically sta-
ble and model () has globally asymptotically stable zero solution. If p <  – eL(rT–rT),
then x∗

 asymptotically attracts all positive solutions of () and model () has a globally
asymptotically stable LT periodic solution.

4 Impulse contraception control
4.1 Logistic model with contraception control
Under contraception control, the rodent population is divided into a fertile subpopulation
and a sterile subpopulation. Let f (t) and s(t) denote the sizes of the fertile subpopulation
and the sterile subpopulation at time t, respectively. Assume that control is implemented
once at regular time intervals U and the contraception rate is q. The sterile individuals
cannot produce offspring, but occupy resources normally. Denote the death rate of sterile
subpopulation by d. Then one can formulate the logistic model with contraception control
(),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f ′ = rf ( – f +s
K ), t �= nU ,

s′ = –ds, t �= nU ,

f (nU+) = ( – q)f (nU), t = nU ,

s(nU+) = s(nU) + qf (nU), t = nU .

()

Solving model () on the interval [nU+, (n + )U+], one can obtain the mapping () from
f (nU+), s(nU+) to f ((n + )U+), s((n + )U+),

⎧⎪⎨
⎪⎩

f ((n + )U+) = (–q)Kf (nU+)π (U ,s(nU+))
Kπ (,s(nU+))+rf (nU+)

∫ U
 π (v,s(nU+)) dv

,

s((n + )U+) = s(nU+)e–dU + qKf (nU+)π (U ,s(nU+))
Kπ (,s(nU+))+rf (nU+)

∫ U
 π (v,s(nU+)) dv

,
()

where π (t, u) = exp(rt + ru
dK e–dt).

Theorem  (, ) is always an equilibrium of (), if q <  – e–rU , then () has another
unique positive equilibrium (f ∗, s∗) such that f ∗ = (–q)(–e–dU )s∗

q , s∗ < s and s = q(r+d)K
r[–(–q)e–dU ] .

Proof It is easy to see that (, ) is an equilibrium of () and another equilibrium (f , s) of
() satisfies (),

⎧⎪⎨
⎪⎩

 = (–q)Kπ (U ,s)
Kπ (,s)+rf

∫ U
 π (v,s) dv

,

s = se–dU + qKf π (U ,s)
Kπ (,s)+rf

∫ U
 π (v,s) dv

.
()

Taking account the first equation in (), one can rewrite the second equation in () as
f = (–q)(–e–dU )s

q . Substituting this new relation into the first equation in () gives

ϕ(s) �= ( – q)Kπ (U , s) – Kπ (, s) –
r( – q)( – e–dU )s

q

∫ U


π (v, s) dv = .



Liu et al. Advances in Difference Equations  (2017) 2017:93 Page 6 of 14

Because ϕ() = KerU ( – q – e–rU ), so if q <  – e–rU , then ϕ() > , if q ≥  – e–rU , then
ϕ() ≤ .

When q ≥  – e–rU , ( – q)erU ≤  holds. Note that exp( rs
dK e–dU ) < exp( rs

dK ), hence ( –
q)KerU exp( rs

dK e–dU ) < K exp( rs
dK ), that is, ( – q)Kπ (U , s) – Kπ (, s) < . Thus ϕ(s) <  for

all s > , and then ϕ(s) =  has no positive solution.
Next, consider the existence of a positive solution of ϕ(s) =  under the condition q <

 – e–rU . The fact that lims→+∞[rU + rs
dK (e–dU – )] = –∞ implies

lim
s→+∞

{
( – q) exp

[
rU +

rs
dK

(
e–dU – 

)]
– 

}
= –.

This result, together with the fact that lims→+∞ exp( rs
dK ) = +∞ gives

lim
s→+∞ exp

(
rs

dK

){
( – q) exp

[
rU +

rs
dK

(
e–dU – 

)]
– 

}
= –∞,

that is, when s → +∞, the sum of the first two terms of ϕ(s) approaches –∞. Obviously,
when s → +∞, the third term of ϕ(s) approaches –∞. So, lims→+∞ ϕ(s) = –∞ and then
when q <  – e–rU , ϕ(s) =  has positive solution.

When q <  – e–rU , let s∗ be a positive solution of ϕ(s) = , then ϕ(s∗) =  holds, that is,

( – q)Kπ
(
U , s∗) – Kπ

(
, s∗) =

r( – q)( – e–dU )s∗

q

∫ U


π

(
v, s∗)dv > . ()

Because

r
∫ U


π

(
v, s∗)dv =

∫ U


exp

(
rs∗

dK
e–dv

)
derv

= π
(
T , s∗) – π

(
, s∗) +

rs∗

K

∫ U


e–dvπ

(
v, s∗)dv

we have

rs∗

K

∫ U


e–dvπ

(
v, s∗)dv = r

∫ U


π

(
v, s∗)dv – π

(
U , s∗) + π

(
, s∗).

Thus the derivative of ϕ with respect to s at s∗ is

ϕ′(s∗) =
r[ – ( – q)e–dU ]

qds∗
[
( – q)π

(
U , s∗) – π

(
, s∗)](s∗ – s

)
.

Therefore, when s∗ > s, ϕ′(s∗) >  holds; when s∗ < s, ϕ′(s∗) <  holds; when s∗ = s,
ϕ′(s∗) =  holds.

If there exists s∗ that is larger than s, and s is the maximum one of all s∗, then ϕ′(s) > .
Thus there is a point s̄ in a certain right neighborhood of s such that s̄ > s and ϕ(s̄) > .
From the result of lims→+∞ ϕ(s) = –∞, one knows that ϕ(s) =  has a solution which is
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larger than s̄. This is contrary to s being maximum. Accordingly, ϕ(s) does not have a
zero point that is larger than s.

If there are at least two zero points of ϕ(s) that are less than s then one can select two
points among all these zero points and denote them by s, s. So ϕ′(s) < , ϕ′(s) < .
Without loss of generality, suppose s < s. Thus there is a point s̄ in a certain right neigh-
borhood of s and a point s̄ in a certain left neighborhood of s such that s̄ < s̄, ϕ(s̄) < 
and ϕ(s̄) > . So there exists a zero point of ϕ(s) between s̄ and s̄, thereby between s

and s. This result shows that there is at least one zero point of ϕ(s) between any two zero
points of it. So, the zero point of ϕ(s) between s and s is dense. Then ϕ′(s) (or ϕ′(s)) is
 or does not exist, this is contrary to the fact that ϕ′(s) <  (or ϕ′(s) < ). Therefore ϕ(s)
has no more than one zero point that is less than s.

If s∗ = s, then ϕ(s) = ϕ′(s) = . Due to

(r – d)
∫ U


π

(
v, s∗)e–dv dv =

∫ U


exp

(
rs∗

dK
e–dv

)
de(r–d)v

= π
(
U , s∗)e–dU – π

(
, s∗) +

rs∗

K

∫ U


e–dvπ

(
v, s∗)dv,

we have rs∗
K

∫ U
 e–dvπ (v, s∗) dv = (r – d)

∫ U
 π (v, s∗)e–dv dv –π (U , s∗)e–dU +π (, s∗), and then

ϕ′′(s) =
r[ – ( – q)e–dU ]

dKq(r + d)
[
( – q)π (U , s) – π (, s)

]
> .

Hence, ϕ(s) takes a local minimum value at point s. Then there is a point s̄ in a cer-
tain right neighborhood of s such that s̄ > s, ϕ(s̄) > . This result, together with
lims→+∞ ϕ(s) = –∞, implies that ϕ(s) has zero point that is larger than s̄, thereby larger
than s. This is contrary to the fact that ϕ(s) does not have zero point that is larger than s.
Consequently, s is not zero point of ϕ(s).

Summarily, ϕ(s) has an unique positive zero point s∗ such that s∗ < s. The proof is com-
plete. �

Theorem  If q ≥  – e–rU , the equilibrium (, ) of () is globally asymptotically stable
and model () has a globally asymptotically stable zero solution.

Proof It is easy to see that f (nU+) > , s(nU+) >  for n ∈ N = {, , , , . . .} when f (+) > ,
s(+) > . The condition ( – q)erU ≤  and the facts exp( rs(nU+)

dK e–dU ) < exp( rs(nU+)
dK ),

rf (nU+)
∫ U

 π (v, S(nU+)) dv >  imply  < ( – q)Kπ (U , S(nU+)) < Kπ (, S(nU+)) +
rf (nU+)

∫ U
 π (v, S(nU+)) dv. This indicates that f ((n + )U+) < f (nU+), that is, the sequence

{f (nU+)} is descending. Since  is the lower bound of {f (nU+)}, sequence {f (nU+)} con-
verges and its limit is larger than or equals .

If there exists k such that s((k +)U+) < s(kU+), then s((n+)U+) = s(nU+)e–dU + qf ((n+)U+)
–q

and {f (nU+)} being descending imply s((n + )U+) < s(nU+) for all n ≥ k, that is, the se-
quence {s(nU+)} is descending for n ≥ k. Since  is the lower bound of {s(nU+)}, the se-
quence {s(nU+)} converges.

If there is no k such that s((k + )U+) < s(kU+), namely, the sequence {s(nU+)} is as-
cending, then from the relation s(nU+) ≤ s((n + )U+) = s(nU+)e–dU + qf ((n+)U+)

–q , one can
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conclude s(nU+) ≤ qf ((n+)U+)
(–q)(–e–dU ) , that is, {s(nU+)} is bounded. Thus, the sequence {s(nU+)}

converges.
The sequence {s(nU+)} always converges.
Let limn→+∞ f (nU+) = A and limn→+∞ s(nU+) = B. Taking limits at both sides of the two

equations in () gives

⎧⎪⎨
⎪⎩

A = (–q)KAπ (U ,B)
Kπ (,B)+rA

∫ U
 π (v,B) dv

,

B = Be–dU + qKAπ (U ,B)
Kπ (,B)+rA

∫ U
 π (v,B) dv

.
()

Form the first formula in (), one obtains A =  or A = (–q)KAπ (U ,B)–Kπ (,B)
r
∫ U

 π (v,B) dv
. Because the

latter result is less than  and A ≥ , we have A = . Afterwards, it is easy to see that B = 
from the second formula in ().

Therefore, the equilibrium (, ) of () is globally asymptotically stable. �

Theorem  Let

� =


( – q)π (U , s∗)

{(
 + e–dU)[

( – q)π
(
U , s∗) + π

(
, s∗)]

+
r

dK( – q)
{[

 – ( – q)e–dU]
f ∗ – K( – q)

(
 – e–dU)}

× [
( – q)π

(
U , s∗) – π

(
, s∗)]}.

If q <  – e–rU and � > , the positive equilibrium (f ∗, s∗) of () is locally asymptotically
stable.

Proof The linearized matrix of () at (f ∗, s∗) is J =
[ J J

J J

]
, here J = π (,s∗)

(–q)π (T ,s∗) , J =
r

dKq(–q) {[ – ( – q)e–dU ]f ∗ – ( – q)( – e–dU )K}[( – q)π (U , s∗) – π (, s∗)], J = qJ
(–q) , J =

e–dU + qJ
(–q) .

The characteristic equation of J is λ + aλ + a = , here a = –J – J, a = |J| =
e–dU π (,s∗)

(–q)π (U ,s∗) . Equation () tells us ( – q)π (T , s∗) > π (, s∗) > , so  < a < . Since

 + a + a =
 – e–dU

d( – q)π (U , s∗)
[
( – q)π

(
U , s∗) – π

(
, s∗)][r + d –

r[ – ( – q)e–dU ]s∗

qK

]

and s∗ < s, we have  + a + a > . Calculation shows  – a + a = � > . Therefore, on the
basis of the Jury criterion, the positive equilibrium (f ∗, s∗) of () is locally asymptotically
stable. �

4.2 Seasonally breeding model with contraception control
Next, consider impulse contraception control based on the seasonally breeding model ().
For convenience, suppose that contraception control is implemented at nLT (n = , , , . . .)
with contraception rate q, that is, put the control in practice once every L years and at the
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beginning of some breeding seasons. Thus, one can formulate model (),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′ = rf ( – f +s
K ), t ∈ [nT , nT + T], t �= kLT ,

s′ = –ds, t ∈ [nT , nT + T], t �= kLT ,

f ′ = –rf , t ∈ [nT + T, (n + )T], t �= kLT ,

s′ = –rs, t ∈ [nT + T, (n + )T], t �= kLT ,

f (kLT+) = ( – q)f (kLT), t = kLT ,

s(kLT+) = s(kLT) + qf (kLT), t = kLT ,

n = , , , . . . ,
k = , , , . . . .

()

Solving model () and denoting f (nLT+), s(nLT+) as Fn, Sn, respectively, gives

⎧⎨
⎩

Fn+ = (–q)KFng(Sn)
K+rFng(Sn) ,

Sn+ = Sne–L(dT+rT) + qKFng(Sn)
K+rFng(Sn) ,

()

where

g(Sn) = exp

{
L(rT – rT) +

rSn[ – e–L(dT+rT)]
dK( – e–dT–rT )

(
e–dT – 

)}
,

g(Sn) =
∫ T


exp

[
rv +

rSn

dK
(
e–dv – 

)]
dv + exp

[
rT – rT +

rSn

dK
(
e–dT – 

)]

×
∫ T


exp

[
rv +

rSn

dK
(
e–dv – 

)
e–dT–rT

]
dv

+ exp

[
rT – rT +

rSn

dK
(
e–dT – 

)(
 + e–dT–rT

)]

×
∫ T


exp

[
rv +

rSn

dK
(
e–dv – 

)
e–(dT+rT)

]
dv

+ · · ·

+ exp

[
(L – )(rT – rT)

+
rSn

dK
(
e–dT – 

)(
 + e–dT–rT + · · · + e–(L–)(dT+rT))]

×
∫ T


exp

[
rv +

rSn

dK
(
e–dv – 

)
e–(L–)(dT+rT)

]
dv.

Theorem  (, ) is always an equilibrium of (), if q <  – e–L(rT–rT), then () has
another positive equilibrium.

Proof Obviously, (, ) is equilibrium of () and other equilibrium (F , S) of () satisfies
()

⎧⎨
⎩

 = (–q)Kg(S)
K+rFg(S) ,

S = Se–L(dT+rT) + qF
–q .

()
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From the first equation in (), one sees that F = (–q)Kg(S)–K
rg(S) . Substituting this new relation

into the second equation in () gives

 = φ(S) �= ( – q)Kg(S) – K –
( – q)rKSg(S)

q
[
 – e–L(dT+rT)]. ()

Note that φ() = K[( – q)eL(rT–rT) – ], so if q <  – e–L(rT–rT), then φ() >  and if
q ≥  – e–L(rT–rT), then φ() ≤ .

When q ≥  – e–L(rT–rT), ( – q)eL(rT–rT) ≤  holds. Hence the first term of φ(S) is
less than K and then φ(S) <  for arbitrary S ≥ . This means that φ(S) =  does not have
a positive solution.

When q <  – e–L(rT–rT), the first term of φ(S) tends to  as S approaching to +∞, the
second term is a negative constant, the third term is less than . So when S is large enough,
φ(S) <  holds. It implies that φ(S) =  has a positive solution. �

Theorem  If q ≥  – e–L(rT–rT), the equilibrium (, ) of () is globally asymptotically
stable and model () has a globally asymptotically stable zero solution.

Proof Obviously, when F > , S > , Fn > , Sn >  hold for n ∈ N = {, , , , . . .}. When
the stated conditions hold,  < ( – q)eL(rT–rT) ≤ , rSn[–e–L(dT+rT)]

dK (–e–dT–rT )
(e–dT – ) < , all

these result in  < ( – q)Kg(Sn) < K . In addition, rFng(Sn) > , so  < ( – q)KFng(Sn) <
K + rFng(Sn). Thus Fn+ < Fn, that is, {Fn} is descending. Since  is the lower bound of
{Fn}, the sequence {Fn} converges and its limit is larger than or equals .

If there exists k such that Sk+ < Sk , then the facts that Sn+ = Sne–L(dT+rT) + qFn+
–q and

{Fn} is descending imply Sn+ < Sn for all n ≥ k, that is, the sequence {Sn} is descending for
n ≥ k. Since  is the lower bound of {Sn}, the sequence {Sn} converges.

If there is no k such that Sk+ < Sk , namely, the sequence {Sn} is ascending, then, from
the relation Sn ≤ Sn+ = Sne–L(dT+rT) + qFn+

–q , one can conclude Sn ≤ qFn+
(–q)[–e–L(dT+rT)]

,
that is, {Sn} is bounded. Thus, the sequence {Sn} converges.

Thus, the sequence {Sn} always converges.
Assume that limn→+∞ Fn = A and limn→+∞ Sn = B. Taking limits at both sides of the two

equations in () gives

⎧⎨
⎩

A = (–q)KAg(B)
K+rAg(B) ,

B = Be–L(dT+rT) + qKAg(B)
K+rAg(B) .

()

From the first formula in (), one obtains A =  or A = (–q)Kg(B)–K
rg(B) . The latter result is

less than  and A ≥ , so A = . Afterwards, it is easy to see that B =  from the second
formula in ().

Therefore, the equilibrium (, ) of () is globally asymptotically stable. �

Theorem  Denote

� =  –


( – q)g(S∗)
– e–L(dT+rT)

–
( – q)qKF∗g ′

(S∗) – qr(F∗)g ′
(S∗)

( – q)Kg(S∗)
+

e–L(dT+rT)

( – q)g(S∗)
,
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� =  +


( – q)g(S∗)
+ e–L(dT+rT)

+
( – q)qKF∗g ′

(S∗) – qr(F∗)g ′
(S∗)

( – q)Kg(S∗)
+

e–L(dT+rT)

( – q)g(S∗)
.

When � > , � > , q <  – e–L(rT–rT) hold, the positive equilibrium of () is locally
asymptotically stable.

Proof The linearized matrix of the map () at positive equilibrium (F∗, S∗) is M =[ M M
M M

]
with M = 

(–q)g(S∗) , M = (–q)KF∗g′
(S∗)–r(F∗)g′

(S∗)
(–q)Kg(S∗) , M = q

–q M, M =

e–L(dT+rT) + q
–q M.

The characteristic equation of M is λ + bλ + b = , here b = –M – M, b = |M| =
e–L(dT+rT)

(–q)g(S∗) . Equation () tells us ( – q)g(S∗) > , so  < b < . Simple calculation shows
 – b + b = � > ,  + b + b = � > . Therefore, on the basis of the Jury criterion, the
positive equilibrium of () is locally asymptotically stable. �

5 Numerical simulation
The foregoing analysis shows that the condition of the rodent population dying out is
approximately the same for lethal control and contraception control. For the logistic model
with lethal control () and the logistic model with contraception control (), when the
control rate (p or q) is larger than -e–rU , the rodent dies out, and when the control rate
(p or q) is smaller than -e–rU , the rodent persists. For the seasonally breeding model with
lethal control () and the seasonally breeding model with contraception control (), when
the control rate (p or q) is larger than -eL(rT–rT), the rodent dies out, and when the
control rate (p or q) is smaller than -eL(rT–rT), the rodent persists. However, these two
controls are different, the process of the rodent population tending to a stable solution
obviously is different (Figures  and ).

Figure 1 The dynamics of rodent population in model (5) and (10).
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Figure 2 The dynamics of rodent population in model (7) and (14).

Figure  shows the dynamics of the rodent population in model () and (), where r =
., K = , d = ., U = . For the solid line, the control rate (p or q) is ., whereas,
for the dotted line, it is .. Figure  shows the dynamics of rodent population in model
() and (), where r = ., K = , r = ., T = ., T = .. For the solid line, the
control rate (p or q) is ., whereas, for the dotted line, it is .. In both figures, the black
line and gray line refer to the dynamics of the rodent population with lethal control and
contraception control, respectively, and the initial value is x() =  or f () = , s() = .

Under lethal control, the rodent population approaches a stable periodic solution more
quickly. So, if it was urgent to wipe off the rodent, the lethal control would be more effec-
tive. Under contraception control, the rodent population develops slowly. The variation
of the rodent population is one kind of disturbance to the ecosystem, if this disturbance
went beyond the tolerance of an ecosystem, the ecosystem would be disorganized, even it
might collapse. Thus, for fragile ecosystems, contraception control is appropriate.

6 Discussion
In this paper, dynamics models are formulated based on the logistic model and the season-
ally breeding model to investigate the effect of impulse lethal and contraception control on
rodent population dynamics. The existence and stability of the periodic solution are ana-
lyzed. The condition of the rodent population dying out is the same for these two controls
and each control has its own traits.

If the rodent control can wipe it off thoroughly then there would never exist damage in
the future. However, this situation is awful. Among all biotic and abiotic components of
an ecosystem, there are complicated relations. If the rodent dies out, the dynamics of the
other components would vary correspondingly. When these variations are large enough,
the ecosystem would be disorganized, even collapse and result in greater damage. Thus,
the aim of rodent control is guiding rodent population to a suitable size, not exterminating
it. For example, the plateau pika brings great damage to degraded alpine meadow, but it is a
keystone species also [, ]. The extinction of plateau pika may reduce the loss of pasture
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grasses that plateau pika feeds on, but, most importantly, this may induce extinction of
some raptors that prey on plateau pika, and it may induce extinction of some birds that
inhibit holes of plateau pika.

For an epidemic model, there is an important parameter, namely, the basic reproduc-
tive number R. Usually, the disease-free equilibrium is globally asymptotically stable if
R <  and the endemic equilibrium is globally asymptotically stable if R > . For popu-
lation dynamics model, frequently, when some conditions hold there is a stable positive
equilibrium, otherwise there is a stable zero equilibrium. From these conditions, one can
dig out a parameter that is similar to R. Denote this parameter by R. In this paper, R is
the maximum finite rate of increase during a specific time interval. Consider a population
of which the size satisfies the Malthus model x′ = rx, and suppose its size is x at time t.
Then its solution is x(t) = xer(t–t), and after a time interval T , that is, at time t + T , the
population size is x(t + T) = xerT . So during this time interval of length T , the multipli-
cation factor of the population size is erT , and this is the finite rate of increase during this
time interval.

In the seasonally breeding model (), the condition of a positive equilibrium existing
and being stable is rT < rT, namely, erT e–rT > . Model () is a periodic system with
-year period. For the breeding season, its length is T and the maximum increasing rate
is r, so the maximum finite rate of increase is erT . For the non-breeding season, its length
is T and the maximum increasing rate is –r, so the maximum finite rate of increase is
e–rT . Therefore, during one period, the maximum finite rate of increase is erT e–rT ,
and this is the quantity R. In model (), which is derived from the logistic model and in
which the rodent are subject to impulse contraception control, the condition of positive
equilibrium existing and being stable is q <  – e–rU , namely, ( – q)erU > . Consider one
control period of length U and assume that control is implemented at the beginning of this
period, so the ratio of fertile individuals to all individuals is  – q. During one time interval
of length U , the maximum finite rate of increase is erU ,and then during one control period,
the maximum finite rate of increase is ( – q)erU , and this is R. For other models, one can
obtain the maximum finite rate of increase in a similar way and see that it is just R.
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