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Abstract
A Crank-Nicolson scheme catering to solving initial-boundary value problems of a
class of variable-coefficient tempered fractional diffusion equations is proposed. It is
shown through theoretical analysis that the scheme is unconditionally stable and the
convergence rate with respect to the space and time step isO(h2 + τ 2) under a
certain condition. Numerical experiments are provided to verify the effectiveness and
accuracy of the scheme.
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1 Introduction
This paper is concerned with numerical methods for solving the following initial-
boundary value problem of tempered fractional diffusion equations (tempered-FDEs):

∂u(x, t)
∂t

= d(x)
(
κaDα,λ

x + κxDα,λ
b

)
u(x, t) + f (x, t),

u(a, t) = , u(b, t) = , t ∈ [, T],

u(x, ) = u(x), x ∈ [a, b],

()

where f (x, t) is the source term, d(x) ≥  is the diffusion coefficient functions, the param-
eters κ ≥ , κ ≥  are skewed parameters that control the bias of the dispersion, see
Benson et al. [], and λ is non-negative. Here, the aDα,λ

x u(x, t) and xDα,λ
b u(x, t) represent

the left and right Riemann-Liouville tempered fractional derivatives of the function u(x, t)
with order α ( < α < ), respectively, defined by (see Baeumera and Meerschaert [])

aDα,λ
x u(x) = aDα,λ

x u(x) – αλα– ∂xu(x) – λαu(x)
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and

xDα,λ
b u(x) = xDα,λ

b u(x) + αλα– ∂xu(x) – λαu(x),

where

aDα,λ
x u(x) = e–λx

aDα
x
(
eλxu(x)

)
=

e–λx

�(n – α)
∂n

∂xn

∫ x

a

eλξ u(ξ )
(x – ξ )α–n+ dξ

and

xDα,λ
b u(x) = eλx

xDα
b
(
e–λxu(x)

)
=

(–)neλx

�(n – α)
∂n

∂xn

∫ b

x

e–λξ u(ξ )
(ξ – x)α–n+ dξ ,

where �(·) denotes the gamma function, and ∂x is the first order partial differential opera-
tor with respect to x. Truly, when λ = , it reduces to the αth order left and right Riemann-
Liouville fractional derivatives of u(x), respectively, then the above equation () reduces to
fractional diffusion equations (FDEs).

From the existing literature, tempered-FDEs () is an exponentially-tempered extension
of FDEs, which has proven to be an excellent tool in capturing some rare or extreme events
in geophysics [–] and finance [, ]. For the FDEs problems, there are a variety of nu-
merical schemes, and their fast algorithms developed extensively in the past decades. We
refer readers to [–] and the references therein for the recent progress in these prob-
lems. In recent years, Deng’s group have further derived some high order difference ap-
proximations for the left and right Riemann-Liouville tempered fractional derivatives in
[], and their results have been an interest in the numerical simulation of the tempered
fractional Black-Scholes equation for European double barrier option []. Moreover, the
tempered fractional diffusion models are also used to simulate exponential tempering of
the power-law jump length of the continuous time random walk and the Fokker-Planck
equation of the new stochastic process, see [, ]. However, in these cases, the diffusion
coefficients are usually constants, few papers have focused on the tempered fractional dif-
fusion model with variable coefficients. Therefore, it is the aim of this paper to derive a
class of variable-coefficient tempered fractional diffusion models.

The paper is organized as follows. In Section , we apply the Crank-Nicolson discretiza-
tion for the tempered-FDEs, and the desired order in space and time is obtained. In Sec-
tion , it is shown that the method is unconditionally stable and convergent. Numerical
examples are presented in Section  to verify our theoretical analysis. Finally, Section 
presents the conclusion.

2 The Crank-Nicolson discretization for the tempered fractional diffusion
equations

To develop the Crank-Nicolson scheme for problem (), we let h = b–a
N+ and τ = T

M be the
space step and time step respectively, where N , M are some given positive integers. Then
the spatial and temporal partitions can be defined by xi = a + ih, i = , , . . . , N +  and
tm = mτ , m = , , . . . , M. Next, for convenience, we introduce the following notation:

tm+ 


=



(tm + tm+), f m+ 


i = f (xi, tm+ 


), di = d(xi).
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Note that Li and Deng [] have established a second order tempered-WSGD operators
aD

α,λ
x and xD

α,λ
b to approximate the left and right Riemann-Liouville tempered fractional

derivatives of u(x) at point xi, respectively, which gives

aDα,λ
x u(xi) – αλαu(xi) = aD

α,λ
x u(xi) + O

(
h)

=


hα

i+∑

k=

g(α)
k u(xi–k+) –


hα

φ(λ)u(xi) + O
(
h)

and

xDα,λ
b u(xi) – αλαu(xi) = xD

α,λ
b u(xi) + O

(
h)

=


hα

N–i+∑

k=

g(α)
k u(xi+k–) –


hα

φ(λ)u(xi) + O
(
h),

where φ(λ) = (γehλ + γ + γe–hλ)( – e–hλ)α , and the weights g(α)
k are given as

g(α)
k =

⎧
⎪⎪⎨

⎪⎪⎩

γw(α)
 ehλ, k = ,

γw(α)
 + γw(α)

 , k = ,

(γw(α)
k + γw(α)

k– + γw(α)
k–)e–(k–)hλ, k ≥ .

()

Here the weights w(α)
 =  and w(α)

k = (–)k(α

k
)

can be evaluated recursively, i.e., w(α)
k = ( –

+α
k )w(α)

k– for all k ≥ , see[]. It is worth mentioning that the parameters γi (i = , , )
satisfy the linear system

⎧
⎨

⎩
γ + γ + γ = ,

γ – γ = α/.
()

Note that there are infinite many solutions of linear system (). However, the rank the
coefficient matrix is  so that a solution can be uniquely determined when one of γi is
provided. They can be collected by the following three sets:

Sα
 (γ,γ,γ) =

{
γ is given,γ =

 + α


– γ,γ = γ –

α



}
;

or

Sα
 (γ,γ,γ) =

{
γ =

 + α


–

γ


,γ is given,γ =

 – α


–

γ



}
;

or

Sα
 (γ,γ,γ) =

{
γ =

α


+ γ,γ =

 – α


– γ,γ is given

}
.

We remark that the above approach used to approximate the left and right Riemann-
Liouville tempered fractional derivatives is simply a follow-up used by Li and Deng [].
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Our main contributions to this paper are to derive a Crank-Nicolson scheme for a class of
variable-coefficient tempered-FDEs and to illustrate the stability and convergence of this
scheme.

Let um
i ≈ u(xi, tm), we can therefore consider the Crank-Nicolson technique to the

tempered-FDEs () with the tempered-WSGD approximations to the tempered fractional
derivatives and the second order central difference approximation to ∂u

∂x , see [, ]. Then,
neglecting the truncation errors, we derive the following second order finite difference
scheme:

um+
i – um

i
τ

=
di



(
κ

hα

i+∑

k=

g(α)
k um

i–k+ +
κ

hα

i+∑

k=

g(α)
k um+

i–k+ +
κ

hα

N–i+∑

k=

g(α)
k um

i+k–

+
κ

hα

N–i+∑

k=

g(α)
k um+

i+k–

)

– di
(κ + κ)

hα
φ(λ)

(
um

i + um+
i



)

+ di
αλα–(κ – κ)



(
um+

i+ – um+
i–

h
+

um
i+ – um

i–
h

)
+ f m+ 


i , ()

for i = , , . . . , N and m = , , . . . , M – . We denote ε = τ
hα ≥ , η = αλα–τ

h ≥ . In a matrix
form, it is given as

(I – A)um+ = (I + A)um + τ f m, ()

in which

A = D
(
εκG + εκGT + η(κ – κ)W

)
, ()

where D = diag(d, d, . . . , dN ), um = [um
 , um

 , . . . , um
N ]T , f m+ 

 = [f m+ 


 , f m+ 


 , . . . , f m+ 


N ]T , the
tridiagonal matrix W = tridiag(–, , ), I is the identity matrix, and G ≡ [gi,j] is an N × N
Toeplitz matrix defined as

gi,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

, j ≥ i + ,

g(α)
 , j = i + ,

g(α)
 – φ(λ), j = i,

g(α)
 , j = i – ,

g(α)
i–j+, j ≤ i – .

()

3 Stability and convergence of the Crank-Nicolson finite difference scheme
To show the unconditional stability and convergence of the Crank-Nicolson finite differ-
ence scheme (), the following results given in [, –] are required.

Lemma  (Li and Deng []) Let S be the solution set of linear system (). If  < α < ,
λ ≥ , (γ,γ,γ) ∈ S , and

. max{ (α+α–)
α+α+ , α+α

α+α+ } < γ < (α+α–)
(α+α+) ; or
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. (α–)(α+α+)+
(α+α+) < γ < min{ (α–)(α+α+)+

(α+α+) , (α–)(α+α+)+
(α+α+) }; or

. max{ (–α)(α+α–)
α+α+ , (–α)(α+α)

(α+α+) } < γ < (–α)(α+α–)
(α+α+) ,

we have

g(α)
 < , g(α)

 + g(α)
 > , g(α)

k > , ∀k ≥ ,

and

∞∑

k=

g(α)
k =

(
γehλ + γ + γe–hλ

)(
 – e–hλ

)α .

Lemma  (Quarteroni et al. []) If A ∈ C
n×n, let H = A+A∗

 be the hermitian part of A,
then for any eigenvalue λ of A, the real part Re(λ(A)) <  satisfies

λmin(H) ≤ Re
(
λ(A)

) ≤ λmax(H),

where λmin(H) and λmax(H) are the minimum and maximum of the eigenvalues of H , re-
spectively.

Lemma  (Quarteroni et al. []) A real matrix A of order N is negative definite if and
only if its symmetric part H = A+A∗

 is negative definite; H is negative definite if and only if
the eigenvalues of H are negative.

Definition  The numerical range of matrix A is defined as

W(A) ≡ {
v∗Av : v ∈C

n, v∗v = 
}

.

Lemma  (Horn and Johnson []) Let A, B ∈C
n×n, if B is positive definite, then σ (AB) ⊂

W(A)W(B), where σ (AB) is the spectrum of AB.

Lemma  (Quarteroni and Valli []; Discrete Gronwall’s inequality) Assume that {kn}
and {pn} are non-negative sequences, and the sequence {φn} satisfies

φ ≤ c, φn ≤ c +
n–∑

l=

pl +
n–∑

l=

klφl, n ≥ ,

where c ≥ . Then the sequence {φn} satisfies

φn ≤
(

c +
n–∑

l=

pl

)

exp

( n–∑

l=

kl

)

, n ≥ .

Next, we analyze the stability of finite difference scheme (), we have the following the-
orem.

Theorem  For all α ∈ (, ), if the parameters γ, γ, and γ satisfy the hypothesis given
in Lemma , then the difference scheme () is unconditionally stable.
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Proof Let M := εκG + εκGT + η(κ – κ)W , then A = DM, note that

M + MT


= ε

(κ + κ)


(
G + GT)

+ η
(κ – κ)


(
W + W T)

= ε
(κ + κ)


(
G + GT)

.

From [], we note that the matrix G is negative definite. Since κ ≥ , κ ≥  and ε ≥ ,
then we have M+MT

 is also negative definite. Thanks to Lemma , the matrix M is nega-
tive definite. Denote by μ(A) an eigenvalue of A = DM. Since D is non-negative, combin-
ing the negative definite properties of M and Lemma , we obtain that

σ (A) = σ (DM) ⊆W(D)W(M) ⊆ {
δ ∈ C|Re(δ) < 

}
.

Hence Re(μ(A)) < , which implies that the inequality

∣
∣∣∣
 + μ(A)
 – μ(A)

∣
∣∣∣ ≤ 

holds for any α ∈ (, ). Therefore, the numerical scheme () is unconditionally stable.
In the sequel, we consider the convergence of the numerical scheme (). Let

Vh =
{

v|v = (v, v, v, . . . , vN , vN+), v = vN+ = 
}

be space grid functions defined on {xi = ih}N+
i= . For any u, v ∈ Vh, we define

(u, v) = h
N∑

i=

uivi

and the corresponding discrete L norm

‖v‖ =
√

(v, v) =

√√√
√h

N∑

i=

v
i .

�

The following theorem describes the convergence of the Crank-Nicolson method when
A = DM is negative definite.

Theorem  Let Um
i be the exact solution of tempered-FDEs () and um

i be the solution of
discrete Eq. () at mesh point (xi, tm), respectively, where i = , , . . . , N and m = , , . . . , M.
For all α ∈ (, ), if A = DM is negative definite, and the parameters γ, γ, and γ satisfy
the hypothesis given in Lemma , we have

∥
∥Um – um∥

∥ ≤ C
(
h + τ ), m = , , . . . , M,

where C is a positive constant, and Um = [Um
 , Um

 , . . . , Um
N ]T .
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Proof For i = , , . . . , N and m = , , , . . . , M – , the error satisfies the following equation:

em+
i –

τdi


[
κaD

α,λ
x em+

i + κxD
α,λ
b em+

i + αλα–(κ – κ) ∂xem+
i

]

= em
i +

τdi


[
κaD

α,λ
x em

i + κxD
α,λ
b em

i + αλα–(κ – κ) ∂xem
i
]

+ τO
(
h + τ ), ()

where em
i = Um

i – um
i , and e

i = , em
 = em

N+ =  for i = , , . . . , N and m = , . . . , M – .
Denote Em = [em

 , em
 , . . . , em

N ]T , then the matrix form of Eq. () can be written as

(I – A)Em+ = (I + A)Em + τρm, E = , m = , , . . . , M – .

Through arrangement, we obtain

Em+ – Em – A
(
Em+ + Em)

= τρm, E = , m = , , . . . , M – , ()

where ρm = [ρm
 ,ρm

 , . . . ,ρm
N ]T with ρm

i = O(h + τ ).
Multiplying () by h and taking (Em+ + Em)T on both sides, we have

h
(
Em+ + Em)T(

Em+ – Em)
– h

(
Em+ + Em)T A

(
Em+ + Em)

= h
(
Em+ + Em)T

τρm. ()

Recall that the matrix A is negative definite, then

(
Em+ + Em)T A

(
Em+ + Em)

< ,

and from Eq. () we have

h
N∑

i=

((
em+

i
) –

(
em

i
)) ≤ τh

N∑

i=

(
em+

i + em
i
)
ρm

i .

Summing up for all  ≤ m ≤ k –  (k = , , . . . , M) leads to

h
N∑

i=

(
ek

i
) ≤ τh

N∑

i=

k–∑

m=

(
em+

i + em
i
)
ρm

i

= τh
N∑

i=

k–∑

m=

(
ρm

i + ρm–
i

)
em

i + τh
N∑

i=

ek
i ρ

k–
i

≤ τh


N∑

i=

k–∑

m=

(
em

i
) +

τh


N∑

i=

k–∑

m=

(
ρm

i + ρm–
i

)

+
τh


N∑

i=

(
ek

i
) +

τh


N∑

i=

(
ρk–

i
).
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Since ρm
i = O(h + τ ), it means that ρm

i ≤ C(h + τ ) for C > . It follows from Lemma 
that

∥
∥Ek∥∥ ≤ (

C
(
h + τ )) +

k∑

m=

(
τ · ∥∥Em∥

∥) ≤ (
C

(
h + τ ))

exp

( k∑

m=

τ

)

≤ (
C

(
h + τ ))eT .

Therefore, ‖Ek‖ = ‖Em‖ = ‖Um – um‖ ≤ C(h + τ ) (m = , , . . . , M), which is the desired
result. �

4 Some examples
In this section, two numerical examples are given to show the effectiveness and conver-
gence orders of the proposed schemes. In the test, we compute the maximum norm errors
between the exact and the numerical solutions at the last time step by

e(h, τ ) = max
≤i≤N

∣∣u(xi, tM) – uM
i

∣∣, ()

where u(xi, tM) is the exact solution and uM
i is the numerical solution with the mesh step

sizes h and τ at the grid point (xi, tM). The order in the following tables is calculated by

Order = log
(
e(h, τ )/e(h, τ )

)
.

Example  Consider the following two-sided tempered fractional diffusion problem:

∂u(x, t)
∂t

= x
(

Dα,λ
x + xDα,λ


)
u(x, t) + f (x, t),

u(, t) = , u(, t) = , t ∈ [, ],

u(x, ) = e–λxx( – x), x ∈ [, ].

The exact solution is given by u(x, t) = e–t–λxx( – x). Then the source term is given as

f (x, t)  –e–t

[

e–λx

(

x( – x) +
∑

m=

(
(–)m

(

m

)
�( + m)

�( + m – α)
x+m–α

)

– λαx( – x)

)]

– xeλ(x–)–t
∑

j=

(λ)j

j!

∑

m=

(
(–)m

(

m

)
�( + m + j)

�( + m + j – α)
( – x)j++m–α

)
.

Example  This example is a modification of Example . We replace the diffusion coeffi-
cient function d(x) by x, then the source term is given as

f (x, t)  –e–t

[

e–λx

(

x( – x) +
∑

m=

(
(–)m

(

m

)
�( + m)

�( + m – α)
x+m–α

)

– λαx( – x)

)]

– xeλ(x–)–t
∑

j=

(λ)j

j!

∑

m=

(
(–)m

(

m

)
�( + m + j)

�( + m + j – α)
( – x)j++m–α

)
.
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Table 1 The maximum errors at time t = 1 and convergence orders in spatial and temporal
directions with h = τ = 1

N+1 for Example 1 with different α, and λ = 1.0, the parameters
γ1 = 0.7, 0.75, 0.80, respectively, and γ2 and γ3 are selected in the set Sα

1 (γ1,γ2,γ3)

α N + 1 γ1 = 0.70 γ1 = 0.75 γ1 = 0.80

e(h, τ ) Order e(h, τ ) Order e(h, τ ) Order

1.2 26 1.6718e–06 - 2.0479e–06 - 2.4267e–06 -
27 3.9099e–07 2.10 4.7155e–07 2.12 5.5211e–07 2.14
28 9.4311e–08 2.05 1.1268e–07 2.07 1.3106e–07 2.07
29 2.3150e–08 2.03 2.7526e–08 2.03 3.1903e–08 2.04
210 5.7343e–09 2.01 6.8018e–09 2.02 7.8694e–09 2.02

1.5 26 6.3777e–07 - 8.4512e–07 - 1.0529e–06 -
27 1.5554e–07 2.04 2.1700e–07 1.96 2.7849e–07 1.92
28 3.8376e–08 2.02 5.4938e–08 1.98 7.1505e–08 1.96
29 9.5342e–09 2.01 1.3826e–08 1.99 1.8118e–08 1.98
210 2.3761e–09 2.00 3.4680e–09 2.00 4.5598e–09 1.99

1.8 26 2.8859e–07 - 9.0103e–08 - 2.0052e–07 -
27 9.1854e–08 1.65 3.2151e–08 1.49 3.9194e–08 2.36
28 2.5751e–08 1.83 9.3079e–09 1.79 8.5674e–09 2.19
29 6.7699e–09 1.93 2.4899e–09 1.90 1.9963e–09 2.10
210 1.7328e–09 1.97 6.4317e–10 1.95 4.8152e–10 2.05

Table 2 The maximum errors at time t = 1 and convergence orders in spatial and temporal
directions with h = τ = 1

N+1 for Example 2 with different α, and λ = 1.0, the parameters
γ1 = 0.7, 0.75, 0.80, respectively, and γ2 and γ3 are selected in the set Sα

1 (γ1,γ2,γ3)

α N + 1 γ1 = 0.70 γ1 = 0.75 γ1 = 0.80

e(h, τ ) Order e(h, τ ) Order e(h, τ ) Order

1.2 26 1.1316e–06 - 1.3936e–06 - 1.6589e–06 -
27 2.6235e–07 2.11 3.1707e–07 2.13 3.7199e–07 2.16
28 6.3141e–08 2.05 7.5519e–08 2.07 8.7911e–08 2.08
29 1.5497e–08 2.03 1.8440e–08 2.03 2.1384e–08 2.04
210 3.8397e–09 2.01 4.5577e–09 2.02 5.2758e–09 2.02

1.5 26 5.1105e–07 - 6.6675e–07 - 8.2269e–07 -
27 1.2320e–07 2.05 1.7168e–07 1.96 2.2018e–07 1.90
28 3.0239e–08 2.03 4.3597e–08 1.98 5.6957e–08 1.95
29 7.4888e–09 2.01 1.0984e–08 1.99 1.4480e–08 1.98
210 1.8633e–09 2.01 2.7567e–09 1.99 3.6502e–09 1.99

1.8 26 3.7024e–07 - 1.0326e–07 - 1.7880e–07 -
27 1.1190e–07 1.73 3.9593e–08 1.38 3.4713e–08 2.36
28 3.0406e–08 1.88 1.1644e–08 1.77 7.5275e–09 2.21
29 7.9086e–09 1.94 3.1315e–09 1.89 1.7469e–09 2.11
210 2.0157e–09 1.97 8.1060e–10 1.95 4.2045e–10 2.05

Other data are the same as those in Example .

From Tables  and , we can observe the second order convergence rate in both spatial
and temporal directions for different α in L∞ norm, which is consistent with our theoreti-
cal analysis. It is remarked that we numerically test the eigenvalues of matrix DM+MT D
in Examples  and , respectively. We find that all eigenvalues of the matrix DM + MT D
in Example  are negative, which implies that the DM is negative definite, hence our as-
sumption in the convergence analysis is valid, and the numerical results are consistent
with Theorem . However, when the assumption in Theorem  is not satisfied, see Exam-
ple , we also get the desired second order convergence rate in both spatial and temporal
directions.
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Figure 1 The error curve figures with h = τ = 1
256 (left) and h = τ = 1

512 (right) at tM = 1 when α = 1.5,
γ1 = 0.8 and λ = 1.0 for Example 1.

Figure 2 The error curve figures with h = τ = 1
256 (left) and h = τ = 1

512 (right) at tM = 1 when α = 1.8,
γ1 = 0.8 and λ = 1.0 for Example 2.

In Figures  and , we plot the curve figures of the approximating errors (|u(xi, tM) – uM
i |)

with different mesh sizes at the final time step tM =  via a time-marching procedure, where
γ = . and λ = . when α = . for Example  and α = . for Example , respectively.
These figures show that the maximum norm error, defined in Eq. (), becomes relatively
smaller as the mesh size becomes smaller, which provides the validation of our results once
again.

5 Conclusion
In this paper, the Crank-Nicolson method is proposed for solving a class of variable-
coefficient tempered-FDEs (). The method is proven to be unconditionally stable and
convergent under a certain condition with rateO(h +τ ). Numerical examples show good
agreement with the theoretical analysis.
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